

SYSTEMöKOLOGIE ETHZ

SYSTEMS ECOLOGY ETHZ

Bericht / Report Nr. 14

ModelWorks 2.2
An Interactive Simulation Environment for

Personal Computers and Workstations

Andreas Fischlin
&

D. Gyalistras, O. Roth, M. Ulrich, J. Thöny,
T. Nemecek, H. Bugmann and F. Thommen

Zürich, Mai / May 1994 (Revised Edition June 1996)

Eidgenössische Technische Hochschule Zürich ETHZ
Swiss Federal Institute of Technology Zurich

Departement für Umweltnaturwissenschaften / Department of Environmental Sciences
Institut für Terrestrische Ökologie / Institute of Terrestrial Ecology

The System Ecology Reports consist of preprints and technical reports. Preprints are ar-
ticles, which have been submitted to scientific journals and are hereby made available to
interested readers before actual publication. The technical reports allow for an exhaustive
documentation of important research and development results.

Die Berichte der Systemökologie sind entweder Vorabdrucke oder technische Berichte.
Die Vorabdrucke sind Artikel, welche bei einer wissenschaftlichen Zeitschrift zur Publi-
kation eingereicht worden sind; zu einem möglichst frühen Zeitpunkt sollen damit diese
Arbeiten interessierten LeserInnen besser zugänglich gemacht werden. Die technischen
Berichte dokumentieren erschöpfend Forschungs- und Entwicklungsresultate von allge-
meinem Interesse.

Adressen der Autoren / Addresses of the authors:

Dr. A. Fischlin, D. Gyalistras
Systemökologie ETH Zürich
Institut für Terrestrische Ökologie
Grabenstrasse 3
CH-8952 Schlieren/Zürich
S W I T Z E R L A N D

F. Thommen
Institut für Terrestrische Ökologie
Institutsinformatik
Grabenstrasse 3
CH-8952 Schlieren/Zürich
S W I T Z E R L A N D

Dr. O. Roth
Widenstr. 3
CH-8302 Kloten
S W I T Z E R L A N D EMAIL CONTACT:

ramses@ito.umnw.ethz.ch

Dr. T. Nemecek
Eidg. Forschungsanstalt für landw.
Pflanzenbau Reckenholz
Postfach
CH-8046 Zürich
S W I T Z E R L A N D

Dr. M. Ulrich
Institut für Gewässerschutz und
Wassertechnologie
ETH Zürich
EAWAG
CH-8600 Dübendorf
S W I T Z E R L A N D

J. Thöny
AS-Informatik AG
Mühlfangstrasse 16
CH-8570 Weinfelden
S W I T Z E R L A N D

Dr. H. Bugmann
Potsdam-Institut für
Klimafolgenforschung
Postfach 601203
D-11412 Potsdam
GE R M A N Y

© 1994,1996 Systemökologie ETH Zürich

mailto:ramses@ito.umnw.ethz.ch

ModelWorks
An Interactive

Simulation Environment
for Personal Computers

and Workstations

Andreas Fischlin1

&
Dimitrios Gyalistras1, Olivier Roth2,

Markus Ulrich 3, Jürg Thöny1, Thomas Nemecek4,
Harald Bugmann1 and Frank Thommen1

ModelWorks Version 2.2
Second Edition - Zürich, May 1994a

Abstract

ModelWorks is a modelling and simulation environment in Modula-2
specifically designed to be run interactively on modern personal com-
puters and workstations. It supports modular modelling by featuring a
coupling mechanism between submodels and an unrestricted number
of state variables, model parameters etc. up to the limits of the
computer resources. It allows for the formulation of continuous time,
discrete time, discrete event models, as well as the free mixing of all
these formalisms. Not only does ModelWorks offer the simulationist
a handy user interface to experiment interactively with model systems,
but also allows the modeller to use ModelWorks' functions via a client
interface in any other programming context.

1 Systems Ecology, Institute of Terrestrial Ecology, Department of Environmental Sciences, Swiss Federal Institute of Technology,
Grabenstrasse 3, CH-8952 Schlieren/Zürich, Switzerland

2 Widenstr. 3, CH-8302 Kloten, Switzerland

3 EAWAG - Swiss Federal Institute of Water Resources, Water Pollution and Water Control, CH-8600 Dübendorf, Switzerland

4 Station fédérale de recherches agronomiques, CH-1260 Nyon, Switzerland

a Revised Edition June 1996

ModelWorks 2.2

i

Contents

PREFACE.. V

PREFACE TO THE SECOND EDITION .. VIII

ACKNOWLEDGEMENTS... IX

READING HINTS .. IX

Part I - Tutorial

1 GENERAL DESCRIPTION... 12

2 GETTING STARTED WITH THE SIMULATION ENVIRONMENT 19

2.1 The Sample Model.. 19

2.2 Simulating the Sample Model... 20
2.2.1 Default simulation... 22
2.2.2 Changing initial values.. 23
2.2.3 Changing parameters... 23
2.2.4 Changing scaling... 23
2.2.5 Changing monitoring... 23
2.2.6 Changing parameters during simulation.. 26
2.2.7 Changing integration methods... 26
2.2.8 Program termination.. 27

3 GETTING STARTED WITH MODELLING .. 28

3.1 The Model Definition Program of the Sample Model...................................... 28

3.2 Developing a New Model.. 31
3.2.1 The new model.. 31
3.2.2 Model definition program for the new model.. 32
3.2.3 Compilation of the new model.. 35
3.2.3 Simulation of the new model... 36

Part II - Theory

4 MODEL FORMALISMS .. 40

4.1 Elementary Models.. 40

4.2 Structured Models (Coupling of Submodels).. 43

ModelWorks 2.2

ii

5 FUNCTIONS... 53

5.1 Simulation Environment.. 54
5.1.1 States of the Simulation Environment... 54
5.1.2 Model Base.. 58

5.1.2.aModel and model object installation and removal............................ 58
5.1.2.bCurrent values... 58
5.1.2.c Predefinitions, defaults, and resetting... 59
5.1.2.dInitialization of the simulation environment..................................... 63

5.1.3 Simulations and the Run-Time System.. 64
5.1.3.aElementary simulation run.. 64
5.1.3.bStructured simulation (Experiment)... 65
5.1.3.c Integration respectively time step... 68
5.1.3.dModel objects and the run-time system.. 71
5.1.3.eClient procedures and the simulation environment.......................... 71
5.1.3.f Manipulating the model base at run-time... 73
5.1.3.gMonitoring.. 76

5.1.4 Standard User Interface.. 79
5.1.4.aMultiple activations of the standard user interface........................... 80
5.1.4.bStates of the standard user interface... 82
5.1.4.c IO-windows (Input-Output-windows).. 82

5.1.5 User Interface Customization... 84

5.2 Modelling... 87
5.2.1 The Model Development Cycle... 87
5.2.2 Structured Model Definition Programs (Modular Modeling).................... 88
5.2.3 Structured Simulations (Experiments)... 88
5.2.4 Module Structure of ModelWorks... 89

Part III - Reference

6 STANDARD USER INTERFACE.. 94

6.1 Menus and Menu Commands.. 94
6.1.1 Overview over menus.. 95
6.1.2 Quit commands.. 95
6.1.3 Menu File... 96
6.1.4 Menu Edit... 99
6.1.5 Menu Settings.. 100
6.1.6 Menu Windows.. 107
6.1.7 Menu Solve.. 108

6.2 IO-Windows (Input-Output-Windows)... 109
6.2.1 IO-window Models.. 110
6.2.2 IO-window State variables... 113
6.2.3 IO-window Model Parameters... 114
6.2.4 IO-window Monitorable variables... 116

7 CLIENT INTERFACE .. 122

7.1 Declaring Models and Model Objects.. 124
7.1.1 Running a simulation session... 124
7.1.2 Declaration of models.. 125
7.1.3 Declaration of state variables... 128
7.1.4 Declaration of model parameters... 130

ModelWorks 2.2

iii

7.1.5 Declaration of monitorable variables... 131
7.1.7 Testing for the Presence of Objects... 133

7.2 Accessing Defaults and Current Values... 133
7.2.1 Global simulation parameters and project description.............................. 133

7.2.1.a Retrieval of read only current values.. 135
7.2.1.b Modification of defaults.. 135
7.2.1.c Modification of current values.. 136
7.2.1.c Resetting of current values to the defaults...................................... 137

7.2.2 Installed models and model objects... 137
7.2.2.a Modification of defaults.. 138
7.2.2.b Modification of current values.. 138
7.2.2.c Resetting of current values to the defaults...................................... 139
7.2.2.d Model and model object attributes.. 139
7.2.2.e Access support for models and model objects................................ 140

7.3 Removing Models and Model Objects... 141

7.4 Simulation Control and Structured Simulation Runs....................................... 141

7.5 Display and Monitoring.. 144
7.5.1 Window operations.. 144
7.5.2 General monitoring.. 146
7.5.3 Stash filing... 147
7.5.4 Graphical monitoring... 148
7.5.5 Simulation environment modes... 150
7.5.6 Setting of predefined defaults and global resetting.................................. 151
7.5.7 Customization of keyboard shortcuts for menu commands..................... 151

Appendix

A Sample Models... 154
A.1 The Continuous Time Sample Models (DESS) of the Tutorial................... 155

A.1.1 The Sample Model “Logistic Grass Growth” - Logistic................... 155
A.1.2 The New Model - GrassAphids... 156

A.2 A Discrete Time Model (SQM) - Insect.. 158
A.3 A Discrete Event Model (DEVS) - Diversity.. 162
A.4 Typical Applications.. 167

A.4.1 Batch Phase Portrait of Lotka-Volterra - LVPhasePlot.................... 167
A.4.2 Interactive Phase Portrait of the Van-der-Pol Oscillator - VDPol.... 171
A.4.3 Animation of the Age Pyramid of the Swiss - SwissPop.................. 175
A.4.4 Sensitivity Analysis - Sensitivity.. 182
A.4.5 Parameter Identification - GauseIdentif.. 187
A.4.6 Stochastic Simulations.. 195

A.4.6.1 Third Order Finite Markov Chain - Markov......................... 195
A.4.6.2 Statistical Analysis of Simulation Results -

StochLogGrow.. 205
A.4.7 Modular Modeling - GreenHouse... 209

A.5 Mixed Type Structured Models... 224
A.5.1 Mixing Continuous (DESS) and Discrete Time Models (SQM)...... 224
A.5.2 Mixing a Discrete Event System (DEVS) With a Continuous

Time Model (DESS) - CarPollution... 227
A.5.2.1 The Fiscrete Event System - Traffic(DEVS)........................ 227
A.5.2.2 The Crossroad and the Traffic... 231
A.5.2.3 Adding Traffic’s Air Pollution - Pollutants (DESS)............. 239
A.5.2.4 Putting All Together.. 241

ModelWorks 2.2

iv

A.6 Research Sample Models... 243
A.6.1 Population Dynamics of Larch Bud Moth - LBM............................. 243
A.6.2 Discrete Event Harvesting In a Continuously Growing Forest -

ForestYield.. 254

B Literature... 269

C ModelWorks Versions and Implementations.. 272

D Use and Definitions of ModelWorks and Library Modules................................ 273
D.1 ModelWorks Mandatory Client Interface.. 273
D.2 ModelWorks Optional Client Interface.. 273

D.2.1 SimEvents.. 273
D.2.2 SimDeltaCalc... 278
D.2.3 SimGraphUtils... 281
D.2.4 SimIntegrate.. 288
D.2.5 SimObjects.. 290

D.3 Auxiliary Library ... 293
D.3.1 IdentifyPars.. 293
D.3.2 JulianDays... 296
D.3.3 Queues... 299
D.3.4 RandGen.. 301
D.3.5 RandGen0.. 302
D.3.6 RandGen1.. 304
D.3.7 RandNormal.. 306
D.3.8 ReadData... 309
D.3.9 StochStat.. 313
D.3.10 StructModAux... 317
D.3.11 TabFunc... 320

D.3.11.a User Interface... 320
D.3.11.b Declaration of table functions... 323
D.3.11.c Modification of table functions... 325
D.3.11.d Inter- and extrapolations with table functions..................... 326
D.3.11.e Removing table functions.. 327

D.3.12 WriteDatTim.. 327

E Quick References... 329
E.1 Auxiliary Library.. 329
E.2 Dialog Machine.. 335
E.3 ModelWorks Client Interface... 342

INDEX .. 347

ModelWorks 2.2

v

Preface

ModelWorks is a simulation environment to solve dynamic systems as they are used in
biology, physics, chemistry, environmental and engineering sciences to model various
processes. It is also particularly well suited to be used by university students during a
modelling course (FISCHLIN et al., 1987; MANSOUR & SCHAUFELBERGER, 1989;
FISCHLIN, 1992)1. ModelWorks can be used for simple didactic models as well as for
very complex research models (NEMECEK, 1993). ModelWorks forms part of the even
more powerful RAMSES2 software (FISCHLIN , 1991), consisting of tools which are
particularly tailored to aid researchers who wish to model and simulate complex, envi -
ronmental or other so-called ill-defined systems (CELLIER & F ISCHLIN, 1980).

ModelWorks allows to work with an arbitrary number of dynamic models described by
differential, difference equation systems, or by the discrete event formalism. A global
model can be separated into possibly hierarchically organized submodels which exist as
independent units communicating via output-input coupling. Modular and hierarchical
modelling is supported, which is particularly useful if for instance one wishes to keep
experimental results clearly separated from a theoretical, mathematical model by
formulating them as a parallel model, or to enhance model clarity, or to build model
libraries. Discrete and continuous models can be combined in one global model
system, with correct data exchange controlled by the simulation environment.

Simple mathematical models can be built with only minor programming knowledge,
whereas programming experts have full access to a powerful programming language
and may expand into any realm of sophisticated calculations still profiting from the si-
mulation environment and numerical algorithms provided by ModelWorks. Hence in
contrast to most existing simulation software ModelWorks fully supports the researcher
during a model development process, which often starts with a first, crude model and
ends with the most sophisticated, in every detail refined research model3.

ModelWorks is based on a high-level programming language which has been selected
considering the following criteria: It has been formally defined; it is general and
powerful enough to support not only numerical computations, but also a window based,
graphical user interface; on the other hand it is also simple enough to be comprehended
and mastered by the non-computer scientist having learned programming in a basic
computer science course, such as for instance taught in Pascal programming courses; on
the other hand it also offers support for the development of large and complex models
for the expert; finally and not the least, the language is available in efficient implemen-

1For the cited literature see the chapter Literature
2RAMSES is an acronym for Research Aids for Modeling and Simulation of Environmental Systems.
For more information on the concepts of RAMSES see FISCHLIN (1991).
3ModelWorks does not force the modeler to discard the simulation software together with all other
investments in learning , implementation, and testing time, or any compatibility issues, when he reaches
the limits of the simulation language; on the contrary, ModelWorks avoids the risk of having to restart
with the model implementation all over again in a high-level programming language, since it does so
from the very beginning. In contrast to a simulation language a well designed, general purpose, high-
level programming language guarantees that anything which can be computed on a computer can be
realized. It appears that one of the reasons why so many experienced researchers almost never use
simulation software but use instead general-purpose high-level programming languages is that they avoid
the risk to have to switch techniques in the middle of a project. However, to work in a high-level
programming language only, requires to reinvent the functionality of a simulation software package, a
task often surmounting the modeling research problem at hand by many orders of degree.

ModelWorks 2.2

vi

tations on many machines as e.g. Apple® Macintosh®1, IBM® personal computers2, or
Sun® workstations3 . Therefore we have chosen Modula-2 as the programming langua-
ge to be used for ModelWorks, currently meeting all the listed requirements closest
(WIRTH, 1988). Due to this approach ModelWorks could be designed as a fully open
system, which can be expanded or customized by the user to any purpose she desires.

ModelWorks consists of a set of library modules written in Modula-2, which contain
the program parts common to any simulation, such as numerical integration algorithms,
and the tabular plus graphical display of the simulation results, or the interactive chan-
ging of model or other simulation parameters. The variable portion, the model of inte-
rest, is to be supplied by the user in the form of a standard Modula-2 program. It descri-
bes the model's properties and installs the model in the simulation environment by
means of the so-called client interface of ModelWorks. Modelling and simulating with
ModelWorks includes therefore several steps: a) In the role of the modeller the writing
of the model defi nition by preparing a Modula-2 program, and b) in the role of the
simulationist the execution of the model definition program within ModelWorks'
simulation environment to produce and observe the model's behaviour.

Interactive modelling and interactive simulations are supported in ModelWorks in
several ways. The standard user interface of ModelWorks provides an interactive
access to the simulation environment. For instance it allows to change interactively all
settings, including any simulation parameters such as the integration method or the step
length, model parameters and/or initial values of the state variables, plus selection of
the display of simulation results. Simulation results are made visible to the user by the
so-called system behaviour monitoring concept: Values of any variable may be written
onto a file for future reference, written into a table, or displayed as curves in line-charts.
All data can be reset to a given default value. Further, the model's data structure are all
stored dynamically. This allows the user to install an unlimited number of models of an
arbitrary size, with an arbitrary number of variables each, up to the limits of the
hardware. Finally, because of ModelWorks open system design, it allows to extend and
customize the user interface, for instance by adding new functions or by using only
some of its functions, so that the user needs can be met as closely as possible.
ModelWorks software architecture has been especially designed to support such uses,
needs which we consider to be generally of interest for researchers working with
complex, non-linear model systems.

ModelWorks simulation environment is based on the "Dialog Machine"4, guaranteeing
a consistent user interface and has originally been implemented using MacMETH, a fast
and efficient Modula-2 language system for the Apple® Macintosh® computer (WIRTH
et al., 1992). ModelWorks simulation environment runs on any machine on which the
"Dialog Machine" is available. If this is the case, an efficient and smooth port of Mo-
delWorks in a few days work is possible. Currently ModelWorks is available for Ma-
cintosh computers with at least 512 KBytes of memory (RAM) plus at least two floppy
drives and IBM® PCs which run under MS DOS and have 640 KBytes of memory
(RAM) plus a hard disk. For more details on particular implementations and hard plus
software requirements for specific versions, see the Appendix. This text serves as a ma-
nual for the ModelWorks software. Since all versions are very similar and differences
are the exceptions, there exists only this one text. The remaining differences between
the versions are only minor and therefore just briefly mentioned wherever the user is li-
kely to encounter difficulties without knowing the details.

1Macintosh is a registered trademark of Apple® Computer, Inc.
2IBM is a registered trademark of International Business Machines Corporation.
3Sun is a registered trademark of Sun Microsystems, Inc.
4See the appendix for availability and the separate booklet «Installation Guide and Technical Reference
of the RAMSES software» installation of the "Dialog Machine"

ModelWorks 2.2

vii

This text is subdivided into three parts: Part I is a Tutorial containing a little tour to be
followed step by step. It suffices to learn all basic techniques, which are needed in or-
der to model and simulate simple models with ModelWorks. Part II explains the Theo-
ry and concepts behind ModelWorks, in particular model formalisms and all functions
of ModelWorks. Any advanced modelling, such as modular modelling, requires to stu-
dy the theoretical part. Part III is a Reference manual containing a complete list and
detailed description of all features of ModelWorks. Finally the Appendix contains
sample models, the cited literature, a short explanation of the ModelWorks versions,
descriptions of ModelWorks' client interfaces and library modules, convenient quick re-
ference listings, and an index. For detailed instructions for the installation and other
technical details refer to the separate booklet «Installation Guide and Technical
Reference of the RAMSES software».

ModelWorks 2.2

viii

Preface to the Second Edition

This second edition has been adapted to the changes and amendments made to the
ModelWorks simulation environment during the last years. ModelWorks has been
widely used in the context of several modelling and simulation research projects, the
largest spanning three to four years. The hereby gained experience was used to
redesign ModelWorks. Besides the many modifications the following are of major
importance:

First the basic functionality of ModelWorks has been extended. It allows now to solve
discrete event models (DEVS), which are formulated according to the so-called event
scheduling paradigm (KREUTZER, 1986). In particular it is also possible to mix all
three supported model formalisms in any combination, i.e. structured model systems
can be built from continuous time, discrete time, as well as discrete event components.
This includes the exchange of data among any model type.

Second, all ModelWorks functions can be used in a more flexible way than this was
possible with the original design. In particular, all its functions can be used
dynamically any time (e.g. model declaration or removal in the middle of a simulation
run) and independently from each other (e.g. just the IO-window for the model
parameters). The latter allows even to bypass the user interface completely and to use
ModelWorks only as a batch simulator. Thus ModelWorks can be used also within
RAMSES for interactive modelling, experiment definition, simulation, and post-
simulation analysis (FISCHLIN, 1991) and can now support the concept of simulation
servers (THOENY et al., 1994) in a computer network.

Consequently, this text has been completely revised. In particular the part I Tutorial
has been modified to explain the use of the «Mini RAMSES Shell». The whole of part
II Theory as been completely rewritten: First, chapter Model Formalisms to define
DEVS and the new coupling when building structured models from any of the three
standard formalisms; second, chapter Functions to describe the new dynamic functiona-
li ty of the simulation environment. The part III Reference has been adapted to the
actual implementation of ModelWorks 2.2. The Appendix has been completely
rewritten, in particular does it now contain many more sample models demonstrating a
vast range of typical uses of ModelWorks.

Note, despite all these changes, no functionality available in former versions of Model-
Works had to be sacrificed. ModelWorks version 2.2 warrants full upward
compatibility (including module keys) with all earlier versions.

Zürich, May 1994 Andreas Fischlin

ModelWorks 2.2

ix

Acknowledgements

The authors wish to express many thanks to Prof. Dr. Walter Schaufelberger1, formerly
Project Centre IDA from the Swiss Federal Institute of Technology Zürich (ETHZ), not
only for his substantial support, but also for his unceasing encouragement, which made
this research and development only possible.

The research behind this software has been supported by the Swiss Federal Institute of
Technology Zürich (ETHZ) and the Swiss National Science Foundation grants Nr. 31-
8766.86 and Nr. 31-31142.91.

Reading Hints

Please be not irritated: Throughout this text references to persons are made by using the
female form; yet, the text is valid not only for women but also for men.

Throughout this text italics are used to emphasize that this text is to be taken literally,
in particular also case sensitive. This is the case for instance in the citation of an
identifier, such as a module name like SimMaster or if the user has to open a file or
directory with a given name such as Logistic.OBM or \MW\SAMPLES.

For easier orientation, the pages, figures and tables in Part I Tutorial and II Theory are
prefixed with the letter T, in part III Reference with the letter R, and in the Appendix
with the letter A. Within parts figures and tables are numbered separately, starting e.g.
with Tab. T1 respectively Fig. A1, but pages are numbered consecutively throughout
the whole text.

1Current address: Institute of Automatic Control, Swiss Federal Institute of Technology Zürich (ETHZ),
ETH-Zentrum, CH-8092 Zürich, Switzerland

ModelWorks 2.2

10

T 11

Part I - Tutorial

This tutorial describes the elementary usage of ModelWorks, i.e. you learn how to de-
velop and simulate models using ModelWorks.

The first chapter, General Description, describes the general, fundamental con-
cepts of ModelWorks.

The second chapter, Getting Started with the Simulation Environment, contains a
step by step explanation for running an existing model and getting familiar
with the simulation environment of ModelWorks.

The third chapter, Getting Started with Modelling, teaches how to develop new
models.

Having read this tutorial you will be able to develop and simulate your own, simple mo-
dels. However, if you are interested in more complex models and more advanced tech-
niques, this tutorial is not sufficient. In order to learn the more sophisticated features of
ModelWorks you should read part II ModelWorks Theory and the second chapter,
Client interface, of part III Reference. They contain a full and complete description of
all possibilities ModelWorks offers.

This tutorial is best read while having access to a computer and the described steps are
actually executed1. This requires that the reader is already familiar with her computer
and the usage of its software, in particular the choosing of menu commands, clicking on
objects (i.e. object selection), and the dragging of objects (e.g. moving the scroll box in
a scroll bar). Moreover it is assumed that the user knows how to operate a simple pro-
gramming editor (e.g. the desk accessory MockWrite), has a basic knowledge of the
programming language Pascal or Modula-2 and is familiar with the mathematics invol-
ved with modelling and simulation of differential equation systems. No particular
information is provided on these topics. Please refer to other texts if you should have
any difficulties with any of these subjects2. The separate booklet «Installation Guide
and Technical Reference for the RAMSES software» contains information on how to
proceed in order to install the ModelWorks software.

Reading Hint: For easier orientation, the pages, figures and tables of Part I Tutorial are prefixed with
the letter T.

1Note that the following text assumes that you will work with the original ModelWorks version as avai-
lable on the Macintosh® computer. If you have no access to a Macintosh® computer, the instructions are
to be executed similarly, but may look a bit differently or behave slightly differently, since the IBM® PC
version of the "Dialog Machine" is only a subset of the Macintosh® version. A few hints: On the IBM®
PC folders become directories, object files ending with the extension "OBM" become linked GEM appli-
cations with the extension "APP", and in contrast to the Macintosh MS DOS file names are truncated to 8
characters (extension excluded); note that the latter may also affect module names. For more details see
the appendix. Wherever necessary, IBM® PC specific information has been added in form of footnotes.
Please interpret the text accordingly and accept our apology for not being able to offer an IBM® PC text
version; note that we are a research institution, not a commercial software company, and hence not able
to maintain more than that version we use ourselves in our daily research work; however, you should
have no difficulties in following the tutorial text, since all essential features of ModelWorks are available
on the IBM® PC version as well.
2We recommend: Operation of the computer: Your owner's guide, e.g. Macintosh owner's guide. Mo-
dula-2: WIRTH, N. 1988. Programming with Modula-2. Springer-Verlag, Heidelberg, New York, 4th
corrected ed. Modelling: LUENBERGER, D.G., 1979. Introduction to dynamic systems - Theory,
models, and applications. Wiley, New York, 446pp.

ModelWorks 2.2 - Tutorial

T 12

12

1 General Description

ModelWorks is an interactive modelling and simulation environment to study the beha-
viour of dynamic models, which are described by differential, difference equations, or
discrete events. Any system described by a set of coupled, ordinary differential,
ordinary difference equations, or instantaneous state transition functions formulated as
discrete events can be modelled using ModelWorks. Since ModelWorks features
modular modelling, it is also possible to mix models of different types or to integrate
several differential equation systems simultaneously with different integration methods.

ModelWorks has two interfaces to communicate with the human user: the user interface
of the simulation environment for the simulationist and the client interface for the mo-
deller who builds models (Fig. T1).

ModelWorks

Simulationist

Modeler

Client Interface

User Interface

Fig. T1: The two interfaces of ModelWorks: The modeller uses the client
interface for the model development, the simulationist uses the user inter-
face of ModelWorks' simulation environment to perform simulation experi -
ments with an already existing model. Typically the modeller and the si-
mulationist are one and the same person changing just roles.

Typically the modeller and the simulationist are one and the same person. However
their roles are distinct and should be clearly separated: The modeller defines all proper-
ties of a simulation model, i.e. she specifies a model definition. This includes the speci-
fication of the model's mathematical properties and its objects, such as equations, state
variables, and parameters, plus the objects' default values and ranges. It is also the
modeller who implements the model by writing a ModelWorks model definition
program.

The simulationist runs interactive simulation experiments, hereby using one or several
models, which have been constructed by the modeller. She is restricted to use these
models within certain limitations which have been specified by the modeller, but within
that range, she may interactively define and execute with the model any kind of
experiment she wishes. For instance she may observe its temporal behaviour, sample
points from particular trajectories, modify parameter values within a defined range, or
run a sensitivity analysis. ModelWorks contains all elements and algorithms needed for
computer simulations, such as numerical integration algorithms, the interactive
changing of parameter values, and the display of simulation results. The only exception
of course is the model itself, which has to be provided by the modeller.

ModelWorks 2.2 - Tutorial

T 13

13

Normally a ModelWorks model definition consists of several objects, which belong to
various classes. First there must be present at least one model; but the model definition
may consist of any number of models. Second, normally each model is associated with
several objects like model equations, state variables, model parameters, auxiliary va-
riables, and monitorable variables. Such objects are called model objects (Fig. T2).

Value p

Initial value i

Model

State variable x(t)

Max initial value

Min initial value

Model parameter c

Max value

Min value

Monitorable variable mv

Max value of interest

Min value of interest

x(t) = dx(t)
dt

or x(k+1)

Clipping range

Fig. T2: Model objects () of a ModelWorks model: A ModelWorks mo-
del definition must consist of at least one model and every model usually
contains state variables, model parameters, and monitorable variables. Any
initial value, parameter value, minimum, or maximum value becomes man-
datory, if the associated variable or parameter is declared within the model
definition. ModelWorks maintains the actual values of state variables, pa-
rameters, and monitorable variables and even remembers their initially spe-
cified values (default values): ← : ModelWorks automatically assigns the
initial value i to the state variable x at the begin of every simulation run,
and the value p is assigned to the model parameter c upon entering the Mo-
delWorks simulation environment or after any interactive change. ↑↓ :
ModelWorks uses the derivative or new value in order to compute and
repeatedly assign newly obtained values to the state variable during the
course of a simulation run (numerical integration). → : During simulation
experiments the unknown values, which the monitorable variable mv may
obtain, shall be drawn in graphs only if they fit within a particular range of
interest; otherwise ModelWorks will clip them from the display.

A model is always of a particular type, i.e. either continuous time or discrete time. This
type is given by the kind of equations which belong to the model: In the case of conti-
nuous time the model equations are ordinary differential equations or discrete event in-
stantaneous state transition functions, in the case of discrete time they are ordinary
difference equations. Note however, that a ModelWorks model definition program may
be structured, i.e. it consists of several models which may be of a differing type, i.e.

ModelWorks 2.2 - Tutorial

T 14

14

some models may be continuous time other discrete time. In the latter case results a so-
called mixed continuous and discrete time model definition.

A model may consist of any number of model equations. However, they must be given
as explicit, either first order differential equations, first order difference equations, or
instantaneous state transition functions. E.g. the following differential equation
describing the Van-der-Pol oscillator

y + µ(y2 - 1)y + y = 0

is not in the proper form, since it is neither explicit nor is it first order. On the other
hand, the same equation reformulated1 as a system of explicit, coupled first order diffe-
rential equations

x1 = x2
x2 = µ(1-x1

2)x2 - x1

is now suitable to be used directly as a set of ModelWorks model equations. The
second form is called the state variable form. Most differential or difference equations
can be formulated in this form.

Usually each model uses a number of state variables. Each state variable must be asso-
ciated with a second variable used as its first order derivative in the case of continuous
time, or its new value in the case of a discrete time model. The model equations are
formulated as expressions capable of defining the values of the derivative or new value.
The expression may be an arbitrary function of any of the other model objects, such as
state variables, auxiliary variables, or model parameters. Every state variable must be
associated with a particular initial value and a range within which it may be changed in-
teractively (Fig. T2).

Every model may have any number of model parameters, each associated with a parti-
cular value and a range within which it may be changed interactively. Typically model
parameters are not or only rarely changed in the middle of simulation experiments
(Fig. T2).

Intermediate results from an expression may be stored in a variable which will be later
used in another expression. Such auxiliary variables are often used to compute com-
plex expressions defining the value of a derivative of a state variable. In a ModelWorks
model definition program the modeller may use any number of auxiliary variables.
However in the current version, ModelWorks does neither especially recognize or
support such variables nor does it hinder the modeller to use them in whichever way
she wishes.

Finally models may have any number of monitorable variables. They are used to moni-
tor the current values of any variable or otherwise accessible real numbers used in the
ModelWorks model definition program. Each monitorable variable is associated with a
clipping range used for the graphical display of the simulation results (Fig. T2).

All values specified by the modeller are remembered by ModelWorks as the so-called
default values. The values currently in use by the simulation environment are called the
current values. While starting the model definition program, ModelWorks assigns the
default values to the current values. This is called a reset. Any time the simulationist
wishes to do so, she may execute a further reset of a specific class of values, so that
their current values are overwritten with their defaults. This mechanism is most useful

1From the definitions x1 = y and x2 = y· follows x2
· = y··, i.e. the variable substitutions y··→x·2 , y·→x2 ,

y→x1; rearrange resulting two equations to make the derivatives explicit.

ModelWorks 2.2 - Tutorial

T 15

15

if the simulationist wants to resume a well defined state before continuing with her
work, especially after having made many and complex interactive changes.

Import list

Model defini-
tion program

ModelWorks

Import list

Model defini-
tion program

 data exchange

ModelWorks simulation program

Client's interface

Client's interface

Cotrolled data exchange
during program execution

Fig. T3: Organization of ModelWorks: ModelWorks is the constant part
common to any simulation program forming the simulation envi ronment.
The variable part, the model definition program, describes the actual model
to be simulated. Both units form together the final simulation program.
They are linked by procedures provided via the client interface and which
support mutual data exchange.

Ranges for initial values of state variables or model parameters are defined solely by
the modeller. They become effective only in the simulation environment while the si-
mulationist edits the current values of these model objects. ModelWorks guarantees
that the simulationist assigns only values to an initial value of a state variable or a mo-
del parameter which lie within these ranges. Hence the modeller can use this mecha-
nism to enforce limits within which the model equations are still valid in order to

ModelWorks 2.2 - Tutorial

T 16

16

reduce the danger that the simulationist runs a meaningless simulation experiment or
encounters a fatal error condition. However, the clipping ranges for monitorable va-
riables behave differently and should not be confounded with range limits: The simu-
lationist can change clipping ranges interactively anytime.

ModelWorks has been designed to make modelling as easy as possible, yet as powerful
and flexible as possible. Hence, for ModelWorks a model is a variable, not predefined
portion of a simulation program, which has been left out so that the modeller may de-
fine it at a later time (Fig. T3). A user of ModelWorks wishes to define freely this open
portion according to her current needs, for instance by specifying a new set of coupled
differential equations. The modeller does it by writing simple Modula-2 statements,
which are to be filled in and linked to the remaining, constant parts of ModelWorks.
This is similar to a key which fits into a matching hole of a lock, only the two together
rendering the lock into a fully functional unit.

With the model definition program the modeller provides the missing key. The key
must conform to certain rules in order to fit into the hole. However, in all other aspects
this analogy breaks down, since a key is not constructed before each use anew, or must
not be extended, or has not its own particular functionality; the latter are all typical
properties of ModelWorks model definition programs only.

The remaining parts of the simulation environment, i.e. the actual ModelWorks, can not
be modified and constitute the pre-programmed ModelWorks software. They are
general and hence common to any simulation program and resemble the lock with a
hole for the key. When the simulationist starts a model definition program containing a
model defi nition, the latter is inserted automatically into the hole of ModelWorks and
what results is a fully functional simulation program (Fig. T3).

Technically a model definition program is a simple Modula-2 program module. Its
main purpose is to define (declare) your model and its model objects, thus preparing the
data exchange needed for simulations. ModelWorks does not care how the modeller or-
ganizes the structure of the model definition program and actually knows almost
nothing about anything the modeller does in her program. The only objects Model-
Works cares about are: models, state variables to be integrated numerically, model
parameters to be changed interactively from within the simulation environment, and
monitorable variables for the monitoring of the simulation results. Hence, they are the
only objects which have to be made known, i.e. declared, to ModelWorks.

The link of models and their model objects to ModelWorks is achieved via the client in-
terface. In its essence it consists of two library modules: SimBase and SimMaster.
These modules provide all Modula-2 objects (types and procedures) needed to describe
a model in the model definition program.

Executing a ModelWorks model definition program means to start first the simulation
envi ronment. When it is entered, ModelWorks initializes the whole environment, in
particular the global simulation parameters and typically executes all model and model
object declarations as programmed by the modeller in the model definition program. It
then performs a reset of all current values using all the defaults specified during the de-
clarations. Subsequently ModelWorks is ready to execute commands entered by the si-
mulationist, such as a simulation run, the execution of a simulation experiment, or the
editing of the current values, e.g. of a model parameter or an initial value.

ModelWorks is not just another simulation language, since a model definition program
is written as a plain Modula-2 program text. As a consequence ModelWorks can not
automatically sort the statements which compute derivatives. Compared with other si-

ModelWorks 2.2 - Tutorial

T 17

17

mulation software, e.g. ACSL®1, this may be considered to be a draw-back. However,
experience shows that automatic sorting of statements is error prone, if one models
complex and ill-defined systems. Moreover, the greater flexibility offered by the host
language Modula-2, a modern, powerful, and formally defined programming language,
often outweighs the lack of automatic sorting, which is mostly not much more than a
little inconvenience if the model definition has been carefully worked out before its im-
plementation.

Most models maintain tight relationships among their objects such as state variables,
parameters, and auxiliary variables etc. The modeller may keep logically connected ob-
jects close together, by defining related objects local to the model boundary. The latter
normally coincides with the boundary of the scope of a Modula-2 module. Moreover,
the modeller is free to use any Modula-2 feature she wishes: For instance model
objects may be part of a complex data structure or the model definition may be spread
over any number of modules, thus supporting modular modelling. This extendibility is
one of the strongest features of ModelWorks.

Even if one is not familiar with the programming language Modula-2 but knows Pascal,
it is feasible to use ModelWorks. On the other hand, ModelWorks is powerful and fle-
xible enough to allow also the advanced modeller to develop sophisticated models.

Note that with ModelWorks the modeller has not only full access to all features of
Modula-2, but also to those of the "Dialog Machine"2. The "Dialog Machine" is a ge-
nerally applicable software layer between an application program such as ModelWorks
and the system software respectively hardware. In this situation the user interacts via
the latter (mouse, keyboard, screen) only indirectly with the application; the "Dialog
Machine" intercepts all user interaction and filters it according to a simple user
interface. The "Dialog Machine" substantially facilitates the writing of interactive
programs. Not only does it simplify the programming of sophisticated dialogues, but
also does it ensure automatically a consistent man-machine interface. Hence it allows
the modeller to extend the standard, predefined ModelWorks simulation environment
easily, efficiently, and without forcing her first to become a computer scientist; yet it
supports an easy programming of windows, menus, bit-mapped graphics, plus mouse
input. Moreover, the resulting program will be user-friendly: Thanks to the dialogue
capabili ties of the "Dialog Machine", the simulationist will be able to enjoy the use of a
simulation program, which automatically conforms to a robust man-machine interface.
This offers the advanced modeller to concentrate on the modelling process, instead of
being distracted by the cumbersome and complex implementation details of user-
interface problems. The easy access to the "Dialog Machine" is another strength of
ModelWorks.

For instance the modeller may wish to extend the simulation environment by program-
ming her own graphical monitoring in an additional, separate window or by adding fur-
ther, customized functions to the simulation environment, i.e. by installing more menus
offering additional menu commands. To give an example: ModelWorks and the
"Dialog Machine" have been successfully used to program an interactive modelling
environment3, which allows to enter differential equations and model objects at run
time, without having to resort to any programming at all.

1ACSL® is a proprietary simulation software program that is leased with restricted rights according to
license agreement and terms and conditions by Mitchell and Gauthier Associates, Inc. (USA), Concord,
MA, respectively by Rapid Data Ltd. (Europe), Worthing, Sussex, UK.
2The "Dialog Machine" has been designed by Andreas Fischlin, implemented by Andreas Fischlin,
Olivier Roth, Klara Vancso, and Alex Itten during the pilot project CELTIA under the auspices of Walter
Schaufelberger. This work has been supported by the Swiss Federal Institute of Technology ETHZ,
Zürich, Switzerland and by the Swiss National Science Foundation Grant Nr. 31-8766.86.
3This environment is the RAMSES session Modeling and Experiment Definition (FISCHLIN, 1991).

ModelWorks 2.2 - Tutorial

T 18

18

Despite the many features ModelWorks offers, typical model definition programs are
written in a simple, standard format. Hence, as long as one develops models without
any sophisticated extras, even the beginning programmer can quickly learn to use Mo-
delWorks successfully. Finally, as a simulationist only, there is no need to know any-
thing about the more advanced features of ModelWorks, since ModelWorks itself has
been implemented by means of the "Dialog Machine". For instance, under-graduate
students at the ETHZ have been able to work successfully with ModelWorks model de-
finition programs within a learning time of only a few minutes.

ModelWorks 2.2 - Tutorial

T 19

19

2 Getting Started with the Simulation Environment

When you read this chapter and follow the instructions given, you learn step by step,
how to run simulation experiments with ModelWorks. In particular you learn how to
produce behaviour trajectories of a sample model and how to change a model's initial
and parameter values using the ModelWorks simulation environment.

It is assumed that you know how to operate the computer you are using, its operating
system, and typical application software, and that you have ModelWorks installed1 and
are ready in order to actually perform the described procedures on your computer while
reading this chapter.

2.1 The Sample Model

The sample model is a simple growth model for grass. It models in a crude way the
growth of real grass by assuming logistic growth. In the first phase, the plants grow ex-
ponentially under optimal conditions. Within a given, constant time interval (doubling
time), the density doubles. With increasing density, limiting factors, such as nutrients,
light energy, or competition by the neighbouring plants, become more important. This
results in a decrease of the growth rate, expressed as a self-inhibition of the plants. Fi-
nally, the grass density reaches a maximum, the so-called carrying capacity determined
by the plant's environment.

The following non-linear differential equation describes the model:

dG(t)/dt = c1G(t) - c2G(t)2 (1)

 where

State variable:
grass (g dry weight per m2): G(t)
Initial amount of grass/initial value: G(0) = 1.0 g/m2

Model parameters:
grass growth rate (day-1): c1 = 0.7 day-1

Self-inhibition coefficient(m2 g-1 day-1): c2 = 0.001 m2 g-1 day-1

Let us have a closer look at the model and its equation. The model has one state variab-
le, the grass density G(t), which is a function of time. Further, it has two constant mo-
del parameters, c1 and c2. The first term of the differential equation, c1G(t), describes
the exponential growth phase of the plants; the second, - c2G(t)2, is responsible for the
self-inhibition.

The unknown element in Eq. (1) is the function G(t). During a simulation, this function
is approximated by calculating a sequence of values G(to), G(t1), G(t2)... given the ini-
tial value G(to). Since G(t) is defined by a differential equation these computations cor-
respond to a particular solution of Eq. (1). In other words: By numerical integration
ModelWorks produces the trajectory going through the point G(to), i.e. solves an initial

1An exact description on how to install ModelWorks is given in the separate booklet «Installation Guide
and Technical Reference of the RAMSES software». Please follow these instructions exactly, otherwise
you may have difficulties while executing the described steps.

ModelWorks 2.2 - Tutorial

T 20

20

value problem. The sample model with the differential equation (1) has been precon-
structed and is ready for execution1.

2.2 Simulating the Sample Model

To simulate the sample model we recommend to use whenever possible the «RAMSES
Shell». The «RAMSES Shell» represents a handy utility, which allows you to model
and simulate more conveniently than this would be the case with ModelWorks alone.
This is especially the case on the Macintosh® if you run the «RAMSES Shell» in the
mode «Mini RAMSES Shell» under System 7. Note however, without the «RAMSES
Shell»2 all essential ModelWorks functions are always available, only the degree of
convenience may vary.

A main purpose of the «RAMSES Shell» is to maintain for you a consistent working
envi ronment and to support you during your work. For instance does the «RAMSES
Shell» execute automatically repetitive tasks, such as compiling or executing a model
whenever it is needed or it remembers which model you worked with, i.e. the so-called
work object, when you turned your machine off the last time etc.

The «RAMSES Shell» requires that there is a so-called work object present at all times.
Technically speaking, the work object is an ordinary Modula-2 program running as a
subprogram under the «RAMSES Shell». Typically it is just the model definition pro-
gram with which you are currently working.

To run the sample model, you have first to start the «RAMSES Shell». Start it with a
double click on its icon or adopt any other method you normally use to start application
programs on your computer. In order to make the appearing message windows disap-
pear and to resume the start-up process click into each of the automatically displayed
windows or press any key. Unless the «RAMSES Shell» has been used before for other
purposes3, you use it in the mode «Mini RAMSES Shell», then you enter immediately
the simulation environment and the sample model Logistic, which should be the current
work object, is made ready for simulations.

Once fully started, you see the initial screen of the ModelWorks simulation envi ron-
ment with its menu bar, and the four windows for models, state variables, model para-
meters, and monitorable variables (Fig. T4). ModelWorks is now ready to accept from
you commands, which will cause it to execute a simulation, to change a parameter, or to

1On the Macintosh no preparations are necessary to follow this tutorial except that you should be using a
working copy of the RAMSES software (Working through the tutorial will change the contents of your
diskettes, so don't use your originals!).

On the IBM PC you are ready only if you have followed exactly the installation procedures
described in the booklet «Installation Guide and Technical Reference of the RAMSES software», in
particular those for the installation of the ModelWorks software. For instance when you are using GEM
ModelWorks you should then have an executable GEM application made from the sample model
LOGISTIC.MOD which is now called LOGISTIC.APP.
2Note that on the IBM PC there exists no RAMSES shell, hence skip in the following text any reference
to the RAMSES shell. Instead follow the instructions described in your documentation, in particular the
booklet «Installation Guide and Technical Reference of the RAMSES software».
3Note the RAMSES shell remembers the settings (modes) it was in, when it was used the last time.
Hence, in case the shell has been used before or you suspect wrong settings, confirm that you are really
using it in the proper mode for following the instructions described in this tutorial. The needed settings
(modes) are the following: Use the shell in the mode «Mini RAMSES Shell» with all other modes in the
recommended default settings and the current work object should be Logistic.MOD (resides in the folder
Work, or there is an additional copy also in the folder Sample Models). Consult further details in the help
topic Shell modes, which you can access by choosing the menu command Help… or Help RAMSES
shell…. Follow the herein described instructions on how to change the settings (modes) of the RAMSES
shell to the recommended defaults.

ModelWorks 2.2 - Tutorial

T 21

21

modify any other settings according to your needs. There are two basic techniques to
issue commands to ModelWorks: Either you select a menu or you click with the mouse
into a button from the button palette of the so-called IO-windows.

T h r o u g h o u t t h i s m an u al r ead i n s t r u c t i o n s as e. g .
" c h o o s e m en u c o m m an d So l v e/ St a r t r u n " as " c h o o s e
m en u c o m m an d St a r t r u n f r o m m en u So l v e " .

The menu-bar has five ModelWorks menus, each with several commands: File lets you
print graphs, set preferences and quit the program; Edit allows you to access the clip-
board to transfer graphs of simulation results to other programs or to desk accessories;
Settings offers commands to set current values of the global simulation parameters or
the so-called project description plus the resetting of current values to their defaults;
Windows opens or activates the six windows of ModelWorks; and Solve is used to exe-
cute and control simulations. In the visible windows, the model objects of the activated
model, the grass growth model, are displayed.

Fig. T4: Initial screen of the ModelWorks simulation environment obtai-
ned immediately after starting the model definition program, i.e. the modu-
le which contains the definition of the logistic grass growth sample model.
All four IO-windows for the models, the state variables, the model parame-
ters, the monitorable variables, plus the graph and the table window are
open. The latter two windows have been slightly rearranged from their default size and
position in order to give a better view onto the IO-windows.

The windows initially displayed serve two purposes: First they are used to display cur-
rent values such as initial values or parameter values and secondly their button palettes
are used to enter values or settings. Hence they are called IO-windows (input-output
windows). Here are the common characteristics of the four IO-windows:

All IO-windows display a button palette in the upper left corner, a list of objects in the
middle, and a scroll bar on the right side. Any model object can be selected by a simple

ModelWorks 2.2 - Tutorial

T 22

22

mouse click. All subsequent clicks on the buttons refer to the currently selected object.
Selection of the bold model title is interpreted as selection of all elements belonging to
this model. To select all objects of a list, click the button . All buttons with a down
arrow are used to set a current value, whereas buttons with a left arrow are used to
reset a value to its default as defined by the modeller. The button serves to specify
which columns, i.e. current values of the model objects, are to be shown in the list.

The menu command Settings/ All above resets the program to its original state, i.e. ex-
actly as it was when entering the simulation environment. If you should loose the ori-
entation during a complex series of interactive changes, this command allows you to re-
sume always to a well defined state. If you should have changed already any settings
up to this point, reset it first with the menu command Settings/Reset All above before
continuing with this guided tour.

2.2.1 DEFAUL T SIM UL ATION

You can immediately start a simulation experiment (run), because ModelWorks ensures
that any valid model definition program contains all necessary data for the so-called de-
fault simulation run. Choose the menu command Solve/Start run to actually start the si-
mulation. The graph and the table windows are automatically opened, and a small time
display window appears in the upper right corner (Fig. T5).

Fig. T5: ModelWorks simulation environment during a simulation run of
the logistic grass growth sample model. In addition to the IO-windows the
table plus graph windows are currently open. The current time is displayed
in the upper right corner. The graph window shows the growth curve of the
grass (g/m2).

Now, ModelWorks integrates the differential equation and displays simultaneously the
results in the graph and table windows. In the graph window, you see how the grass
grows at the beginning exponentially and how it reaches finally its equilibrium density.

ModelWorks 2.2 - Tutorial

T 23

23

2.2.2 CHANGING INITIAL VAL UES

Initial values can be changed in the window for state variables: bring the state variable
window to the front (click on it or choose the command Windows/State variables), and
select the state variable Grass. Click on the button and change in the appearing entry
form the initial value to 4.0. This means, that the grass starts growing at a higher den-
sity. Verify this in another simulation run; the maximal density remains the same. Use
other initial values to explore the model's behaviour (e.g. 200; 0.1). If you want to en-
ter a initial value out of the allowed range [0,10'000], the program will refuse to accept
it. For instance try to enter 10001 or -1 and see what happens.

After your explorations, reset the initial value with the menu command Settings/Reset
All model's initial values, or with the button .

2.2.3 CHANGING PARAM ETERS

Model parameter values can be changed in the window for model parameters in the
same manner as described for initial values. Clear the graph with the menu command
Windows/Clear graph and perform a simulation run for reference purposes. What will
happen if you increase the growth rate c1 of the grass? Faster growth, or higher maxi -
mal density? Increase the growth rate from 0.7 to 1.2, and perform a simulation run.
Now, the population grows faster, and reaches a higher equilibrium value. In the table
output you can see the maximum value the grass density reached (≈1200 g/m2).

2.2.4 CHANGING SCAL ING

As the grass curve exceeds the maximum value of 1000, ModelWorks clips these va-
lues. In order to avoid this clipping and to have also a look at the clipped portions of
the curve, you should rescale the monitorable variable Grass. You may achieve this by
increasing the upper limit of interest for the grass. This can be done in the window for
monitorable variables. Bring it to the front, select Grass, and click on the button . In
the appearing entry form, you can enter the new scaling value for the upper limit of in-
terest, type 1200 and click into the OK button; ModelWorks writes the values automati-
cally into the legend in the graph window. Perform another simulation run. This time,
the curve should be fully visible and no longer be clipped.

2.2.5 CHANGING M ONITORING

ModelWorks uses the expression monitoring for any kind of display of simulation re-
sults. Any variable which can be monitored is called a monitorable variable. Every
monitoring definition is done in the window for monitorable variables. ModelWorks
uses one window for numerical display (tabulated), and one window for the graphical
display (line charts) of results, called the table window respectively the graph window.
Storage of numerical results is also supported on the so-called stash file for the use of
the data by other programs, e.g. a spread sheet program like Microsoft Excel™ or a
program for statistical analysis or just to document a simulation run. At a time Model-
Works uses just one stash file only.

The model definition program of the sample model declares a second monitorable va-
riable beside the state variable Grass. This is the derivative of grass listed in the IO-
window Monitorable variables with the name Grass derivative. However, the defaults
specified by the modeller for this variable are such that it is not displayed unless the si-
mulationist activates it for actual monitoring. To see what the curve of the derivative
looks like, bring the window for monitorable variables to the front, select Grass deriva-
tive, and click on the button (Toggle function). In the column Monitoring appears a

ModelWorks 2.2 - Tutorial

T 24

24

"Y" in the row for the monitorable variable Grass derivative and the legend of the
graph is accordingly updated1. The values of the variable Grass derivative will be
drawn as another curve in the line chart of the window Graph during the next simula-
tion run. Running another simulation displays the two curves Grass respectively Grass
derivative.

You may generate also other graphs, e.g. Grass derivative versus Grass. Select the mo-
nitorable variable Grass in the window for the monitorable variables window and click
onto the buttons and then .. In the column Monitoring disappears first the "Y"
and then appears a "X" in the row for the monitorable variable Grass. This means that
the values of the variable Grass will no longer be shown on the y-axis (ordinate) (toggle
function) but will be used as x-values on the abscissa. The values of the variable Grass
derivative should still be displayed as y-values (check the "Y" in the column Monito-
ring and the legends for the curves and the abscissa in the graph window). Run another
simulation run and you should see a dome-shaped curve of Grass derivative vs. Grass.

Before you proceed, please select the command Reset: All model's graphing under me-
nu Settings.

During the steps described in the previous two paragraphs you may have noticed that
ModelWorks uses different colours2 and line patterns if you have activated several mo-
nitoring variables at once. For instance the "Y" in the window Monitorable variables is
drawn in the same colour as the corresponding curve, and curves are drawn using diffe-
rent patterns (important on monochrome screens and laser printers) in order to assist
you in telling the curves apart. These characteristics of a monitoring variable are called
curve attributes and they consist of first the line style (LineStyle - the pattern with which
a line connecting two points is drawn), second the colour of a curve (stain), and thirdly
the symbol with which points of a curve are marked. Unless explicitly specified,
ModelWorks assigns curve attributes automatically, which is therefore called the
automatic curve attribute definition strategy. For instance following this strategy Mo-
delWorks assigns automatically the stain coal (black) to the first and ruby (red) to the
second variable being activated for monitoring3. This helps the user to tell curves opti-
mally apart under many circumstances.

However, the automatic curve attributes definition strategy has also its disadvantages,
in particular the attributes may change all the time. For instance in one graph the Grass
is black, in the other it is red but Grass derivative becomes black etc. The actual colour
will depend only on the exact chronological sequence in which a monitorable variable
has been activated for monitoring with the button . To try this out click on Grass de-
rivative in the Monitorable variables window and toggle it with button so that it be-
comes activated (Y). Run a simulation, e.g. this time by pressing the command key
(clover-leaf key) simultaneously with key 'R'. Note that curve Grass is drawn in black
(unbroken) and Grass derivative in red (broken). Then click on Grass in the
Monitorable variables window and toggle it with the button twice. Again both
monitoring variables are activated (Y). Now rerun the simulation and note that this
time colours are reversed, i.e. Grass is drawn in red (broken) and Grass derivative in
black (unbroken). This is only because Grass has been activated for monitoring as the
second curve after Grass derivative which has remained untouched during the toggling
of Grass.

1This may depend on the currently set preferences, i.e. the immediate update of the graph takes place
only if the option «Once changed, immediately redraw graph» available under menu command
File/Preferences is currently checked; otherwise the redrawing of the graph will be deferred till the begin
of the next simulation run.
2In GEM ModelWorks on IBM PCs are no colors available; sorry, but the memory limitations of MS
DOS have forced us to sacrifice them.
3 the third becomes emerald (green), and the fourth sapphire (blue). For more details see part Reference.

ModelWorks 2.2 - Tutorial

T 25

25

The convenient the automatic curve attributes definition strategy may be, the confusing
it may become in complicated situations where the simulationist wishes to run many si-
mulations and to compare the same monitoring variables. ModelWorks allows you to
gain complete or partial control over the assignment of curve attributes, i.e. you can
adopt your own curve attributes assignment strategy. You may achieve this by assig-
ning explicitly to monitoring variables their particular curve attributes. For instance
change the colour, of the curve Grass, to green and draw it with the symbol 'v' which
may remind you of real grass tuft. Click on Grass in the window for monitorable va-
riables, and click on the button (rainbow toggle function).. Choose the attributes
unbroken as line style1, the stain emerald (green), and type 'v' in the symbol field; then
click the "OK" push button. Finally select the command Set: Global simulation pa-
rameters... under the menu Settings and change the monitoring interval to 0.5; then
click the "OK" push button. Now run another simulation run and you should see this
time a green curve displaying the symbol 'v' at times 0, 0.5,1, 1.5,2 etc.

Note that from now on the curve Grass will always be drawn with exactly these curve
attributes, i.e. in green regardless when and with how many other curves you currently
display it. To see this behaviour click on Grass in the Monitorable variables window
and toggle it with the button twice. Run a simulation and note that Grass will be
drawn in green (unbroken,'v') and Grass derivative in black (unbroken)2. Then click
on Grass derivative and toggle it with the button once, so that it will no longer be
activated for monitoring. Rerun the simulation and note that this time Grass is still
drawn in green (unbroken,'v').

Once again there is a disadvantage to this method if all your monitoring variables adopt
it: you will run more often than you may first think into a situation where several curves
currently in display happen to be all of the same colour or line style (may be important
on a black-and-white laser printer or a publication). For instance click on Grass in the
Monitorable variables window and click on the button , then select the line style
broken, press the space bar to clear the symbol and hit return. Now click on Grass and
activate it with button . Rerun the simulation and note that you can no longer
separate the two curves on a printer or a monochrome screen. Of course it is also
possible to switch back to the automatic assignment strategy: Select Grass and click
the button ; in the appearing entry form click into the topmost radio button
automatic definition of curve attributes and close it by pressing the enter key, or
alternatively, reset the curve attributes of variable Grass with the button or with the
command Reset: All model's curve attributes under menu Settings.

Finally you can learn how to monitor the values of the variable Grass derivative in
tabular form. Bring the window for monitorable variables to the front, select Grass
derivative, and click on the button (Toggle function). In the column Monitoring
appears a "T" in the row for the monitorable variable Grass derivative. This means that
the values of the variable Grass derivative will be written into a column of the table in
the window Table during the next simulation run. Bring the table window to the front,
enlarge it till you see all columns and rerun the simulation.

Before continuing reset this time the table and graph monitoring plus all curve
attributes to their defaults with the following method: Bring first the window Models to
the front, select the row containing the model title (Logistic grass growth model) and
click on the buttons , , and . Note that the effect of this method is exactly the
same as if you would have clicked on the buttons with the same pictures in the window
Monitorable variables after having selected the model title (bold face Logistic grass
growth model) in the latter window.

1Note that specifying a line style is crucial; if you should omit it, automatic definition of curve attributes
would still remain active regardless of the settings of stains or plotting symbols.
2Note that on a monochrome screen or a non-color printer such as a laser printer both curves are drawn
with the same line style, i.e. unbroken, and can only be separated by their different symbols 'v' resp. none.

ModelWorks 2.2 - Tutorial

T 26

26

2.2.6 CHANGING PARAM ETERS DURING SIM UL ATION

Now, you will learn, how you can change model parameters even in the middle of a si-
mulation run. We let the model simulate the grass growth as before; but, when the den-
sity has reached its maximal value, we increase the self-inhibition of the plants, the pa-
rameter c2 (this signifies, that the carrying capacity of the environment K = c1/c2
decreases, for instance due to a sudden nutrient depletion or an unknown toxic
substance). After this change, the grass density will tend to a lower equilibrium value.

To do this, start a simulation with the same settings as before. When the population has
reached its maximal value (this happens approximately at time 15.0, watch the time
window), interrupt the simulation with the menu command Solve/Halt run (Pause). In
the parameter window, you can now increase the value of the self-inhibition coefficient
c2 from 0.001 to 0.002. Continue the simulation with Solve/Resume run, and observe
the reaction of the system.

2.2.7 CHANGING INTEGRATION M ETHODS

To start with this section, reset the program to its initial state with Settings/Reset All
above.

The numerical integration of the differential equation has to be done with special inte-
gration algorithms. ModelWorks offers several different methods for numerical
integration. Each has its particular advantages and disadvantages. The default
algorithm used in this example is Euler, which is shown in the model window. We
shall compare two integration methods and record the results on the stash file.

First, we have to define the stash file output. Bring the window for monitorable variab-
les to the front, select the variable Grass, and click on (Toggle function). In the co-
lumn Monitoring appears the letter "F" for stash filing (this is in addition to the "T" and
"Y", which signify that this variable is written already into the table and drawn in the
graph). Now, during a simulation run the values of the variable Grass will be written
also onto the stash file. Note, by default every new simulation will overwrite the stash
file's content.

Differences between integration methods become more obvious with large integration
step sizes (this is the step which is internally used for numerical integrations).
Therefore, we change this step to a higher value. Select the menu command
Settings/Global simulation parameters, and change in the entry form the value for the
integration step and the monitoring interval to 1.0. (The monitoring interval is the
interval at which simulation results are displayed. If this is smaller than the integration
step, the former is automatically reduced to generate the requested result display).

With these settings you can perform a simulation run. The integration method Euler is
the simplest integration algorithm; therefore it is fast, but not very precise. After the in-
tegration, the stash file ModelWorks.DAT1 contained in the same folder as the
«RAMSES Shell» resides, is ready for inspection and you can open it with your
favourite text editor, e.g. with the editor you normally use in conjunction with the
«RAMSES Shell» or the desk accessory MockWrite. With the «Mini RAMSES Shell»
simply select the menu command Shell/Edit 'Logistic.MOD', close the work object and
open the stash file with the editor's menu command File/Open…. It should contain the
same simulation results as the table window (look for DATA-BEGIN of Run 1 ...).

1On the IBM PC the name of this file is truncated to 8 characters and hence becomes
MODELWOR.DAT. The file resides in the same directory as LOGISTIC.APP.

ModelWorks 2.2 - Tutorial

T 27

27

Once you have finished inspecting the results resume the simulation session, when
using the «Mini RAMSES Shell» with the menu command Macros/Clear, save &
launch1.

For the next simulation choose another algorithm: Bring the model window to the
front, select the model, and click . Choose the more precise algorithm Runge
Kutta 4: To prevent overwriting of the stash file, we change its name. Therefore,
before starting the next simulation run, choose first the menu command Settings/Select
stash file, and give the stash file a new name, e. g. ModelWorks.DAT22. Only now start
the simulation by choosing the menu command Solve/Start run.

The new run will give different results, as you can easily verify in the graph. For a
more detailed, numerical analysis, you could use the values on the two stash files. Mo-
delWorks would even allow to write the two time series onto the same stash file3.

2.2.8 PROGRAM TERM INATION

To return to the desktop of the Finder, use the menu command Shell/Quit Mini
RAMSES shell .

In the «Mini RAMSES Shell» there exists also the possibility to terminate the simulation session with the
menu command Shell/Exit simulation , i.e. to terminate only your running work object without quitting
the «Mini RAMSES Shell». However, you may have little interest in selecting this menu command
explicitly, since normally the «Mini RAMSES Shell» does this for you automatically, e.g. when you
switch to the modelling session.

Note also, that in case your model encounters a run-time error, e.g. a numerical overflow because of a too
large state variable value, you do also execute implicitly the same command as Shell/Exit simulation4.

1In case you should encounter problems while attempting to resume the simulation session, try to resume
the «Mini RAMSES Shell» via the Finder and consult the help topic Trouble shooting (choose menu
command Shell/Help…) or consult the booklet «Installation Guide and Technical Reference of the
RAMSES software»
2On the IBM PC use e.g. MODELWOR.DA2
3This a more advanced technique, requiring multiple model declarations. For more details on this
subject, please refer to the reference manual.
4This happens as soon as you click into the button Abort of the dialog box , which is displayed whenever
a Modula-2 run-time error is detected.

ModelWorks 2.2 - Tutorial

T 28

28

3 Getting Started with Modelling

In this chapter you will get a closer look at the way ModelWorks models are defined.
First it is explained, how the Modula-2 program defining the logistic grass growth
sample model was written. Then you learn how to define a new model by modifying an
existing model definition program by using the RAMSES modelling environment1. Fi-
nally, the new model's behaviour can be studied by resuming the simulation session and
executing new simulation runs.

Again it is assumed that you know how to operate the computer and its software, and
that you have the «RAMSES Shell» including ModelWorks installed and ready as des-
cribed above in order to actually perform the described steps on your computer while
reading this chapter.

3.1 The Model Definition Program of the Sample Model

In the last chapter you worked with the grass growth model in the ModelWorks simula-
tion environment as a simulationist. Now, we shall have a closer look at the used simu-
lation program as a modeller. This program defines (declares) a logistic growth model
and is called a model definition program. Choose Shell/Edit 'Logistic.MOD' to open the
file Logistic.MOD for the subsequent inspection of its content2.

Step by step, we shall now go through this sample program and have a closer look at all
its elements. Besides, the complete listings of the sample model definition program Logistic, and of
the definition modules SimMaster and SimBase, which form the client interface used by Logistic, are also
listed fully in the Appendix and are described in detail in the part III Reference. ModelWorks model
defi nition programs have all the same basic structure as Logistic.MOD.

The import list contains all the items (types, constants, variables, and procedures) used
within the program module. They are exported by the modules which form the client
interface of ModelWorks:

FROM SimBase IMPORT
 Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
 StashFiling, Tabulation, Graphing, DeclMV, SetSimTime,
 NoInitialize, NoInput, NoOutput, NoTerminate, NoAbout,
 StateVar, Derivative, Parameter;

FROM SimMaster IMPORT RunSimEnvironment;

RunSimEnvironment is the procedure, which will start the simulation environment of
ModelWorks. DeclM, DeclSV, DeclMV and DeclP are the procedures used to declare
models and their objects. The types Model, IntegrationMethod, StashFiling,
Tabulation, Graphing, RTCType, StateVar, Derivative, Parameter are needed in order
to declare the model objects. All these objects, i.e. models, state variables, model
parameters, monitorable variables, auxiliary variables and all associated variables, like
derivatives, initial values and default values, are typically declared locally to the
program module boundaries:

1On the IBM PC you will have to use the Modula-2 development environment as described in the
booklet «Installation Guide and Technical Reference of the RAMSES software». For instance using the
Windows-Version requires to work with the Logitech Modula-2 programing system.
2In case you work on a Macintosh with a system older than System 7.0, once you are in the model editor,
e.g. MEdit, you will have to choose first the command Macros/Open work file[s] or simply type its
keyboard equivalent � 0. This will open the current work object Logistic.MOD.

ModelWorks 2.2 - Tutorial

T 29

29

VAR
 m: Model;
 grass: StateVar;
 grassDot: Derivative;
 c1, c2: Parameter;

m is a variable of the opaque type Model. It instantiates an object of the class Model
and allows also to reference that particular model, i.e. the logistic growth model, as a
whole. Note however, that this declaration defines yet none of the model m's properties
nor does this associate with m any of its model objects.

As model objects the logistic growth model has one state variable, and two parameters.
The type StateVar is used for state variables, the type Parameter for model parameters.
For every state variable of a ModelWorks model, we also have to define an associated
second variable of type Derivative (for continuous time models), or NewState (for dis-
crete time models). It either corresponds to the derivative (x(t) = dx/dt - continuous
time) or the new value (x(k+1) - discrete time) of the state variable (x(t) respectively
x(k)). For the sample model, which is continuous time, this is the variable grassDot of
the type Derivative.

In complex models often arises the need to introduce additional variables, which are not
state variables. They are called auxiliary variables and ModelWorks offers the type
AuxVar to denote variables of this category. Typically auxiliary variables hold the re-
sults of evaluations of terms from complex differential equations, i.e. they depend on
state variables and on parameters. However, the logistic model is so simple, that there
arises no need to introduce such a variable. On the other hand it is important to note,
that any variable of the types StateVar, Derivative respectively NewState, AuxVar, and
Parameter are fully compatible among themselves and with variables of the elementary
Modula-2 data type REAL.

The procedure Dynamic is the heart of a ModelWorks model definition program. It
contains the Modula-2 translation of the mathematical equations describing the model's
dynamics, here Eq. (1); for a proper functioning of ModelWorks, it is very important,
that this procedure computes the exact values of the derivatives or new values of all
state variables as required by the given equation(s):

PROCEDURE Dynamic;
BEGIN
 grassDot:= c1*grass - c2*grass*grass;
END Dynamic;

The procedure ModelObjects contains the declarations of all model objects. For each of
the four objects, models, state variables, parameters, and monitorable variables, there
exists a special declaration procedure. Once such a procedure has been called, Model-
Works knows the variable, defaults, plus ranges corresponding to the model object, and
can access it to maintain its values, or can show it in a window, or use it to display its
current value in a graph. It is mandatory to declare a model if you wish to declare mo-
del objects (see below). The declaration of model objects, i.e. state variables, model pa-
rameters, or monitorable variables is optional and depends only on the current needs1.

The procedure DeclSV declares the state variable grass:

 DeclSV(grass, grassDot, 1.0, 0.0, 10000.0,
 "Grass", "G", "g dry weight/m^2");

1For instance, you could use ModelWorks also for the plotting of a function, e.g. a time series measured
during an experiment (parallel model to compare measured with simulated behavior). In this case you
would need to declare only a monitorable but not a state variable.

ModelWorks 2.2 - Tutorial

T 30

30

The actual parameters are the two real variables for the state variable itself grass, and
its derivative grassDot. Next, there are three real constants: the default initial value,
and the upper and lower limit of the range of initial values. There is no such thing as
negative grass, hence the lower limit has been set to 0.0, the upper to a value beyond
which values are no longer plausible. The three strings are the name, an abbreviated
name, and the unit of the state variable. These strings, and the initial value, will be dis-
played in the IO-windows for state variables. The limits for the initial value will be
used during interactive changes: attempts by the simulationist to enter initial values out
of the allowed range will be refused. With this mechanism the modeller can prevent the
simulationist from entering values which would result in illegal simulation experiments
for which the model is not defined or which could cause some other fatal run-time
errors.

The procedure DeclMV declares the variables grass and grassDot as monitorable va-
riables. This is necessary if we want to monitor the values of these variables on the
stash file, in the table, or in a graph. Typically state variables, auxiliary variables, and
output variables (used to couple submodels) are the model objects which are declared as
monitorable variables. Our calls of DeclMV:

 DeclMV(grass, 0.0, 1000.0,
 "Grass", "G", "g dry weight/m^2",
 notOnFile, writeInTable, isY);
 DeclMV(grassDot, 0.0, 500.0,
 "Grass derivative", "dG/dt", "g dry weight/m^2/time",
 notOnFile, notInTable, notInGraph);

The first parameter denotes the real variable, which will be monitored. Next, there are
two real constants: the default values for the scaling of the graphics output. The three
strings are the same as for the state variables: the name, abbreviated name and the unit
of the monitorable variables. The next three elements are default settings for file, table
and graph output (e.g. isY means, that by default the variable grass will be plotted on
the y-axis (ordinate) of the graph). These elements are imported with the enumeration
types StashFiling, Tabulation, Graphing.

DeclP is the procedure for the declaration of model parameters. Since we have two
model parameters, c1 and c2, it is called twice:

 DeclP(c1, 0.7, 0.0, 10.0, rtc,
 "c1 (growth rate of grass)",
 "c1", "/day");
 DeclP(c2, 0.001, 0.0, 1.0, rtc,
 "c2 (self inhibition coefficient of grass)",
 "c2", "m^2/g dw/day");

The parameter list contains first the real variable of the parameter. Next, there are three
reals: the default value of the parameter, and the upper and lower limit of its range
within which the simulationist may enter a new parameter value. A parameter declared
as rtc (RTCType) means that its value may be changed even in the middle of a simula-
tion, not only before or after a run. The three strings are again: the name, the abbrevia-
ted name, and the unit of the parameter. Note that model parameters must not be imple-
mented as constants; since they can be changed interactively during a simulation ses-
sion, they must be Modula-2 variables.

The next procedure ModelDefinitions declares the model. It contains the following call
to procedure DeclM:

DeclM(m, Euler, NoInitialize, NoInput, NoOutput, Dynamic,
 NoTerminate, ModelObjects, "Logistic grass growth model",
 "LogGrowth", NoAbout);

ModelWorks 2.2 - Tutorial

T 31

31

This declares the logistic grass growth model within ModelWorks. The first actual pa-
rameter is the model variable m. Then, Euler (type IntegrationMethod) defines the
default integration method for this model. The next six parameters are all procedures;
Modula-2 supports procedure types and therefore it is possible to use procedures as ac-
tual parameters when calling a procedure. This mechanism has to be used to install in
ModelWorks all procedures, which describe the model dynamics and perform the
model object declarations. It is then left to ModelWorks to actually call any of these
procedures. The procedures (No)Input, (No)Output, Dynamic describe the model's
dynamics, and the procedures (No)Initialize, (No)Terminate describe actions to be taken
at the begin and end of every simulation run (more details on the purpose and usage of
these procedures is given in the reference manual and in the definition of module
SimBase). Some of these procedure identifiers have the prefix No, which means that
these procedures have actually just empty bodies and are needed here only to call
DeclM properly. The next procedure, ModelObjects, declares all model objects as
explained above. The next two elements are strings for the name and an abbreviated
name of the model. The last procedure, in our case (No)About, could be used to write
information about the model in the help window of ModelWorks (this window is
activated by clicking on the button in the model window).

The procedure SetSimTime sets the default values for the simulation start and stop time.

Finally, we come to the short body of the program module:

BEGIN
 RunSimEnvironment(ModelDefinitions);
END Logistic.

The only action performed by this program is to call the procedure
RunSimEnvironment. This starts the ModelWorks simulation environment, and passes
the program control to ModelWorks. Its parameter, the procedure ModelDefinitions,
contains the complete definition of the sample model. Note, how the procedures are
nested: First ModelWorks will activate the simulation environment and call the
procedure ModelDefinitions. Later on it will call the procedure Objects; which will
result again in calls to the procedures DeclSV, DeclMV, and DeclP. This mechanism
ensures that it is clear which objects belong to which model. Note also that while
declaring an object, this object will also be immediately initialized with the given
values. E.g. returning from procedure DeclP(c,p,...) will imply that the default value p
for the model parameter is assigned to the variable c.

3.2 Developing a New Model

Instead of just reading an existing model definition program we will now develop a new
model, hereby writing a new model definition program. However, before we start wor-
king on the new model definition program, we have to specify the mathematical proper-
ties of the new model.

3.2.1 THE NEW M ODEL

The new model does not only include grass, but also herbivores as the second state va-
riable aphids. Aphids feed on the grass and establish an ecological relationship, for the
sake of simplicity, we assume somehow similar to other predator-prey relationships.
The new model will consist of two coupled differential equations, each describing the
dynamics of the two species, according to the Lotka-Volterra predator-prey model1: the
grass is the prey, and the aphids are the predators.

1Early this century these models have first been formulated by LOTKA (1925) and VOLTERRA (1926).
Their purpose is to describe the population dynamics of a prey and a predator species.

ModelWorks 2.2 - Tutorial

T 32

32

The model is described with the following non-linear second order differential
equation system; note that the parameter and initial values are not the same as in the
former model1:

dG(t)/dt = c1 G(t) - c2 G2(t) - c3 G(t) A(t)

dA(t)/dt = c3 c4 G(t) A(t) - c5 A(t)
(2)

 where

State variables:
Grass (g dry weight [dw] per m2): G(t)
Initial amount of grass/initial value: G(0) = 200 g/m2

Aphids (g dry weight [dw] per m2): A(t)
Initial number of aphids: A(0) = 20 g/m2

Model parameters:
Grass growth rate (day-1): c1 = 0.4 day-1

Self-inhibition coefficient(m2 g-1 day-1): c2 = 8⋅10-5 m2 g-1 day-1

Grass consumption rate by aphids(m2 g-1 day-1): c3 = 1.5⋅10-3 m2 g1 day-1

Aphids birth rate per grass consumption (g g-1): c4 = 0.1 g g-1

Death rate of aphids (day-1): c5 = 0.2 day-1

Let us have a closer look at the new model and its equations: The first equation is the
same as before, except that the term - c3 G(t) A(t) has been added. This term is respon-
sible for a decrease of the net grass growth, due to grass consumption by aphids. The
second equation describes the dynamics of the aphids: They can grow by feeding on
the grass, which is expressed with the term c3 c4 G(t) A(t). The second term, - c5 A(t),
accounts for the natural mortality of the aphids.

In the next section it will be explained how to alter step by step a copy of the logistic
grass growth sample program to implement this new grass-aphids model. It is assumed
that you know how to edit a program text2.

3.2.2 M ODEL DEFINITION PROGRAM FOR THE NEW M ODEL

The new model definition program will not be written completely anew, that would be
too cumbersome. Instead we will simply modify a copy of the sample model definition
program. The menu command Shell/New… of the «Mini RAMSES Shell» provides a
simple mechanism to achieve exactly this goal. This is an easy, hence generally recom-
mended way to develop ModelWorks model definition programs3.

When you choose the menu command Shell/New… a dialogue box appears, where you
can specify the name of the new model definition program4. Type GrassAphids.MOD
and make sure the file is stored in the folder Work.

1The new parameter and initial values are not necessarily realistic, since the sole purpose of the model is
to help to learn ModelWorks.
2If you are using the full «RAMSES Shell» instead of the «Mini RAMSES Shell» or on the IBM PCs it is
also assumed that you are familiar with the following terms and concepts: program text or source code,
compilation, compiled object code, program linking, and the execution of programs.
3On the IBM PC make a copy of the source code of the sample program Logistic.MOD and rename this
copy to GrassAph.MOD. Then open GrassAph.MOD and start editing.
4Note that the new model definition program is created by copying most of its content from a template.
In case the template can not be accessed, for whichever reason, you are asked in an additional standard
file open dialog to select also a new template file. You may select one of the templates, e.g. the file

ModelWorks 2.2 - Tutorial

T 33

33

Throughout the following explanations the affected program text is shown together
with its context. The text portions actually having been altered or added are shown un-
derlined. The begin of the model definition program looks as follows:

Important hints : First it is recommended to use the macro Macros/Placeholder (G) to go to
the next place holder. A place holder starts with the character sequence '(*.' and ends with '.*)'.
Once the macro Macros/Placeholder has selected such a place holder, e.g. (*. Author .*), simply
overtype it, e.g. by your name. Secondly, it is also recommended to save regularly your work du-
ring editing, e.g. by regularly choosing the menu command File//Save. Thirdly, in order to work
conveniently with the «RAMSES Shell» make sure that the identi fier (name) of the model defini-
tion program, here GrassAphids matches exactly the name of the work object, i.e. Grass-
Aphids.MOD, at all times1.

MODULE GrassAphids;

 (**

 MODEL: GrassAphids Lotka-Volterra grass and aphids model

 Author 2, date , ETHZ

 **)

There is no need to change the import list. All objects required are already imported
from the modules SimMaster respectively SimBase.

Next declare the new state variable aphids, its derivative aphidsDot, and the three new
parameters c3, c4, and c5:

VAR
 m: Model;
 grass, aphids : StateVar;
 grassDot, aphidsDot : Derivative;
 c1, c2, c3, c4, c5 : Parameter;

Change the procedure Dynamic by adding the consumption term into the first statement
plus inserting a second statement corresponding to the second differential equation:

PROCEDURE Dynamic;
BEGIN
 grassDot:= c1*grass - c2*grass*grass - c3*grass*aphids ;
 aphidsDot:= c3*c4*grass*aphids - c5*aphids;
END Dynamic;

Now edit the procedure ModelObjects. Since several default values will be different
from the ones of the old model, first change the parameters of the declaration
procedures already present. The behaviour of the state variable grass is different. It
needs another initial value:

 DeclSV(grass, grassDot, 200.0 , 0.0, 10000.0,

ModDefProg.TEMPLATE, contained in the folder RAMSESLib, or any other text file. In the latter case,
please observe the syntax rules any template should follow. These rules are described in the help topic
Templates (choose menu command Shell/Help…).
1This problem may ocurr only if you are not using the «Mini RAMSES Shell». The latter shell mode
avoids any such problems automatically.
2Replace the place holder (*. Author .*) with your name. Similar replace the place holder (*. date .*)
with the actual date.

ModelWorks 2.2 - Tutorial

T 34

34

 "Grass", "G", "g dry weight/m^2");

The monitorable variable grass needs a new upper limit for its clipping range:

 DeclMV(grass, 0.0, 10000.0 , "Grass", "G", "g dry weight/m^2",
 notOnFile, writeInTable, isY);

The model parameters c1 and c2 need new default values:

 DeclP(c1, 0.4 , 0.0, 10.0, rtc,
 "c1 (growth rate of grass)", "c1", "/day");
 DeclP(c2, 8.0E-5 , 0.0, 1.0, rtc,
 "c2 (self inhibition coefficient of grass)", "c2", "m^2/g

dw/day");

Secondly, insert the procedures declaring the variable aphids as a state and as a monito-
rable variable, plus call the procedures declaring the new parameters:

 DeclSV(aphids, aphidsDot,20.0, 0.0, 1000.0,
 "Aphids", "A", "g dry weight/m^2");

 DeclMV(aphids, 0.0, 1500.0,"Aphids", "A","g dry weight/m^2",
 notOnFile, writeInTable, isY);

 DeclP(c3, 1.5E-3, 0.0, 1.0, rtc,
 "c3 (coupling parameter)", "c3", "m^2/g dw/day");
 DeclP(c4, 0.1, 0.0, 10.0, rtc,
 "c4 (ratio of grass net use by aphids)", "c4", "-");
 DeclP(c5, 0.2, 0.0, 10.0, rtc,
 "c5 (death rate of aphids)", "c5", "/day");

You could call these procedures in any order, mix declarations of state variables with
those of monitorable variables or parameter declarations. However, consider that the
sequence of declarations corresponds to the order in which they are listed in the I/O-
windows of ModelWorks simulation environment.

The model declaration procedure ModelDefinitions remains the same except for minor
changes in the actual parameters of the call to procedure DeclM. As the new model re-
quires a better integration algorithm, we change the default method from Euler to Heun;
further we change the model name strings:

DeclM(m, Heun, NoInitialize, NoInput, NoOutput, Dynamic,
 NoTerminate, ModelObjects, " Aphid-grass model (Lotka -
Volterra) ",
 " GrassAphids ", NoAbout);

Change the defaults for the simulation start and stop time as follows:

SetSimTime(0.0, 100.0).

The main program needs no changes.1

Once you have finished editing the new model, save your work plus resume the simula-
tion session with the menu command Macros/Clear, save & launch2.

1A complete listing of the new model is contained in the Appendix.
2In case you should encounter problems while attempting to resume the simulation session, try to resume
the «Mini RAMSES Shell» via the Finder and consult the help topic Trouble shooting (choose menu

ModelWorks 2.2 - Tutorial

T 35

35

3.2.3 COM PIL ATION OF THE NEW M ODEL

If your new model definition program contains no more errors, you will immediately
resume the simulation environment with the new model GrassAphids loaded and ready
for simulation (continue with section Simulation of the new model)1.

However, often this is not the case. Understand that the «Mini RAMSES Shell» compi-
les and executes automatically the current work object while resuming the simulation
session. No action will be visible, except for the following two possibilities: Either the
new model definition program contains no syntax errors, then it will be immediately
executed, i.e. loaded into the simulation environment; or alternatively, the compiler
detects errors and you will return into the editor.

In case compiler errors have been detected, you must first correct them before you can
continue. Once you are back in the editor, the first error mark will be selected and the
corresponding error message is displayed. Errors are marked in your program text with
the characters '† '; they enclose also the error number. Acknowledge the error message,
e.g. by pressing the carriage return or enter key, and overtype the error mark with the
key backspace. Then correct the error by modifying your code appropriately.

E.g. if your model definition program is missing the declaration of the parameter c3,
then your file may look similar to this:

Follow above given instructions, then locate the next error by the command
Macros/Find next error (or type �/E). The cursor jumps to the next error mark,
selects it, and a message explaining the error kind will be shown again. Repeat
correcting errors until you have no more error marks or you wish to ignore subsequent
error marks, which might have been caused just as a consequence from the already
corrected one. This is the case in the above example. In such a case you simply declare
the missing parameter c3 and finish the editing by choosing the menu command
Macros/Clear, save & launch. This macro command will clear your source code from
all eventually still present error marks, save your code onto the disk, close the file and
resume the simulation session. Hence, as a rule: Once you have finished editing the
new model, save your work plus resume the simulation session by this technique only,
i.e. choose the menu command Macros/Clear, save & launch.

command Shell/Help…) or consult the booklet «Installation Guide and Technical Reference of the
RAMSES software»
1This whole section applies only to the «Mini RAMSES Shell» as available on the Macintosh. On the
IBM PC skip it completely and follow the specific instructions on how to make Modula-2 programs. For
instance, GEM ModelWorks requires to use the JPI TopSpeed V1.17 Modula-2 development
environment or the Windows-Version requires to work with the Logitech Modula-2 programing system.
For more information on how to edit, compile, and correct programs with it, consult the booklet
«Installation Guide and Technical Reference of the RAMSES software». Once you have compiled, and
linked GRASSAPH.MOD you will have to perform one more step: rename the resulting applicaton
GRASSAPH.EXE to GRASSAPH.APP.

ModelWorks 2.2 - Tutorial

T 36

36

If needed, repeat such edit and simulation cycles until there are no more errors and the
model definition program satisfies your ideas about the new model.

3.2.3 SIM UL ATION OF THE NEW M ODEL

Once your model definition program is error-free, you see the initial start-up screen of
the ModelWorks simulation environment1 with the new variables displayed in the I/O-
windows. Execute the following steps to explore the behaviour of the new model:

- Run a simulation with the default settings (Choose Solve/Start run)

- Define a graph where the predator is plotted versus the prey (state space
curve): Select the prey, and toggle its curve definition by clicking on the
button . Click the button to define a plot which uses the x-axis (abscissa) to
plot the prey values. Start a new simulation run. The resulting curve shows
nicely how the grass and the aphids reach an equilibrium point.

- Set c2 = 0.0 (no self-inhibition of the prey population). This results in a diffe-
rent stability behaviour of the system: The oscillations of the population are
no longer damped, but persist in a marginally stable limit cycle. In the state
space you may observe closed trajectories, each corresponding to such a limit
cycle. You should have obtained a graph similar to the one shown in Fig. T6.

Fig. T6: Graph of the simulation results produced with ModelWorks
simulating the new, developed sample model . The graph shows a state
space representation of a Lotka-Volterra like grass-aphids model system.

Marginally stable limit cycles can be easily perturbed; verify this by changing
the integration method to Euler, or while using the method Heun by increasing

1On the IBM PC follow the same steps as when you executed the initial sample model LOGISTIC.MOD
under chapter Simulating the Sample Model. For instance when you are using GEM ModelWorks you
have to start first the GEM desktop and then to start the application GRASSAPH.APP.

ModelWorks 2.2 - Tutorial

T 37

37

the integration step and the monitoring interval up to 0.5 . How accurate is the
numerical integration algorithm?

Congratulations! You have reached the end of the introductory tour through Model-
Works. You should have learned to develop and simulate simple models using Model-
Works.

In addition to the basic techniques you have just learned, ModelWorks features many
more advanced modelling and simulation techniques. Among the more important fea-
tures are modular, hierarchical modelling, including the coupling of several models and
the mixing of discrete time with continuous time models. With ModelWorks it is easy
to analyze results of complex simulation studies by means of a sensitivity analysis or a
parameter identification. Moreover, thanks to its architecture open for extensions it al-
lows for an unlimited number of possibilities. For a complete, full, and detailed des-
cription of all of ModelWorks features, please refer to the parts Theory and Reference
of this text.

In case you would like to continue with the introductory example, here some suggestions how you could
possibly explore it further on your own:

- introduce an auxiliary variable for the total biomass b(t):

b(t) = G(t) + A(t) (3)

Declare b(t) as a monitorable variable and compute its values within the procedure Output.

ModelWorks 2.2

T 38

T 39

Part II: Theory

Part II Theory contains a description and functional specification of every feature ModelWorks
offers. However, it contains only little information on the elementary and typical usage of
ModelWorks. In case you should not be familiar with the basic concepts of ModelWorks,
please read first the ModelWorks tutorial. In particular you should read the first chapter of the
tutorial: General Description, since this part contains no technical information on the actual use.

Part II Theory explains the principles behind ModelWorks, not the details on the actual im-
plementation and version of ModelWorks. Therefore it is typically studied once, at the begin of
any serious work with ModelWorks. Implementation dependent details are listed and explained
in Part III Reference. The latter has been written to support you during your daily work with
ModelWorks.

Part II Theory contains two chapters:

The chapter Model Formalisms presents the mathematical formalisms in which Model-
Works models are to be formulated. The first section of this chapter treats elementary
models, the second structured models, which are built from several elementary, coup-
led submodels.

The chapter Functions describes all basic functions of ModelWorks: First it describes the
functionality of the simulation environment and secondly general aspects of the model
development process.

Any serious modeling with ModelWorks requires to read at least this part of the manual and the
section on the client interface of the manual Part III Reference.

Reading Hint: For easier orientation, the pages, figures and tables of Part II Theory are prefixed with the
letter T. Within this part the numbers of figures and tables follow those used in Part I Tutorial.

ModelWorks 2.2 - Theory

T 40

4 Model Formalisms

This chapter deals with theoretical aspects of modeling which are used in addition to the stan-
dard knowledge when developing models with ModelWorks. It explains only the mathematical
formalisms in which the modeler should describe ModelWorks models. Please refer to a text-
book for a general introduction to the modeling and simulation of dynamic systems1. Model-
Works distinguishes between two model types: Elementary models and structured models.
Structured models are composed of several possibly coupled, elementary submodels.

4.1 Elementary Models

The elementary models which are used in ModelWorks are discrete or continuous time plus dis-
crete event dynamic systems. They are formally described by a set of possibly coupled ordina-
ry first order differential, difference equations, or instantaneous state transition functions. Nor-
mally the continuous or discrete independent variable is the so-called simulation time; however,
it can represent any other independent variable like length or depth. Generally model parame-
ters are considered to be time invariant, but ModelWorks supports also time variant parameters.
However it is recommended to treat them either as auxiliary variables (becoming part of the dif-
ferential or difference equations) or to treat them as an input. A graphical representation is
given in Fig. T7, for more details see also Fig. T8.

Input State Output

κ κ κ

Input State Output

Fig. T7 : Graphical representation of a dynamic system: (a) continuous time
(DESS) or discrete event (DEVS) systems, (b) discrete time (SQM) systems. They
constitute the basic types used in ModelWorks to describe models (s.a. Fig. T8).

A continuous time differential equation system specification (DESS) is given by the following
system of differential equations (s.a. Fig. T8a):

Dynamic equations: x·(t) = f(x(t), u(t), pf(t), t) (4.1)

Output equations: y(t) = gy(x(t), py(t), t) (4.2a)

Event output: ϑ{<ν,ts,τ,α>} = gθ(x(t), pθ(t), t) ts=t (4.2b)

Initial conditions: x(to) = xo (4.3)

Input function: u(t) (4.4)

Parameter set: p(t) (4.5)

1 E.g. LUENBERGER, D.G., 1979. Introduction to dynamic systems - Theory, models, and applications.
Wiley, New York, 446pp.

ModelWorks 2.2 - Theory

T 41

A discrete time difference equation system specification or sequential machine (SQM) is given
by the following system of difference equations (s.a. Fig. T8b):

Dynamic equations: x(κ+c) = f(x(κ), u(κ), pf(κ), κ) (5.1)

Output equations: y(κ) = gy(x(κ), py(κ), κ) (5.2a)

Event output: ϑ{<ν,ts,τ,α>} = gθ(x(κ), pθ(κ), κ) ts=κ (5.2b)

Initial conditions: x(κo) = xo (5.3)

Input sequence: u(κ) = u(κo), u(κ1),... u(κf) (5.4)

Parameter set: p(κ) = p(κo), p(κ1),... p(κf) (5.5)

A continuous time discrete event system specification (DEVS) is given by the following sys-
tem of equations based on instantaneous state transition functions (s.a. Fig. T8c):

Dynamic equations: x(t) =

 ϕν(x(t-),u(t),α,pf(t),t) (ϑ{<ν,ts,τ,α>|ts+τ=t}≠∅)

 (6.1)
 x(t-) (ϑ{<ν,ts,τ,α>|ts+τ=t}=∅)

Output equations: y(t) =

 gy(x(t),α,py(t),t) (ϑ{<ν,ts,τ,α>|ts+τ=t}≠∅)

 (6.2a)
 y(t-) (ϑ{<ν,ts,τ,α>|ts+τ=t}=∅)

Event output: ϑ{<ν,t,τ,α>} =

 gθ(x(t),α,pθ(t),t) (ϑ{<ν,ts,τ,α>|ts+τ=t}≠∅)

 (6.2b)
 ∅ (ϑ{<ν,ts,τ,α>|ts+τ=t}=∅)

Initial conditions, events: x(to) = xo, ϑ{<ν,ts,τ,α>|ts=to} = ϑo (6.3)

Inputs, event input: u(t), ϑ{<ν,ts,τ,α>|ts+τ=t}≠∅ (6.4)

Parameter set: p(t) (6.5)

where:

ℜ, ℜ+, ℜn: Set of real respectively positive real numbers in 1- respectively n-dimensional space
∅: The empty set
t: Continuous time (independent variable) (DESS, DEVS) t ∈ [to,tend] t ∈ ℜ
κ: Discrete time (independent variable) (SQM only) κ=κo,..., κf-1 κ ∈ ℜ, κ ⊂ t
c: Discrete time step (SQM only) c > 0 c ∈ ℜ+
t-: Continuous left-hand side of time before and up to a discrete event (DEVS only)
ϑ: Set of discrete events (internal and external), events are quadrupels of the form <ν,ts,τ,α>
ν: Event class (must be globally unique)
ts: Scheduling time of an event ts ∈ [to,tend] ts ∈ ℜ
τ: Time advancement from ts till associated events ϑ are due τ ≥ 0 τ ∈ ℜ+
α: Transaction data of an event
x: State vector x(t) at time t respectively κ. For DEVS exists also the state vector x(t-), it is the

left-hand side of the discontinuity before and up to t x ∈ ℜn

x·: Derivative vector dx(t)/dt (DESS only) x· ∈ ℜn

f,gy, gθ:.. Linear or nonlinear function vectors dim[f]=n, dim[gy]=m
ϕν: Linear or nonlinear instantaneous state transition function vector of event class ν dim[ϕν]=n
u: Input vector u ∈ ℜl

y: Output vector y ∈ ℜm

p: Parameter vector, composed of the elements of pf, py, and pθ p ∈ ℜr

ModelWorks 2.2 - Theory

T 42

In the context of ModelWorks the term output is used in a different than the usual systems
theoretical meaning. It is reserved to the output produced by a submodel to be connected with
the input of another submodel (coupling of submodels). It should not be confounded with the
display of simulation results for the simulationist. The latter is called monitoring. Note that the
output y defined by Eq. (4.2), resp. (5.2) does not depend on the input u. This restriction
guarantees the correct calculation of structured models. Structured models are explained below.

The discrete time κ of a SQM2 is a real number, which may be interpreted as a subset of the
continuous time t. The discrete time step c is interpreted as the continuous time interval elapsed
between two adjacent discrete time points κj and κj+1 (Fig. T8b). The classical case where κ
is an integer and c may be interpreted to be of length 1 is just a special case.

For discrete event systems ModelWorks supports the event scheduling paradigm. Discrete
events are time bound entities which have the potential to cause an instantaneous state transition
ϕ in a DEVS. Typical examples of events are the arrival of individuals such as animals at a
feeding site, or the leaving of customers from a location which offers services. Hereby the
state vector instantaneously changes from state x(t-) to state x(t), thus creating a state disconti-
nuity. The vector x(t-) represents the left-hand side, x(t) the right-hand side of these disconti-
nuities. By definition states of DEVS do not change inbetween events. Usually discrete events
are grouped into a finite set of classes, whereby each class ν is characterized by a
corresponding instantaneous state transition function vector ϕν operating on the DEVS state
vector.

Every event is described as a quadrupel <ν,t s,τ,α>, where ν describes the event's class, ts the
time at which it has been scheduled, τ the time which may elapse till the event becomes due,
and α the transaction data. Through the event class ν an event is uniquely associated with a
particular instantaneous state transition function vector ϕν. In simple cases3 τ can be
interpreted as the time a DEVS is allowed to remain in its current state before the next change.
Transactions allow to transmit data from the scheduling state to the due time ts+τ. Examples of
transactions are attributes or properties describing indivdual animals or customers.

Event scheduling is needed for state changes and the time advancement of DEVS (Fig. T8c).
At a given time there may exist any number of events. Thus events are grouped into sets, i.e
the set of events ϑ{<ν,t s,τ,α> | ts = t } defines all events scheduled at time ts, the set
ϑ{<ν,t s,τ,α> | ts+τ = t } all events due at time t. Events which are scheduled and handled by
the same DEVS are called internal events. The events, which are scheduled by a system which
does not provide the instantaneous state transition function ϕν associated with the event's class
ν, are called external events. The latter are only of importance in structured systems, which are
explained below.

ModelWorks orders all events according to their due times, which allows to solve a DEVS
solely by a sequence of instantaneous state changes given by the ordering of the events.
Hereby the "independent variable" continuous time t is no longer a true "independent variable",
but rather a byproduct; in other words: discrete events have the side effect of advancing the time
t by a positive amount τ (τ∈ ℜ+). Given any set of events ϑ{<ν,t s,τ,α> | ts≥t } at time t, the
time is always only advanced to the the next event, i.e. the due time of the event with the
smallest τ. Note, an arbitrary number of events may be due at the same time, which may have
been scheduled at various times ts in the past; moreover, τ may also be 0, i.e. an event may
schedule immediate events, which are due at the same time they are scheduled4. Therefore

2Throughout this text a sequential machine is considered a synonym for the discrete time standard system
formalism. However, the term sequential machine is sometimes also used to specify an automaton. Note the
latter is usually defined to operate on discrete, explicit states and not on state variables as this is usually the
case for discrete time difference equations.

3i.e. an autonomous DEVS, only one event class, cardinality of event output always 1
4Of course the modeler has to make sure that her equations specify no recursive event scheduling without a

proper termination condition, otherwise a simulation run may not be able to progress resp. terminate at all.

ModelWorks 2.2 - Theory

T 43

ModelWorks uses the scheduling sequence as an additional criteria to determine a unique order
among events which are due at the same time.

u
f g

x

p
f

p
y

(a)

(t)x(t)(t) y(t)

J{.|t =t}s

∫

p
θ

u
f g

p
f

x (κ+c) x (κ)

(b)

(κ)
y (κ)

Z

p
y

ϑ{.|t =t}s

-1

p
θ

ϑ{.|t =t}s

g

p
f

(c)

x(t)
u (t) y(t)

x(t)−

p
y

ϑ{.|t =t}sϑ{.|t + τ=t}s

ϕ

τ -1

p
θτ -1

Fig. T8 : Signal flow in (a) continuous time differential equation (DESS), (b)
discrete time difference equation or sequential automaton (SQM), and (c)
continuous time discrete event (DEVS) dynamic systems (s.a. Fig. T7). These
systems constitute the basic types used in ModelWorks to describe elementary and
structured models.

4.2 Structured Models (Coupling of Submodels)

Any number of elementary models, here called submodels, may be coupled to form complex,
structured models. Any number of hierarchical levels may be introduced. Elementary models
are defined exactly the same way as described in the previous chapter. The coupling is realized
by connecting a submodel's output to another submodel's input. There are four cases to be dis-
tinguished: (A) all submodels are continuous time differential equation systems only (DESS),
(B) all submodels are discrete time systems only (SQM), (C) all submodels are discrete event
systems only (DEVS), (D) and there are some continuous (DESS and/or DEVS) as well as
discrete time (SQM) submodels. Mixed structured models may be composed from any number
and any type of models.

ModelWorks 2.2 - Theory

T 44

111

u * y *

33

222

u

u*

y

y*1

2

11

11

2

3
u

u*

31

u 21

1

u32

y22

y*

y 31

y 32

u21

3

Fig. T9 : Example of a structured model system composed of three elementary,
coupled submodel systems. The global input u* is defined by Eq. (7a, b, or c),
the inputs of the subsystems uij by Eq. (8a, b, or c), the outputs of the subsystems
yij by Eq. (10a, b, or c), and the global output y* by Eq. (11a, b, or c).

(A) A structured model composed of n elementary, coupled DESS submodels, each
continuous time and defined according to Eq. (4.x) is defined as follows (for an example see
also Fig. T9):

The input of the global system is given by

u* = u*(t) (global input) (7a)

The input to the submodel i depends on the global input u*, and on the output yi(t) of the n sub-
models (output-input coupling):

ui(t) = hi(u*(t) , y1(t),... yn(t)) (input of submodel i) (8a)

The dynamic equations for obtaining the derivatives of the state variables of the submodel i are
given by:

dxi(t)/dt = fi (xi(t), ui(t), pfi (t), t) (dynamic equations of submodel i) (9a)

The output of the submodel i depends on the states and the parameter set of the submodel i. An
output variable must not depend directly on an input variable (no direct output-input coupling).
Since the input variables may depend directly on the output variables, a direct output-input
coupling would lead to a circularity which could not be resolved generally.

yi(t) = gi (xi(t), pgi(t), t) (output of submodel i) (10a)

Some of these outputs are not connected to other submodels but are global outputs. These ele-
ments from yi(t) form for each submodel the global output vectors yi

*(t).

The output of the global system is given by combining the global output vectors y* i of the n
submodels i:

ModelWorks 2.2 - Theory

T 45

y*(t) =

y1
*(t)

.

.

yn
*(t)

(global output) (11a)

(B) A structured model composed of n elementary, coupled submodels, each discrete time and
defined according to Eq. (5.x) is defined as follows (for an example see also Fig. T9):

u* = u*(κ) (global input) (7b)

ui(κ) = hi(u*(κ) , y1(κ),... yn(κ)) (input of submodel i) (8b)

xi(κ+c) = fi (xi(κ), ui(κ), pfi (κ), κ) (dynamic equations of submodel i) (9b)

yi(κ) = gi (xi(κ), pgi(κ), κ) (output of submodel i) (10b)

y* (κ) =

y1
* (κ)

.

.

yn
* (κ)

(global output) (11b)

(C) A structured model composed of n elementary, coupled DEVS submodels, each
continuous time and defined according to Eq. (6.x) is defined as follows (for an example see
also Fig. T9):

DEVS may also receive inputs and produce outputs.

The second part of event output occurs if a system schedules external events, i.e. events which
are designated for a DEVS different from the scheduling system. This is the case if the
scheduling system is a DEVS which provides for the class ν of the scheduled event no
instantaneous state transition function ϕν, or if the scheduling system is not a DEVS.

The input of the global system is given by

u* = u*(t) (global input) (7c)

All input to the submodel i of type DEVS depends on the global input u*, and on the output
yi(t) respectively ϑ{< ν,t s,τ,α>|ts+τ=t} of the n submodels (output-input coupling):

ui(t) = hi(u*(t) , y1(t),... yn(t)) (input of submodel i) (8c)

In contrast to DESS and SQM, DEVS can receive two types of input, i.e. ordinary inpupt
vector yi(t) and event input; the latter consists of external events which have been scheduled by
other submodels.

ϑ{<ν,ts,τ,α>|ts+τ=t} (event input of submodel i) (8c')

Note, state changes in a DEVS can only be caused by event input, but not by continuous input
vectors u(t). The latter influence a DEVS only in the moment of an instantaneous state
transition, i.e. a discrete event. The dynamic equations consist of a set of transition function
vectors ϕν, one for each event class, which are capable of changing the state vector x(t) of the
submodel i instantaneously, given at least one event of the corresponding class ν is due:

ModelWorks 2.2 - Theory

T 46

x(t) =

 ϕν(x(t-),u(t),α,pf(t),t) (ϑ{<ν,ts,τ,α>|ts+τ=t}≠∅)

 (dynamic equations of submodel i) (9c)
 x(t-) (ϑ{<ν,ts,τ,α>|ts+τ=t}=∅)

The output of the submodel i depends on the states and the parameter set of the submodel i. An
output variable must not depend directly on an input variable (no direct output-input coupling).
Since the input variables may depend directly on the output variables, a direct output-input
coupling would lead to a circularity which could not be resolved generally.

yi(t) = gi (xi(t), pgi(t), t) (output of submodel i) (10b)

Some of these outputs are not connected to other submodels but are global outputs. These ele-
ments from yi(t) form for each submodel the global output vectors yi

*(t).

The output of the global system is given by combining the global output vectors y* i of the n
submodels i:

y*(t) =

y1
*(t)

.

.

yn
*(t)

(global output) (11b)

Event classes must be globally unique.

Similarily DEVS can produce two types of outputs: As this is the case for states, by definition
ordinary output vectors y(t) remain also constant inbetween events. Note, that any event output
can only be received by a DEVS, but the inverse is not the case, i.e. any model may produce
event In addition to such ordinary output vectors, ModelWorks supports also event output
which consists of internal and external events. DEVS may produce so-called internal as well as
external events. @The events produced by a DEVS are called internal events; external events
are produced by a model system different from the receiver. Moreover note, not only DEVS,
but all other elementary model types may produce external event output. Event output consists
of a set of events ϑ{<ν,t s,τ,α>}. It can be done anytime by scheduling events at time ts. The
time τ is the time span the DEVS is allowed to remain in the current state.

(D) A general structured model composed of n elementary, coupled submodels, each either
continuous or discrete time and each defined according to Eq. (4.x) resp. Eq. (5.x) is defined
as follows (for an example see also Fig. T9):

There are two different independent variables: the continuous time t ∈ ℜ and the discrete time κ
∈ ℜ, where κ is a subset of the continuous time t, i.e. κ ⊂ t. The discrete time step c of the
discrete time submodel(s) is interpreted as a real time interval, the coincidence interval c, on the
time axis t. The discrete time submodels are only defined at the endpoints of these intervals, the
coincidence time points. The set of all coincidence points constitutes the discrete time κ. The
continuous time submodel(s) describe continuous (or faster) processes which occur between
the coincidence points. A communication between the two submodel types occurs only at every
coincidence point (Fig. T10). The values of the two time variables match at every coincidence
point exactly, i.e. t = κ. In particular, this implies that the following condition is satisfied by
the continuous and the discrete start time:

to = κo where to, κo ∈ ℜ (12)

Given the coincidence interval c is constant the continuous time t may be mapped always to the
discrete time κ = κj at the last coincidence point as follows:

ModelWorks 2.2 - Theory

T 47

κj = to + j c = to + INT(t – to
c

) c c = const., INT is integral part of argument(13)

However, ModelWorks does not require to keep the coincidence interval c constant, in which
case Eq. (13) no longer holds. Finally note in the special case where κ shall be restricted to
integer numbers, Eqs. (5.1) and (12) require that to as well as c must also be integers.

 end

 o

t + c

Discrete system

Continuous system

time	 t

 f
κ

t o
κ

t

κ
 2 1

κ
 o

c c c

 1t + c

Fig. T10: Coupling of discrete and continuous time submodels: The figure shows
the results of a simulation of a structured model system composed of one discrete
and one continuous time submodel. A communication between the two submodels
occurs at every coincidence time point, when the output of the discrete submodel
determines the rate of change of the continuous time submodel. No data exchange
takes place during the coincidence interval, during which the rate of change of the
discrete time submodel remains constant (sample and hold).

Any structured model mixed of continuous and discrete time submodels can be subdivided into
two portions: the first is the continuous time portion Ξ consisting of the set of all continuous
time submodels with their related continuous time inputs and outputs plus the continuous time
global input and output; the second is the discrete time portion ∆ consisting of the set of all dis-
crete time submodels with their related discrete time inputs and outputs plus the discrete time
global input and output. At every coincidence point the system is fully defined and all submo-
dels are fully coupled (System ~ Ξ + ∆). Between coincidence points, the dynamics of the
system collapse or degenerate to the continuous time portion Ξ, the other portion of the system
∆ remains constant but is still accessible to Ξ. This corresponds to a sample and hold technique
(sample at coincidence points, hold between) (Fig. T10).

The global input consists of two vectors, one for the global continuous time input u* ξ and the
other for the global discrete time input u* δ :

u* ξ = u*(t) (∈ Ξ)

u* δ = u*(κ) (∈ ∆)
(global inputs) (7c)

At the coincidence points the inputs of all submodels i depend on the continuous as well as the
discrete time global input u* ξ resp. u* δ, and on the output of the continuous time submodels jξ

∈ Ξ as well as the discrete time submodels jδ ∈ ∆ (i, j ξ ,j δ ∈ {1,2,... n}. Between coincidence

ModelWorks 2.2 - Theory

T 48

points the inputs to the continuous submodel iξ ∈ Ξ depend continuously on the continuous
time global input u* ξ and on the output of the continuous time submodels iξ ∈ Ξ. Any depen-
dence of the continuous time submodels jξ ∈ Ξ on the output of the discrete time submodels
jδ ∈ ∆ is resolved by using the last defined values (sample from "sample and hold") of all
variables of ∆ while mapping time t to κ using Eq. (13) (hold from "sample and hold"):

ui
ξ(t) = hi

ξ(u* ξ(t), u* δ(κ) , y1
ξ(t), y2

ξ(t),... yn-1
δ(κ), yn

δ(κ)) (∈ Ξ)

ui
δ(κ) = hi

δ(u* ξ(t), u* δ(κ) , y1
ξ(t), y2

δ(κ),... yn-1
δ(κ), yn

ξ(t)) (∈ ∆)
(8c)

The dynamic equations for the calculation of the derivatives for Ξ or the new values for ∆ of the
state variables of the submodels iξ resp. iδ:

dxiξ(t) = fiξ (xiξ(t), uiξ(t), pfiξ(t), t) (∈ Ξ)

xiδ(κ+c) = fiδ (xiδ(κ), uiδ(κ), pfiδ(κ), κ) (∈ ∆)
(dynamics of submodels iξ , iδ) (9c)

The output of the submodels iξ resp. iδ are calculated of the states and the parameter set of the
particular submodel iξ resp. iδ. An output variable must not depend directly on an input variable
(no direct output-input coupling, avoids unresolvable circularity).

yiξ(t) = giξ (xiξ(t), pgiξ(t), t) (∈ Ξ)

yiδ(κ) = giδ (xiδ(κ), pgiδ(κ), κ) (∈ ∆)
(outputs of submodels iξ , iδ) (10c)

Some of these outputs are not connected to other submodels but are global outputs. These
elements from yiξ(t) resp. yiδ(κ) form for each submodel the global output vectors yiξ

∗(t) resp.
yiδ

∗(κ).

The global output y* of the structured model consists of two vectors, one for the global conti-
nuous time output y* ξ and the other for the global discrete time output y* δ. Each is again com-
posed from the global output vectors yiξ

∗(t) of the continuous time submodels iξ ∈ Ξ resp. the
global output vectors yiδ

∗(κ) of the discrete time submodels jδ ∈ ∆:

y*ξ(t) =

y1ξ
* (t)

y2ξ
* (t)

.

.

(∈ Ξ)

(global outputs) (11c)

y* δ(κ) =

.

.

yn-1δ
* (κ)

ynδ
* (κ)

(∈ ∆)

The general definition of the coupling has two special cases which are often of interest to the
modeler:

- Structured model consisting of several, but uncoupled submodels: The inputs of the
submodels do not depend on any output of another submodel: ui(t) = hi(u*(t)) resp.
ui(κ) = hi(u*(κ)). Such submodels coexist as completely independent units, yet im-
plementing them within the same model definition program offers the advantage that
they can be simulated in parallel at once. This might be useful when working with si-
milar models, e.g. to test different model versions of the same real system, or to com-
pare a measured time series (parallel model) with a simulated trajectory (model).

ModelWorks 2.2 - Theory

T 49

- The structured model is composed of hierarchically organized submodels (several
levels): An example of such a hierarchical model system is given in Fig. T11 (two
levels). Note however, that ModelWorks ignores the hierarchical organization, which
is only of concern to the modeler. ModelWorks treats all models exactly the same
way, regardless of the level on which they are defined.

11

u * y *

3

222

u

u*

y

y*1

2

11

11

2

u

u*

31

u 21

1

u32

y22

y*

y 31

y 32

u21

3

Fig. T11: Example of a hierarchically organized structured model system
composed of several submodels, which are themselves structured model systems
consisting of several internally, coupled submodels.

Structuring model systems as defined in Eq. (8a,b or c) requires a particular calculation
sequence during simulation which may affect the results in a way which has to be considered
by the modeler. In particular it must ensure that all input values are calculated first, i.e. at the
begin of an integration step. Further, the results must be independent of the calculation order of
the submodels. This can be guaranteed given that the following conditions are observed:

1. The calculation of a model is split into the following three parts:

a) Calculation of the input variables ui(t) for the submodel i: Eq. (8a, b or c)

b) Calculation of the derivatives resp. the new values of the state variables of
the submodel i (integration): Eq. (9a, b, or c)

c) Calculation of the output variables yi(t) of the submodel i: Eq. (10a, b, or c)

2. The calculation order is that shown in Fig. T12.

ModelWorks guarantees that the prerequisit under point two is always met, but cannot ensure
that none of the model equations are misplaced, e.g. that a derivative is calculated in a part re-
served for the calculation of outputs.

Note also that the calculation order shown in Fig. T12 has a further consequence to be conside-
red by the modeler: It may affect the precision of the numerical results depending on how the

ModelWorks 2.2 - Theory

T 50

equations are distributed among the continuous-time submodels. Differential equations coupled
within a submodel are integrated differently from those coupled via submodel boundaries when
using higher order integration methods. This fact should be considered when subdividing a
model into several submodels unless the simulationist should restrict herself to single step inte-
gration methods only (s.a. the following example and Fig. T14).

t := t + h

t ≤ t' ≤ t+h

Fig. T12: Calculation order applied by ModelWorks during integration. The
larger loop corresponds to a single time step (h = current integration step); the inner
loop is used only by integration methods with order > 1 (e.g. Heun, Runge-Kutta
4th order) (s.a. Fig. T22).

Fig. T12 shows how coupling within a single submodel, i.e. formulated within the equation
section dynamic, is defined at every point in time, whereas the coupling between submodels,
i.e. formulated within the equation sections output respectively input, takes place only at the
end points of an integration step. Note also that this phenomenon is different from the coupling
between continuous and discrete time submodels, where the coupling is usually happening even
more rare, i.e. only at the coincidence points. They are mostly much further apart than the cur-
rent size of the integration step h. Both kinds of coupling, the one at the end points of the dis-
cretisation interval h as well as the one at the end points of the coincidence interval c, are of the
same type, i.e. ModelWorks applies the so-called sample and hold technique (see also below
under Simulation environment of the next chapter Functions).

Finally a simple example shall illustrate the whole concepts discussed in this chapter. The mo-
del is a system consisting of two ordinary, nonlinear first-order differential equations. First it
shall be modeled simply and secondly it shall be modeled as a structured model built from
submodels:

Ex.: The following model equations shall be modeled, first within a single model (Eq. 14):

x1 = ax1 - bx1
2 - cx1x2

x2 = c'x1x2 - dx2

(Model Μ) (14)

This system consists of two ordinary but coupled differential equations formulated according to
Eq. (9a) with neither input nor output (autonomous system). See Fig. T13a for the relational
diagram of this model system.

Secondly the two differential equations shall be distributed into two separated submodels (15)
respectively (16), which are coupled with each other (Fig. T13b):

u1 = y2 input according Eq. (8a)

x1 = ax1 - bx1
2 - cx1u1 dynamic according Eq. (9a) (Submodel µ1) (15)

y1 = x1 output according Eq. (10a)

respectively

ModelWorks 2.2 - Theory

T 51

u2 = y1 input according Eq. (8a)

x2 = c'x1x2 - dx2 dynamic according Eq. (9a) (Submodel µ2) (16)

y2 = x2 output according Eq. (10a)

(a)

x x1 2

Model M

(b)

x x
1 2

y

u
1

1
u

y2

2

Submodel µ1 Submodel µ2

Structured Model System

Fig. T13: Relational diagrams of a model once (a) formulated as a single
elementary model M given by Eq. (14) and once (b) modeled as a structured
model system consisting of two submodels µ1 and µ2 according to the Eq. (15)
and (16).

Both submodels are of the type continuous time and case (A) applies with the equations (7.a)
till (11a), but no global inputs nor global outputs are present. Each of these submodels has one
input and one output defined according to Eq. (8a) and (10a). These inputs and outputs have
only been introduced in order to couple the two submodels. They form a structured model sys-
tem, each submodel containing one of the differential equations from Eq. (14). Mathematically
the structured model system formed with (15) and (16) is equivalent to the one given by
Eq. (14). However, discretisation errors may result in the sample and hold effect described
above (see also below under Simulation environment of the next chapter) (Fig. T14).

This is because no information exchange across submodel boundaries takes place during an in-
tegration step. Thus coupling among submodels occurs only at the endpoints of an integration
step (s.a. Fig. T12). In case a higher order integration method is used, the coupling of diffe-
rential equations within a submodel takes place even in the middle of an integration step. Hence
simulation results of the continuous-time part of a structured model might slightly differ for
non-single step integration routines depending on where the modeler has chosen the submodel
boundaries between the differential equations. However the smaller the integration step, the
smaller becomes this effect . E.g. in order to make the effect clearly visible, case (ii) of
Fig. T14 has been computed with a rather large integration step of h=0.15.

ModelWorks 2.2 - Theory

T 52

(i)

(ii)

Fig. T14: Simulation results of two mathematically equivalent model variants a
and b as given by Eq. (14) respectively Eq. (15-16). Results obtained using (i) -
the first order Euler, (ii) - the second order integration method Heun with
steplength h = 0.15. Although the two model variants (s.a. Fig. T13) ought to
behave identically, their two implementation variants a and b yield the same results
only in case (i), but differing ones in case (ii) . This is a consequence of the
calculation order within a simulation step (Fig. T12) and the order of the
integration method: In case (ii) the information exchange between submodels is
not so often done for variant b than for variant a, because it takes only place at the
begin of, not during an integration step. x1a, x2a - state variables of variant a; x1b,
x2b - of variant b.

ModelWorks 2.2 - Theory

T 53

5 Functions

ModelWorks functions are provided by its simulation environment and are available in two
ways: First by the simulationist via the user interface and second by the modeller via the client
interface (Tutorial Fig. T1). The standard, interactive user interface of ModelWorks allows the
simulationist to access the majority of the functions interactively. The client interface allows the
modeller to access all functions, but in a static way, i.e. through the writing of a Modula-2 pro-
gram, typically a model definition program (Tutorial Fig. T3). Both techniques have their uni-
que advantages and disadvantages and can be freely mixed in any combination.

The simulation environment of ModelWorks provides at run-time the needed base and environ-
ment to produce model behaviour trajectories, e.g. by executing simulation runs, changing pa-
rameter values, monitoring settings, or defining simulation experiments etc. A simulation run
of ModelWorks corresponds to the numerical solution of an initial value problem of a set of or-
dinary differential equations or difference equations alone or in any mixed form (s.a. chapter
Model Formalisms). In particular note that this means that the current implementation of Mo-
delWorks does neither provide a direct support for the solution of boundary value problems,
nor partial differential equations, nor does it offer backward numerical integration. Hence, the
simulation environment provides only one single independent variable, typically the time, and
any model currently installed, regardless of the installation mechanism, will be solved in func-
tion of this variable only.5

ModelWorks' simulation environment comes into existence as soon as a module is executed
which does import either from module SimMaster or module SimBase, or both. All activities
from the starting of the simulation environment till its quitting are termed a simulation session6.

The ModelWorks simulation environment consists of the following components:

• Model base

• Global parameters and settings

• Simulation run-time system

• Standard user interface

The model base allows to install or deinstall any number of models together with their model
objects and all associated data. The global parameters and settings allow to control the general
properties and appearance of the simulation environment, e.g. to specify the time domain of a

5The module SimIntegrate (see Appendix section Definition Modules) provides an exception to this rule: Nume-
rical integration of definite integrals can be computed without affecting the global independent variable.

6Any eventual interruption of a session, e.g. if the simulationist starts to work on something else, hereby
switching the simulation environment into the background, is ignored and omitted from the simulation
session. This is because such activities will in general not affect the state of the simulation environment.
However, any activity, e.g. executing another model definition program, also operating on the same
simulation environment, is considered to form part of the same simulation session. Note also: On the
Macintosh under MultiFinder or System 7 the simulation environment will not cease to operate when switched
into the background; in case a simulation run is still in execution while the background switch occurs, this run
will continue till ModelWorks requires the next input by the simulationist. This feature can be very helpful,
e.g. if a researcher has to execute lengthy simulations she does not need to observe interactively; in this case
she can launch a simulation experiment and start writing a paper or analyzing data etc. The simulation can be
fetched into the foreground anytime to check its progress and then be rereleased into the background again.
Albeit, in background simulations run slower than in foreground, since foreground applications get a higher
priority and more CPU-time than a background process. Of course any number of ModelWorks applications
can coexist in such a fashion.

ModelWorks 2.2 - Theory

T 54

simulation experiment or to define the location of windows on a screen. The simulation run-
time system provides all algorithms needed for numerical integration, model coupling, and
graphics etc. The standard user interface allows the simulationist to access the typically needed
functions of the simulation environment interactively (see subchapter Simulation Environment).

If the modeller wishes to give the simulationist access to the standard user interface (see sub-
chapter Standard User Interface) she simply activates the latter by calling procedure RunSimEn-
vironment (exported by module SimMaster). The standard user interface may be quit anytime,
even in the middle of a simulation, by the menu command Quit.

ModelWorks allows to extend the ModelWorks' standard user interface with additional, user
specific functions, or to use ModelWorks even within a completely different user interface (see
subchapter User Interface Customization). Since ModelWorks is based on the "Dialog Ma-
chine" the modeller may also access "Dialog Machine" routines herself and mix them with the
functions provi ded by ModelWorks. For instance the modeller might want to have an
additional kind of monitoring not offered by the standard ModelWorks functions. To accom-
plish this she may add a new menu with commands to open a window in which simulation
results are to be displayed in a problem specific graph. E.g. by drawing a line chart of the pro-
gress of a parameter identification in the parameter space according to the current values of the
performance index or to draw the age pyramid of an age structured population during the simu-
lation of its population dynamics (s.a. chapter Sample Models in the Appendix).

The client interface must be used to define, i.e. to declare, the models, the model objects, the
model equations, and the default values for all objects so that the run time system of Model-
Works may access and maintain them (Tutorial Fig. T2). It is important to note that Model-
Works does only know about those objects which have been made known to it, i.e. which have
been explicitly declared by means of one of the following procedures from module SimBase:
DeclM, DeclSV, DeclP, or DeclMV (see subchapter Model Base). Otherwise ModelWorks
does not care what the modeller is doing with these objects, nor whether they are involved in a
complex structure or operation. For instance a state variable might be part of a structured data
type such as a Modula-2 record or an array or might be computed by first retrieving input va-
lues from a data base. On the other hand it is also important to understand that ModelWorks
will operate on model objects, i.e. will repeatedly access their values. E.g. at the begin of a si-
mulation run ModelWorks assigns automatically the initial values to all state variables or up-
dates the values of state variables during the simulation by assigning to them the results of nu-
merical integrations (see section Model objects and the run-time system). In order to use Mo-
delWorks meaningfully it is therefore necessary that the modeller obeys a minimum number of
rules, so that ModelWorks and the modeller use and access model objects in harmony.

5.1 Simulation Environment

5.1.1 STATES OF THE SIM UL ATION ENVIRONM ENT

During a simulation session the simulation environment is always only in one of four states:
No model, No simulation, Simulating, or Pause (Fig. T15). States reflect what basic opera-
tions have been performed on the simulation environment and may also determine the availabili-
ty of certain commands or functions.

In the state No model the simulation environment's model base is empty, i.e. no model has
been installed. As a consequence any commands such as the menu command Settings/Reset:
All model's parameters of the standard user interface are disabled; similarly a call to procedure
ResetAllParameters (from module SimBase) is without any effect. Only if at least one model is
installed, the simulation envi ronment is set to the state No simulation where all functions requi-
ring at least one model as a precondition such as the changing of model and model object attri-
butes become possible. The state No simulation serves the starting of simulations and is typi-
cally used to change settings or values such as initial values, model parameters etc. In the state
Simulating, i.e. once a simulation run has been started, the functions with the potential to

ModelWorks 2.2 - Theory

T 55

conflict with the running simulation, e.g. changing the simulation start time to resp. κo,
produce a slightly different result. In the state Pause the simulation is temporarily brought to a
halt, for instance to allow for a closer inspection of the simulation results (Fig. T15).

No simulation

No model

Halt run (Pause) or PauseRun

Resume run or ResumeRun
Simulating Pause

 Stop (Kill) run

or StopRun

or Stoptime reached

(≥1 model)

or Termination condition true

 Stop (Kill) run

or StopRun

(0 model)

Start run

or SimRun

or Termination

or Stop time reached

or StopRun
 Stop (Kill) run

condition true (0 model)

Declaration
of first model

Removal of
last model

Fig. T15: State transition diagram of the simulation environment of ModelWorks
when executing elementary simulation runs. The states are: No model - when
there is no model present, No simulation - when there has been at least one model
declared, but no simulation is running yet, Simulating - simulation is running, and
Pause - running simulation has been temporarily halted. The standard user inter-
face reflects these states by the enabling or disabling of commands accordingly
(s.a. Fig. T24). The transitions controlled by the simulationist are labelled with
the bold text of the corresponding menu commands of the standard user interface,
e.g. Start run . The transitions under the control of the modeller are labelled with
plain style procedure identifiers, e.g. PauseRun .

Since the effectiveness of certain functions may depend on the current state of the simulation
environment, the standard user interface adjusts accordingly: Fig. T24 illustrates in which
state which menu commands are enabled (black) or disabled (dimmed) and which so-called IO-
windows are active (black title bar), i.e. respond to mouse clicks, or are inactive (grey title bar),
i.e. do not respond to any mouse clicks. The fact that certain functions are only available in
certain states could be perceived as an undesirable limitation. However, they have been merely
introduced because certain commands are meaningful only in particular states and to ensure ma-
ximum consistency. For instance, the command to stop a simulation is meaningless if there is
currently no simulation run in progress; thus the standard user interface offers this function
only in the states Simulating or Pause. For more information on this topic see the section States
of the standard user interface.

Transitions from one state to another are accomplished in several ways: First most transitions
are caused by the simulationist who chooses particular menu commands such as those of the
menu Solve available in the standard user interface (Fig. T15). Secondly, as programmed by
the modeller, procedures like StopRun from module SimMaster are called. Thirdly Model-
Works causes transitions by itself, for instance when leaving the state Simulating due to one of
the following two reasons: The simulation time has reached the stop time, or the terminate con-
dition provided by the modeller returns true. Note that this implies that state transitions are un-
der the control of three masters: the simulationist, the modeller, and/or the ModelWorks soft-
ware. For instance in the standard user interface the following state transitions are under the
control of the simulationist (Fig. T15, T2New4): In the states No model and No simulation
the menu command Start run; in state Simulating Stop (kill) run; in state Pause Resume run or

ModelWorks 2.2 - Theory

T 56

Stop (kill) run. All these transitions may also be controlled by the modeller via calls to the
following procedures SimRun, StopRun, PauseRun, and ResumeRun. In case of multiple,
conflicting control the simulationist has the highest priority, followed by the programming by
the modeller, and lowest priority has the ModelWorks run-time system, but any request to stop
the simulation will lead to a termination of the run as soon as the current integration step has
been completed.

Simulating

SimRun

 Halt run (Pause)

 or PauseRun

 Resume run
or ResumeRun

or Termination
condition true

or Stop time reached

or StopRun

 Stop (Kill) run

Start experiment
or SimExperiment

No model

Declaration of Removal of

first modellast model

No simulation
Experiment finished

(0 model)

Experiment
finished(≥1 model)

Experiment finished
(0 model)

Stop (Kill) experiment

 or StopExperiment

No run Stopped

Running Pause

Fig. T16: State transition diagram of the simulation environment of ModelWorks
when executing structured simulation runs (experiments). The main states are the
same as the ones shown in Fig 15. However, the state Simulating must still be
split into three further sub-states: No run, Running, and Stopped. The substate
No run allows the modeller in the middle of an experiment to modify values as
freely as in the state No simulation. In the substate Running a few functions
which might disturb the ongoing simulation are no longer possible. In the substate
Stopped any attempt to execute more runs are ignored (see Fig. T15 for the mea-
ning of the labels of the transitions).

When programming structured simulations (experiments) (see subchapter Programming Struc-
tured Simulations (Experiments), the state Simulating is split into three further sub-states:
No run, Running, and Stopped (Fig. T16). Whenever procedure SimRun from module Sim-
Master is executed, the simulation environment is in substate Running; in the remainder of the
experiment procedure it is in the substate No run (unless the experiment has been stopped).
The substate No run has been introduced to allow the modeller in the middle of an experiment
to modify values like global simulation parameters, e.g. the simulation start time to, as freely as
in the state No simulation. For instance to simulate in a row an agroecosystem model during
several, by the winter separated growing seasons requires to set the next time domain [to,t end]
between two consecutive simulation runs. But the simulation start time to can't be set to a value
bigger than the current time t, since this would require the simulation time to jump. The latter is
only possible in the substate No run , which is in contrast to the substate Running less restricti-
ve, a behaviour which may be essential for structured simulations.

ModelWorks 2.2 - Theory

T 57

The substate Stopped is reached if the experiment has been stopped and any subsequent runs
are to be suppressed.

The following typical transitions take place in experiments which are executed from within the
standard user interface or by a call to procedure SimExperiment from SimMaster: Once the si-
mulationist has chosen the menu command Solve/Start experiment, this causes the simulation
environment to enter the main state Simulating plus the substate No run (Fig. T16). As soon
the procedure SimRun is called from within the procedure DoExperiment, the substate No run
is left and ModelWorks enters the substate Running. If a simulation run is finished, either be-
cause the modeller has called StopRun, the simulation time has reached the stop time, or the ter-
mination condition has returned true, the substate Running is left and the substate No run is re-
entered (Fig. T16). Once all simulation runs have been completed and the end of the experi-
ment procedure has been reached, the main state No simulation is resumed again unless there
should all models have been removed; in the latter case the state No model is resumed instead.

In case the simulationist chooses from within the standard user interface the menu command
Solve/Stop (Kill) experiment or the modeller calls StopExperiment from SimMaster, the sub-
state Stopped is entered. In substate Stopped the modeller can program a final analysis of the
experiment or perform any other house-keeping tasks similar to the possibilities in the substate
No run . Note that in substate Stopped ModelWorks will still execute all remaining statements,
including eventual calls to procedure SimRun, i.e. till the procedure Experiment is actually fi-
nished. However, no more integration and monitoring will take place. This is because Model-
Works empties the body of the procedure SimRun, so that the structured simulation will termi-
nate without any further computations by the run-time system. The simple Boolean function
procedures ExperimentRunning and ExperimentAborted from module SimMaster allow to de-
termine whether the simulationist has started respectively aborted an experiment. This allows
the modeller to program structured simulations accordingly, e.g. to exit from a loop calling
SimRun as soon as ExperimentAborted returns true (s.a. subchapter Programming Structured
Simulations (Experiments) and in the Appendix the sample models demonstrating Stochastic
Simulations such as Markov or StochLogGrow).

The first group of procedures causing state transitions, i.e. SimRun and SimExperiment from
module SimMaster, keep the program control during their whole execution. As long as one of
these procedures is executing the simulation environment is either in the state Simulating or in
the state Pause. Note, the second group of state transition causing procedures, i.e. StopRun,
StopExperiment, PauseRun, and ResumeRun from module SimMaster set only a semaphore,
i.e. they inform only ModelWorks run-time system about the wish, that a state transition ought
to happen as soon as possible. This technique allows ModelWorks to complete first consistent-
ly an eventually already started integration step before actually making the transition. As a rule
follows that the modeller's program calling one of the semaphore settings procedures should
immediately relinquish control and return it to the "Dialog Machine". In particular no attempts
should be made to call another procedure causing a state transition. This will allow the first
transition to actually take place. For instance it is not possible to execute the statement sequence
... StopRun; SimRun; ...successfully because of the following reasons: First the call to
StopRun signals to the run-time system to stop the run; but, this has only an effect on the
semaphore and the program has not yet returned from procedure SimRun. The latter could only
happen if the program control would be relinquished immediately after calling StopRun, which
is of course not the case if SimRun is subsequently called. Moreover SimRun disallows any
recursive calls to itself. Hence the subsequent call to SimRun will be without any effect and no
new simulation run can be started by such a method.

The modeller can request to be informed about all state changes by installing a state change
handler (see InstallStateChangeSignaling from module SimMaster and for an example the sub-
chapter User Interface Customization). Whenever the simulation environment changes sub-
states, the installed state change handler will also be called. The current state can then be inqui-
red by the modeller via the client inter-face by calling the procedure GetMWState from module
SimMaster. The substates can be inquired via procedure GetMWSubState. Substates are only
defined while an experiment is executing, hence GetMWSubState returns otherwise always no-
SubState (note the latter is also the case if the experiment has been temporarily paused).

ModelWorks 2.2 - Theory

T 58

5.1.2 MODEL BASE

5.1.2.a Model and model object installation and removal

ModelWorks allows to install or deinstall any number of models and model objects at any time.
The actual limitations are not inherent in the software but are only given by the available compu-
ter resources, i.e. the currently available heap space and the computing power needed to nume-
rically solve the models.

Every model definition program imports either from module SimMaster or SimBase and calls
the model base of the simulation environment into existence. Initially there are no models in-
stalled in this base and the simulation environment resides in the state No model. Typically the
actual definition of the models and model objects are contained in the body of declaring proce-
dures. The procedure containing the call(s) to procedure DeclM from module SimBase is often
either executed as one of the first statements in the body of the model definition program or in-
directly executed by passing it as the actual argument to procedure RunSimEnvironment (Tuto-
rial Fig. T3). Any successful call to procedure DeclM from module SimBase while no simula-
tion is running will result in a state transition from state No model to state No simulation
(given the simulation environment should not already be in the state No simulation). If a
simulation is running a successful call to DeclM will cause no state transition until the
simulation is ended. Then the simulation environment will enter the appropriate state, i.e.
No model or No simulation, depending whether the model base contains at least one model or
none (Fig. T15, T16).

Models and model objects can also be declared or removed in the state Simulating even in the
middle of a simulation run (including substate Running; Fig. T15, T16). In the latter case ap-
ply a few rules, which are slightly different from the effect of a declaration outside state Simula-
ting (see section Manipulating the model base at run-time). They ensure the consistency of the
model base and all associated data during the whole simulation session.

Removing a model implies always the removal of all its model objects together with a loss of all
data associated with this model and its objects.

ModelWorks' standard user interface provides no means to install and remove models; hence,
once installed, neither the number of models nor that of the model objects can be changed with-
out quitting first this user interface (Fig. T18). However, it is possible to extend the user in-
terface by menu commands, which support the dynamic declaration and the removing of
models and model objects. If the procedures DeclM resp. RemoveM are called from within
procedures, which are attached to some additional menu commands, the simulationist gets the
power to install and remove models dynamically (s.a. subchapter User Interface Customization
and in the Appendix the research sample model LBM). For instance in its simulation session
the RAMSES shell does provide a mechanism, which allows to load and unload models, in
form of individual model definition programs, which may be even called on top of each other.

5.1.2.b Current values

To allow the simulationist for interactive experimentation with models, model objects, and the
global settings of the simulation environment, ModelWorks provides for all these data scratch
copies which may be manipulated freely. For instance the standard user interface allows her to
manipulate not only the monitoring, but also the current global settings such as window posi-
tions, and numerical values or attributes of the models and the model objects. All these data are
called current values. Any numerical integration works with the current values only.

Current values can either be interactively changed from within the standard user interface by
means of the mouse (e.g. window positions), menu commands, entry forms, and IO-windows
or via the client interface by calling procedures such as SetSV, SetP etc. from module SimBase.
Changes can also be made in the middle of a simulation run (including substate Running;
Fig. T15, T16). In the latter case apply a few rules, which are slightly different from the effect

ModelWorks 2.2 - Theory

T 59

of a change outside state Simulating (see section Manipulating the model base at run-time).
They ensure the consistency of the current values during the whole simulation session.

In particular from within the standard user interface in the states No model or No simulation
modifications are possible for the following settings and parameter values:

- Global parameters and settings (No model and No simulation):
• start (to/κo) and stop (tend/κf) time for simulation runs
• integration step7 respectively maximum integration step (h/hmax) plus maximum

relative local error (er)8

• discrete time step or coincidence interval (c)9

• monitoring interval (hm)

• project description consisting of a title, remark, and footer string plus parame-
ters which control the display of strings in the graph respectively the recording
of information on models, model objects and table functions together with their
current values and settings on the stash file (recording flags)

• stash-file name, type, and creator
• Window positions and arrangements

- Model specific attributes (No simulation):
• integration method

- Model objects specific attributes (No simulation):
• initial values of state variables
• values of model parameters
• kind of monitoring, scaling, and curve attributes for monitorable variables

In addition ModelWorks offers a versatile reset mechanism which allows to reset any settings
or parameters which may have been modified during the simulation session by the simulationist
or via the client interface by the model definition program. The values or settings to which Mo-
delWorks resets are the so-called default values, either originally specified by the modeller or
later by a call to a procedure redefining defaults via the client interface. This allows the simula-
tionist within the standard user interface to return any time to a well defined state of all parame-
ters and settings, regardless of the degree to which they have been manipulated (see section
Predefinitions, defaults, and resetting).

5.1.2.c Predefinitions, defaults, and resetting

ModelWorks maintains for the global parameters and settings and for all data contained in its
model base two copies: One is the default value, the other is the current value (s.a. section
Current values; Fig. T17). Two copies exist for the following kind of data:

- Global parameters and settings:
• global simulation parameters to/κo, t end/κf, h/hmax, er, c, h m
• project description and recording flags
• stash-file name, type, and creator
• Window positions and arrangements

7 Interactively via the standard user interface only if at least one continuous time (sub)model is present
8 Interactively via the standard user interface only if at least one continuous time (sub)model with a variable step

length integration method is present
9 Interactively via the standard user interface only if at least one discrete time (sub)model is present

ModelWorks 2.2 - Theory

T 60

- Model and model object specific attributes:
• integration method
• initial values of state variables
• values of model parameters
• kind of monitoring, scaling, and curve attributes for monitorable variables

Defaults from
Model Works

Defaults from
Client or Set

Reset

Defaults

Current values

Simulations

0.0 100.0

1989.0 2000.0

1989.0 2000.0

2000.0 2100.0

1) by calling SetDefltGlobSimPars (1989.0, 2000.0,)

E.g.

t end

Assignments
t 0

MW

M

MW/S/M

MW/M

Modify Current values

MW/S/M

1)

2) by calling SetGlobSimPars (2000.0, 2100.0,) or
 by menu command Set global simulation parameters under
 menu Settings

MW by Model Works

S by Simulationist

M by Modeller

Edit or Set

t 0

t 0

t end

t end

p0 0

0p 0

Fig. T17: Relationship between default and current values and the reset mecha-
nism of ModelWorks. ModelWorks maintains for most values two copies: One is
the default, the second is the current value, which is actually used for simulations.
Some defaults, for instance for the global simulation parameters, are predefined by
ModelWorks, others such as those for model objects are only specified by the
modeller. During a reset, also executed at program start up, the default values are
assigned to the current values. Interactive modifications (editing) of values from
within the standard user interface affect only the current values. Via the client
interface it is possible to change the defaults as well as the current values.

The modeller is forced by the client interface to specify defaults for all models and model ob-
jects. They are the values passed to ModelWorks while declaring the particular objects. E.g.
the value 0.1 is the default of the model parameter c1. This requires that the modeller declares
the parameter c1 with the following call: DeclP(c1,0.1, ... ModelWorks will keep a copy of
the object's default value in order to be able to reassign it to the current value if a reset is re-
quested by the simulationist. Choosing a menu command such as Settings/Reset all model's
parameters from the standard user interface or calling procedure ResetAllParameters from mo-
dule SimBase in a simulation session while running above example will then assign 0.1 to the
variable c1 (Fig. T17) regardless of what the value of c1 currently might be.

ModelWorks 2.2 - Theory

T 61

Symbol Meaning of parameter or variable Predefined default

G l o b a l s i m u l a t i o n p a r a m e t e r s

to/κo Start time for simulation 0.0

tend/κf Stop time for simulation 100.0

h/hmax Fixed integration step or maximum integration step

 for continuous time (sub)models 0.05

er Maximum relative local integration error 0.001

c Discrete time step for discrete time (sub)models or

 coincidence interval for mixed time structured models 1

hm Monitoring interval 0.25

Descriptor, identifier, and unit for independent variable "time" "t" " "

P r o j e c t d e s c r i p t i o n

Project title string ""

Use project title string in graph TRUE

Remarks string ""

Use remarks string in graph TRUE

Footer string "dd/mon/yyyy hh:mm Run 1" 10

Automatic update of date, time, and run # in footer TRUE

Recording of data about models in stash file TRUE

Recording of data about state variables in stash file FALSE

Recording of data about model parameters in stash file FALSE

Recording of data about monitorable variables in stash file TRUE

Recording of graph in stash file FALSE

Recording of table functions in stash file FALSE

S t a s h f i l i n g

Stash file name ModelWorks.DAT 11

Macintosh file type and creator (signature) actually determined
by module DMFiles' default from the "Dialog Machine"
 file type e.g. 'TEXT'
 creator e.g. 'MEDT'

A u t o m a t i c d e f i n i t i o n o f c u r v e a t t r i b u t e s Predefined value

colours and line-styles i MOD 4 = 12

0: coal unbroken
1: ruby broken
2: emerald dashSpotted
3: turquoise spotted
i =

symbols 4: • 5: *
6: o 7: ∆
else " "

Tab. T1: Predefined defaults: Unless overwritten by the modeller, ModelWorks assigns the
given default values to the listed parameters. For the defaults of models and model objects,
the modeller is forced to specify them while declaring the models and the model objects in the
model definition program. Predefined values can not be overwritten by the modeller.

10The abbreviations stand for: dd - current day, e.g. 01 for the first day of a month; mon - current month, e.g.
Jan for January; yyyy - current year, e.g. 1989; hh - current hour, e.g. 22 for 10 pm; mm - current minute,
e.g. 04 in 10:04 pm

11On the IBM PC MODELWOR.DAT. Will be created in the folder where the application resides, which has
started the model definition program respectively on the IBM PC in the current working directory.

ModelWorks 2.2 - Theory

T 62

Interactive modifications of values from within the standard simulation environment by using
entry forms or the IO-windows affect always only the current values, not the defaults. Calling
a reset function from ModelWorks will then reassign the default values to the current values.
All current values affected by the reset, e.g. all initial values of a particular model, will then be
set to their defaults as have been defined latest via the client interface (Fig. T17).

Resets can be executed for particular classes of data. Resets may affect only a single model ob-
ject, all objects of a single model, or all objects of all models (s.a. Fig. T26). Furthermore re-
sets can be executed for a particular class of model objects only, e.g. only windows or only the
curve attributes of monitorable variables. The declaration of a model or model object will al -
ways result in an implicit assignment of the default to the current value, i.e. an individual reset.

Generally defaults are defined by two mechanisms, but always via the client interface or a non-
standard user interface only: The first mechanism is provided by the declaration of models and
model objects; all these defaults are provided by the modeller only and belong to the individual
model or model object only. The second mechanism is used for all global parameters of the si-
mulation envi ronment; these defaults are not necessarily provided by the modeller, hence Mo-
delWorks provi des them in form of predefined defaults or the so-called predefinitions
(Fig. T17). Thus, whenever the simulation environment enters the state No model, Model-
Works assigns to every global simulation parameter, the project description, or the stash file
name the appropriate predefinitions (Tab. T1). Then the model definition program may over-
write these predefinitions with defaults preferred by the modeller, i.e. she calls SetDefltxyz
procedures.

E.g. does ModelWorks use a predefined default simulation start and simulation stop time of
to = 0.0 respectively tend = 100.0. If the modeller wishes to use a different default simulation
time range, she calls the procedure SetDefltGlobSimPars from module SimBase to define it,
e.g. with the statement:

SetDefltGlobSimPars (1989.0, 2000.0,...)

typically in the procedure initSimEnv, which is passed as actual argument to procedure Run-
SimEnvironment.

When executing RunSimEnvironment for the first time (see also section Initialization of the si-
mulation environment), ModelWorks assigns automatically all defaults, either provi ded by Mo-
delWorks in form of predefinitions or overwritten by the modeller as her defaults, to the current
values (Fig. T17, T18). Such an assignment is called a full reset, corresponding to a call to
procedure ResetAll from module SimBase.

Via the client interface or a non-standard user interface defaults can be changed always, even
during a simulation run (s.a. section Manipulating the model base at run-time). Note however,
that such changes will not become effective until a corresponding reset is actually executed.

Unless curve attributes are assigned to the monitorable variables either interactively by changing
the current curve attributes in the monitorable variable window or via the client interface by cal-
ling the procedures SetCurveAttributesForMV or SetDefltCurveAttributesForMV, ModelWorks
adopts the so-called automatic definition of curve attributes. It has been designed so that curves
can be optimally told apart on black and white as well as colour devices, such as monochrome
or colour screens, on laser printers or on colour ribbon matrix printers, on slide recorders, plot-
ters etc. However, this has the disadvantage that for a particular monitorable variable the curve
attributes may change too often, i.e. as soon as the automatic curve attribute of another, pre-
viously activated monitorable variable is changed. To avoid the latter, the user has to override
the automatic definition. Note that the curve attributes assigned by the automatic definition are
predefined by ModelWorks only and can not be changed by the user. ModelWorks uses the
values listed in Tab. T1. Attributes are distributed according to the position i in the sequence in
which the monitorable variables have been activated for graphical monitoring.

12i is the order of activation of the monitorable variables, the first variable's value i = 0.

ModelWorks 2.2 - Theory

T 63

5.1.2.d Initialization of the simulation environment

The simulation session consists of all activities done by means of the simulation envi ronment
during the existence of the importing module, e.g. a model definition program. Initially the si-
mulation environment is in state No model (Fig. T15, T16) and all predefinitions are assigned.
The simulation environment is now ready to accept model declarations (Fig. T18).

Fig. T18: Flow chart of the initialization of the simulation environment by a typi-
cal model definition program using the ModelWorks standard user interface by a
call to procedure RunSimEnvironment. Unless defaults are later changed (only
possible via the client interface), the standard user interface allows to fully reset a
simulation session's model base to the original start-up conditions (s.a. Fig. T17).

1argument passed in call to procedure RunSimEnvironment

The first successful model installation by means of procedure DeclM from module SimBase
will bring the simulation environment into the state No simulation and ModelWorks is now
ready to perform simulations, e.g. by a call to procedure SimRun from module SimMaster.

Typical model definition programs will use the standard interactive user interface by calling af-
ter the model declarations procedure RunSimEnvironment from module SimMaster. RunSim-
Environment will first install the standard user interface, e.g. its menu bar, and then execute the
procedure initSimEnv which has been passed as its actual argument. Then it performs a full re-
set corresponding to a call of procedure ResetAll from module SimBase (Fig. T18). Hence,
the best place to define defaults different from ModelWorks predefinitions, e.g. for the simula-
tion time, or to extend the user interface, e.g. by installing an additional menu, is within proce-
dure initSimEnv. The subsequently executed, automatic full reset ensures that all current values
to be used during the subsequent simulation session have exactly the values as defined by all
defaults (s.a. chapter Predefinitions, defaults, and resetting). Finally RunSimEnvironment
calls procedure RunDialogMachine from module DMMaster (FISCHLIN, 1986a,b; KELLER,
1989). Note that the latter will then call implicitly any eventually installed simulation
environment definition procedure defineSimEnv (see procedure InstallDefSimEnv from module
SimMaster), before rendering control to the simulationist. defineSimEnv allows to customize

ModelWorks 2.2 - Theory

T 64

the interactive simulation envi ronment, e.g. by reading data from a file (see Appendix e.g.
sample model SwissPop) or opening an additional window, once the "Dialog Machine" has
started to run the standard user interface.

Note that as long as the simulationist remains within the standard simulation environment of
ModelWorks, a full reset resumes the initial program state which existed at start-up time. This
is because, in contrast to the client interface, it is not possible to access and modify defaults via
the standard user interface. However, if the modeller, by using the client interface, has pro-
grammed extensions (see subchapter User Interface Customization), which allow to change in-
teractively also the defaults, the reset mechanisms provided by ModelWorks will no longer gua-
rantee the simulationist to resume this initial start-up condition. Instead the state as defined by
the last default specifications will be resumed. Note however, the client can install a simulation
envi ronment definition procedure defineSimEnv (see procedure InstallDefSimEnv from module
SimMaster), which allows to implement this functionality: Since ModelWorks will not call de-
fineSimEnv as part of the menu command Settings/Reset all above nor of the procedure Reset-
All ; the initial start-up conditions are resumed exactly if defineSimEnv first sets resp. reassigns
all defaults, regardless of their eventual modification, and then calls procedure ResetAll from
module SimBase. The simulationist can then resume exact initial start-up condition by simply
choosing the menu command Settings/Define simulation environment.

5. 1. 3 SIM UL ATIONS AND THE RUN-TIM E SYSTEM

After successful installation of a model by means of procedure DeclM from module SimBase,
the simulation environment enters state No simulation. Eventually open IO-windows will then
display the new information, current settings and values of all model(s) and all models' objects.

Once in state No simulation, from within the standard user interface the simulationist has the
choice either to change interactively any settings or to start immediately a simulation with the
predefined default values. The latter is possible without any further action, since the client in-
terface has been designed such that the modeller is exhorted to provide all needed values requi-
red to define fully the initial value problem of a ModelWorks simulation run.

Simulations may be repeated with the same set of models as many times the simulationist
wishes, but otherwise there are no relationships to other simulation tasks within the same or
different simulation sessions. In particular ModelWorks does not support any communication
of data from a simulation session to another one except for the simulation results contained in
the stash file. Neither does the current version of ModelWorks support the direct reading of the
stash file. However, it is possible to construct a particular model which reads a stash file and
declares the models and model objects needed for a post-simulation analysis. The post-simula-
tion analysis session of the RAMSES shell provides such a mechanism. ModelWorks writes
data onto the stash file according to a syntax particularly designed for this purpose.

There hold certain relationships among the tasks which are performed by ModelWorks during a
simulation session (Fig. T18, T19, and T21). Tasks such as elementary or structured simula-
tion runs or resets can be executed in any order, some tasks such as simulation runs are nested
(compare Figs. T19 and T21) and thus belong to a particular, hierarchical level: The simula-
tion session represents the topmost level of all simulation tasks (Fig. T18), the next lower level
is the experiment or structured simulation run (Fig. T21), on the next lower level resides the
elementary simulation run (Fig. T19), and on the lowest level the integration step (Fig. T22).

5.1.3.a Elementary simulation run

An elementary simulation run can be accessed by the simulationist directly without going
through the experiment level. Otherwise this level is the next level below the level of the struc-
tured simulation (this level could also be understood as a structured simulation with k=1; com-
pare Figs. T19 and T21). ModelWorks supports this level by requiring the modeller to specify
for each model an initialize and terminate procedure. The organization of an elementary simula-
tion run is shown in Fig. T19 and in more details in Fig. T20. The mechanism to execute in-

ModelWorks 2.2 - Theory

T 65

teractively an elementary simulation run is provided by ModelWorks standard user interface by
the menu command Start run under menu Solve and has not to be programmed by the modeller.
Yet, choosing this menu command has exactly the same effect as the execution of procedure
SimRun from module SimMaster.

Fig. T19: Flow chart of the elementary simulation run consisting of the run initia-
lization (procedure initialize), the section dynamic (output, input, dynamic), and the
run termination (terminate). The dynamic section is executed an arbitrary number
of times i, which depends on the chosen time step and the simulation time.

Normally ModelWorks will execute for every model the initialize procedures once at the begin
and the Terminate procedures once at the end of the simulation run. If a model is declared or
removed during a running simulation, these procedures are called at declaration resp. removal
time (for exact moments of execution see Tab. T4). Note that the execution of the initialize
procedures happens at a moment when ModelWorks has already assigned the initial values to
all state variables. This design makes it possible to overwrite the values assigned by Model-
Works with other values or to use these values for calculations. A typical use of initialize and
terminate procedures is the opening and closing of a file at the begin respectively at the end of a
simulation run in order to write simulation results onto a file different from the stash file.

Note also that in contrast to the procedure initSimEnv passed to ModelWorks as actual argu-
ment in the call to procedure RunSimEnvironment (it is called only once), the procedures initia-
lize and terminate may be called many, i.e. k, times during a simulation session (Fig. T19).
The actual number depends on how many times the simulationist starts a simulation run directly
(or via an experiment, see below) and is not known to the modeller.

Whenever ModelWorks calls client procedures such as procedures initialize or terminate, from
several models, the calling sequence is the same as the declaration order of the owning models.

5.1.3.b Structured simulation (Experiment)

A structured simulation or experiment can be launched by the simulationist from within the
standard user interface by choosing the menu command Start experiment under menu Solve.

ModelWorks 2.2 - Theory

T 66

Exactly the same result is obtained by a call to procedure SimExperiment from module SimMas-
ter. The experiment level is the next level below that of the simulation session (Fig. T21). A
structured simulation works similar to an elementary simulation run but differs slightly in the
following aspects: Basically it is a procedure programmed by the modeller; typically it calls
several elementary simulation runs by calling the procedure SimRun from module SimMaster.
Since it is implemented as a client procedure, where the modeller has anyway already full
control, ModelWorks offers no specific support for initialization and termination procedures for
experiments (Fig. T21).

Fig. T20: Flow chart of an elementary simulation run as performed by Model-
Works. A run consists of the three basic steps: initialization, integration loop, and
termination. Each step calls model specific procedures (s.a. Fig. T19).

Structured simulations are optional and have to be installed first by the modeller via the client
interface before they can be executed by the simulationist from within the standard user
interface. The corresponding menu command is only enabled if an experiment has actually
been declared. If several subprogram levels are stacked on top of each other (s.a. section
Multiple activations of the standard user interface), each level can install its specific experiment.
The standard user interface supports the separate execution of each level's experiment by
installing for each level a separate menu command.

ModelWorks 2.2 - Theory

T 67

The simulationist can execute experiments an arbitrary number of times n (Fig. 21). A structu-
red simulation calls elementary simulation runs k times, i.e. structured simulations are only of
some interest if k > 1. The total number of simulation runs then becomes k⋅ n.

Fig. T21: Flow chart of a ModelWorks structured simulation or experiment:
From within the standard user interface the simulationist may execute an arbitrary
number n of structured simulation runs. A structured simulation (experiment)
consists itself again of a fixed or also a variable number k of elementary simulation
runs, i.e. calls to procedure SimRun as programmed by the modeller (s.a.
Fig. T19).

The main state of ModelWorks during a structured simulation is always Simulating and the sub-
state is always different from noSubState (Fig. T16). Normally the environment switches only
between the two substates No run and Running. The substate No run (outside execution of
procedure SimRun) resembles the main state No simulation and allows to modify most data
and settings freely. The substate Running represents the actual state "Simulating" (during exe-
cution of procedure SimRun) and offers a somewhat restricted modifying access to the simula-
tion envi ronment's data and model base (see section Manipulating the model base at run-time).

If an experiment is stopped by the simulationist e.g. by choosing from within the standard user
interface the menu command Solve/Stop (Kill) experiment or by calling procedure StopExperi-
ment ModelWorks reaches the substate Stopped. Not only the currently running elementary
simulation is terminated but also all subsequently eventually following runs are "skipped". Mo-
delWorks accomplishes this by emptying the body of the procedure SimRun from module Sim-

ModelWorks 2.2 - Theory

T 68

Master, hereby avoiding the use of hardware dependent interrupts. This means, ModelWorks
does not actually interrupt the experiment procedure, but allows it to reach its end as program-
med by the modeller. The latter should make sure that this procedure may terminate even if the
body of procedure SimRun does no longer execute any statements. For further de tails see
subchapter Programming Structured Simulations (Experiments).

5.1.3.c Integration respectively time step

The integration or time step resides at the lowest level of all simulation tasks. ModelWorks
supports this level by requiring the modeller to specify for each model an input, output, and dy-
namic client procedure. ModelWorks will execute for every model the output, input, and dyna-
mic procedures during every integration step at least once. Only dynamic may be called from
once up to times the order of the model's integration method during a single integration step.
Note also that in contrast to the procedures initialize and terminate (which are called only once
per simulation run), the procedures input, output, and dynamic are called many, i.e. i times
during an elementary simulation run (Fig. T19 and T20).

In the integration loop, user commands, such as pausing or stopping the simulation, are proces-
sed first. This enables an interactive control of the simulation. After that, the client procedures
of the models are called. Their calling sequence guarantees a correct coupling of more than one
model, independently of their installation order (see also chapter Model formalisms). The cal-
culation order which meets all these requirements is shown in Fig. T22:

First, the output procedures of all models, then all input procedures are called. Thereafter, the
numerical integration is performed. Depending on the integration algorithm, the procedure dy-
namic will be called once or several times for the evaluation of the derivatives or new states.
Note, it is completely left to the modeller's responsibility to compute the derivatives or new
states correctly. In particular ModelWorks offers no sorting of statements. This advantage of
this method is that ModelWorks allows to compute derivatives or new states in any conceivable
way. Every submodel is integrated as an independent unit. Therefore it is possible to integrate
different submodels with different integration algorithms. This can be of interest if some mo-
dels are numerically less stable than others or to solve stiff systems.

Once all dynamic client procedures, i.e. output, input, and dynamic, have at least been called
once, all model variables, i.e. input, output, state, plus auxiliary variables, are defined and have
a correct value valid at the point ti. This is the moment ModelWorks does the monitoring
(Fig. T22), i.e. the current value for any monitorable value is written onto the stash file, tabu-
lated in the table, or drawn into the graph if the corresponding kind of monitoring is activated
for the particular variable. The monitoring is followed by additional calls, now only of the
client procedure dynamic, in case of higher order integration methods used to solve continuous
time models. Discrete time or single step integration methods will skip this step.

Finally all state variables and the independent variable (time t) are updated to their new values at
time t := ti+1 = t+h. Afterwards the termination criteria is evaluated. The simulation will be
terminated if either the simulation run was stopped (killed) by the simulationist, if procedure
StopRun resp. StopExperiment from module SimMaster has been called, the termination condi-
tion from the model definition program has returned true, or the simulation stop time has been
reached. Depending on the result, the simulation continues or stops, which will result in a state
transition from the state Simulating into the state No model respectively No simulation or from
the substate Running into the substate No run resp. Stopped (s.a. Fig. T15, T16, and
T2New4).

Discrete time models are treated analogously to the continuous time models. For declaration,
display, and monitoring, ModelWorks treats basically both the same, except that the discrete
time submodels are «integrated» with a different integration method, i.e. discreteTime (see enu-
meration type IntegrationMethod from module SimBase): In the declaration of the state va-
riable, the new value of a discrete-time difference equation replaces its continuous-time counter-
part, i.e. the derivative (see procedure DeclSV from module SimBase). However, be aware,

ModelWorks 2.2 - Theory

T 69

that the body of the corresponding procedure dynamic needs also to be formulated accordingly,
since expressions defining a system of continuous-time differential equations are fundamentally
different from expressions defining a system of difference equations (s.a. chapter Model For-
malisms); yet it is fully left to the modeller's responsibility to program them properly.

Fig. T22: Calculation of time, input, output, state, and auxiliary variables during
an integration step. The calculation order guarantees that all calculations are based
on valid values which have been calculated in a previous step. The arrows indicate
which values have become valid. At the begin of the simulation run, only time and
the state variables are available for ti. These values are used to calculate the output
variables for ti. Next, the input variables can be calculated, since they depend on
the previously calculated outputs. Next the numerical integration respectively the
new state variables for time ti+1 are computed. Finally all state variables are as-
signed (updated) to the new values for ti (s.a. Fig. T12).

*) Not defined the first time the integration loop is entered
**) Value for ti+1 is calculated, but not yet assigned to state variable field
***) Only calculated if an integration method of higher order used (f∈(0,1), e.g. f=0.5 for Runge-

Kutta 4th order)

ModelWorks 2.2 - Theory

T 70

The situation is more complicated in case of continuous with discrete time mixed simulations;
since the discrete time step might be several times larger than the integration step needed for the
continuous time submodels, it is obvious that the two types of models must be treated separate-
ly. Typically the discrete time submodels will then not be called as often as the continuous time
ones and the output of the discrete time submodels will have to be computed at the begin, the
input plus dynamic only at the end of the coincidence interval.

Time steps usually vary, even if a fixed step integration method is used13. This is because the
time steps depend not only on the integration step, but also on the coincidence interval and/or
the monitoring interval. ModelWorks is computing values exactly at any of the time points
given by the current values of these global simulation parameters. E.g. a fixed integration step
of h = 0.75 and a monitoring interval hm = 1.0 will result in the following actual sequence of
integration step lengths: 0.75, 0.25, 0.5, 0.5, 0.25, 0.75 ...

Symbol Meaning of variable Action by ModelWorks

S t a t e v a r i a b l e s

x State variable

overwrite with initial value during declaration write

overwrite with initial value at begin of run write

integration (continuous time only) read and write

update with new value obtained via integration write

x⋅ /x(k+1) Derivative (continuous time)/ new value (discrete time)

integration read

xo Initial value14

overwrite with default during declaration write

overwrite with default while resetting initial values write

editing of value via IO-window read and write

M o d e l p a r a m e t e r s

p Model parameter

overwrite with default during declaration write

overwrite with default while resetting parameters write

editing of value via IO-window read and write

M o n i t o r a b l e v a r i a b l e s

o Monitorable variable

monitoring read

Stash filing, Tabulation, Graphing, or curve attributes15

overwrite with default during declaration write

overwrite with default while resetting parameters write

editing of value via IO-window read and write

Tab. T2: Actions of ModelWorks performed on model objects installed in the model base.

13However, in the current implementation of ModelWorks, at a particular time the same integration step length
is used for all models to guarantee a co-ordinated data transfer between submodels.

14variable belongs to ModelWorks not to the client's model definition program
15see previous footnote

ModelWorks 2.2 - Theory

T 71

5.1.3.d Model objects and the run-time system

Any model object is recognized by ModelWorks only if it has been declared, typically during
execution of the declaration declModelObjeccts procedure passed as actual argument to DeclM.

Otherwise the models and model objects belong fully to the model definition program. Thanks
to this method the modeller may define and access these variables in whichever way she likes,
e.g. by using state variables as part of an array or a record data structure. Note however, since
ModelWorks maintains the model objects also, e.g. during numerical integration (Tab. T2) it
uses the following access mechanism: While executing declarations such as DeclSV Model-
Works stores the addresses of the declared variables. Later during simulations, ModelWorks
will access the model objects and their associated variables (Tutorial Fig. T2) for reading or
writing (Tab. T2) by assuming that these objects still exist. Therefore the modeller must be
careful to ensure that any model object continues to exist within the model definition program as
long as it remains declared. A model object such as a state variable remains declared within the
simulation environment until it is removed, e.g. by a call to RemoveSV, or the program is ter-
minated16. Thus, any attempt to start a simulation will cause the simulation environment to try
to access all currently declared models and model objects. In case the model definition program
should have discarded only locally any model or model object, an attempt to run a simulation,
will produce unpredictable results or even crash the program. In particular does this imply that
models or model objects such as state variables must not be declared as variables local to a
Modula-2 procedure, unless the procedure calls at its end the corresponding remove procedure
for any locally declared model or model object . It is recommended to declare models and
model objects always globally (s.a. part I Tutorial, chapter Getting Started with Modelling).

Models are always calculated in parallel, regardless of the presence of any coupling among
them, i.e. the calculation order of the client procedures is: first all output of all submodels, sec-
ond all input of all submodels etc. (Fig. T22). The actual sequence of the computations of a
particular kind of client procedures, e.g. the sequence with which ModelWorks calls the
procedures dynamic, is given by the sequence of the declarations of their owning models.

In the current version of ModelWorks all types of auxiliary variables, i.e. input, output, and
internal auxiliary variables, do not appear explicitly in the ModelWorks concept. Inputs and
outputs were formally defined in chapter Theory, and the model definition program is
responsible for a correct handling of them by the client procedures input respectively output.
The remaining internal auxiliary variables may be used freely within the scope of the owning
model definition program. Note, in contrast to state variables ModelWorks does neither
initialize nor otherwise maintain auxiliary variables. Often auxiliary variables are computed in
the procedure dynamic; hence, they will only hold a correct value if the procedure dynamic has
at least been called once, i.e. only after a simulation run has already begun (s.a. Fig. T18,
T20, and T22); in particular note, attempts to use them in the procedure initialize may lead to
wrong results, if their values are only defined in the procedure dynamic.

5.1.3.e Client procedures and the simulation environment

The modeller or client normally installs so-called client procedures into the simulation envi ron-
ment, which will then be called by ModelWorks at various occasions (Tab. T3). E.g. the run-
time system calls repeatedly such client procedures, e.g. the procedure initialize to initialize a
run or procedure dynamic, which contains the differential equations. Client procedures are in-
stalled into ModelWorks via installing procedures such as DeclM or SetDefltM.

Most of the client procedures are either called directly or indirectly from within the standard
user interface or by the client interface while executing particular procedures, called callee
(Tab. T3). Note first that some of the installing procedures may even function as callee and se-
condly that several menu commands of the standard user interface call often just a callee; e.g.

16Program termination will cause an implicit removal of all models and model objects owned by the program.

ModelWorks 2.2 - Theory

T 72

the menu command Solve/Start run calls procedure SimRun. It is then SimRun which will call
client procedures such as initialize or dynamic (Tab. T3).

Callee

Called client proc.

Standard
user in-
terface

RunSim
Environ

ment

SimRun SimExp
eriment

DeclM Re-
moveM

Tile- or
Stack-

Windows

Client procedure
installed by

initSimEnv x RunSimEnvironment

declModelObjeccts x DeclM

defineSimEnv x - D x InstallDefSimEnv

startAllowed i - RE i - SUI x InstallStart-
Consistency

initialize i - RE i - SUI x x17 DeclM, SetDefltM

output, input,
dynamic

i - RE i - SUI x DeclM, SetDefltM

terminate i - RE i - SUI x x18 DeclM, SetDefltM

about x19 i - SUI DeclM, SetDefltM

initClientMon,
doClientMon,
termClientMon

i - RE i - SUI x InstallClient-
Monitoring

isAtEnd i - RE i - SUI x InstallTerminate-
Condition

doExperiment i - E i - SUI x InstallExperiment

doAtStateChange i - S i - SUI x x x20 x21 InstallStateChange-
Signaling

doAtTile or
doAtStack

x - W i - SUI x InstallTile- or
InstallStackWin-
dowsHandler

DialogMachine-
Task22

i - RE i -
RunDM

x 23 "Dialog Machine"

Tab. T3: Relationships between calling callee and called client procedures: Each row lists a
type of client procedure which can be installed into ModelWorks by the procedures listed in
the rightmost column and their callees listed in the topmost row. Legend: x - client procedure
directly called by callee; i - client procedure only indirectly called by callee, e.g. by choosing
a menu command such as Solve/Start run; RunDM - RunDialogMachine from DMMaster. SUI
- Standard User Interface. Menu commands: D - Settings/Define simulation environment; RE
- Solve/Start run or experiment; RER - Solve/Start run or experiment and Solve/Resume run
or experiment; E - Solve/Start experiment; S - all commands of menu Solve; W - Windows/
Stack windows or Tile windows. For exact timing of calls see Tab. T4, Figs. T18 till T22.

17DeclM causes for the newly declared model also a call to its procedure initialize in case of state Simulating and
substate noSubState resp. Running, or state Pause (Tab. 4).

18RemoveM causes for the model to be removed also a call to its procedure terminate in case of state Simulating
and substate noSubState resp. Running, or state Pause (Tab. 4).

19Only callable via palette button in the IO-window Models. Note, the use of this window does not require the
standard user interface.

20In case the simulation environment has been in state No model before calling DeclM.
21If RemoveM removes the last model such that the simulation environment enters state No model.
22DialogMachineTask from module DMMaster is not really a client procedure, however since it dispatches

control to all procedures which have been installed via the "Dialog Machine", it is also a mean to call
indirectly client procedures.

ModelWorks 2.2 - Theory

T 73

Normally it is ModelWorks which keeps the program control, but each time it calls a client pro-
cedure it relinquishes the control. Thus the program control is passed back and forth between
the modeller and ModelWorks. If the modeller calls a non-callee procedure she will not gain
control back until that procedure has been fully completed. However, if she calls a callee, she
will regain control once or even several times. It is then important that she relinquishes control
from a client procedure as soon as possible, so that the callee can actually continue and finish.

5.1.3.f Manipulating the model base at run-time

All functions offered by the client interface may also be used while a simulation is running.
This is particularly important when programming structured simulation runs or experiments
(s.a. subchapter Programming Structured Simulations (Experiments)). However, since some
procedures affect values currently in use or already used, such as the simulation start time to, a
few additional rules are needed to handle firstly the changes of the structure of the model base,
i.e. the declaration or removal of models and model objects, and secondly the changes of
current values and defaults.
The following rules apply only while procedure SimRun is executing, i.e. in the states Simula-
ting or Pause (Fig. T15), whereby the main state Simulating may or may not be subdivided
into substates (elementary vs. structured simulation run). In case of structured simulation runs
or experiments the restrictions apply only to the substate Running (Fig. T16):

If models or model objects are declared or removed in a client procedure such as procedure
input, the overall system structure changes while procedure SimRun is still executing (s.a.
section Client procedures and the simulation environment). In this case the basic principle is
not to disturb the on-going integration for the current time step and to allow for its completion
as if the system would not have been modified (Tab. T4). Thus any integration result available
at the end of a single integration step is that which would have been produced by the system
which has been present at the begin of the step. Only in the next integration step will the sys-
tem modifications become effective (Tab. T4).

More precisely, if a model is declared during an elementary simulation run, e.g. in the proce-
dure input of an already existing model, the new model and all its objects which are declared in
its procedure declModelObjects, are instantiated immediately (Tab. T4). Hence, the modeller
may subsequently operate freely on them upon returning from procedure DeclM. However
note, according to above mentioned principle, neither the model's state variables nor its proce-
dures input, output, or dynamic will be involved in the integration of the current time step.
Moreover note also, that the procedure initialize, which has been passed as actual argument to
DeclM, will be executed as a direct consequence of the call to DeclM while executing SimRun.
Procedure initialize will be called individually for any newly declared model, despite the fact
that the run has already been started. Similarly, during a simulation, the terminate procedure
terminate of a model to be removed is called immediately before the model is actually removed,
again as a direct consequence of the call to procedure RemoveM (Tab. T4). Since the procedu-
res initialize or terminate may contain additional calls to the procedures DeclM or RemoveM,
this will lead to further calls of the procedures initialize or terminate from the involved new or
obsolete models. ModelWorks repeats this process until there remain no more procedures ini-
tialize or terminate to be executed. It is left fully to the modeller's responsibility to ensure that
this condition is always met.

23Can not be installed by the client, but only imported from DMMaster, and is always in use by any "Dialog
Machine" program, i.e. any Modula-2 program like ModelWorks which imports from the "Dialog Machine".

ModelWorks 2.2 - Theory

T 74

Moment of
execution of

the callee

(Callee)

Called procedure

During
initialization

and
In-between

integration steps

(initialize, DMTask,
initialize, or
terminate)

During integration
step

(output, input,
dynamic,

initClientMon, or
doClientMon)

During
termination

(terminate or
termClientMon)

Otherwise

(initSimEnv,
defineSimEnv,

declModelObjects,
doExperiment, do-
AtStateChange,

DMTask)

DeclM immediate immediate immediate immediate

declModelObjects immediate immediate immediate immediate

initialize after initialize of all
not yet initialized

models

after completion of
current integration step

deferred to initialization
of next run

deferred to initialization
of next run

output, input,
dynamic

deferred to subsequent
integration steps

deferred to subsequent

integration steps24
deferred to integration of

next run
deferred to integration

of next run

terminate deferred to termination of
run

deferred to termination of run deferred to termination of
next run

deferred to termination
of next run

RemoveM 25 after terminate of all
models to be

removed

after completion of
current integration step

after terminate of
all models

immediate

initialize – – – –

output, input,
dynamic

– (if involved in ongoing
integration step)26

– –

terminate after initialize of all
models

after completion of
current integration step

– –

Tab. T4: Effects of calls to DeclM or RemoveM during a simulation run: The table lists the
indirect calls of the client procedures initialize, input, output, dynamic, terminate, and decl-
ModelObjeccts by ModelWorks plus some effects such as model instantiations or some pro-
cedure calls. Such calls partly take place while DeclM resp. RemoveM are still executing (im-
mediate), partly they happen at a later moment (after), partly their execution is even deferred
more to take place at the ordinary time of execution (deferred), e.g. the initialization of the next
run. The tabulated sequences warrant that structured model systems can be solved consis-
tently at all times, even if the modeller changes the system structure in the middle of a
simulation.

Via the client interface or a non-standard user interface current values can be manipulated freely,
however note the following particularities:

• The current substate of the simulation environment determines the exact effect of the
called Setxyz procedures27. The following rules hold while SimRun is executing:

- Depending on the current simulation time t resp. k an attempt to change the si-
mulation start time to resp. κo or stop time tend resp. κf may result in a different

24The current integration step is completed without considering the newly declared model; hence these procedures
will only be called during the next integration step.

25Removal of a model implies the removing (including memory release) of all declared objects belonging to the
model.

26In case of a mixed continuous and discrete time structured model the discrete time model's procedures output,
input, dynamic are not necessarily called during every integration step.

27Since a reset is defined as GetDefltxyz(v) followed by a Setxyz(v), i.e. the default value v is made the current
value, the mentioned particularities apply also to the corresponding Resetxyz procedures.

ModelWorks 2.2 - Theory

T 75

setting of the time domain than this would be the case in another state. The call
SetGlobSimPars(to,t end,...) is handled as if the following call SetGlobSim-
Pars(MIN(to,t), MAX(tend,t)...)would have been made (where MIN and MAX are
function procedures, which return the minimum respective maximum of their
actual parameters). This allows either to prolong, shorten or even to end the si-
mulation if tend ≤ t, but not to jump to a new time domain when to > t (proce-
dures SetGlobSimPars, SetSimTime, ResetGlobSimPars, ResetAll).

- Changes to the current values will never affect the on-going integration step but
will only have an effect in the subsequent integration step. In particular this
means that the effect of the procedures SetM, SetDefltM, SetSV, SetP, and
SetMV plus all corresponding reset procedures such as ResetAll Integration-
Methods will be delayed until the current integration step has been fully comple-
ted. This behaviour matches the rules which apply to changes in the structure
of the system, i.e. declaration of removal of models or model objects (Tab. 4).

- Changing current values of monitorable variables, i.e. their minimum and maxi-
mum for the scaling and their settings (stash filing, tabulation, and graphing)
(procedures SetMV, ResetAllStashFiling, ResetAllTabulation, ResetAll -
Graphing, ResetAllScaling) may have particular effects:
a) Changes to the attribute filing, i.e. adding or removing a monitorable variable
from resp. to the current set of monitorable variables to be written onto the
stash file (SetMV, ResetAllStashFiling), leads to a so-called subrun break, i.e.
the begin of a new subrun. Since the stash file is written according to a
formally defined syntax, which requires to write the simulation results always
in form of a matrix (i.e. each row must contain the same number of values, s.a.
section Monitoring), altering the number of columns in the middle of a run is
disallowed. However, if a run is subdivided into subruns, where each adopts
the syntax of a full run and contains the results only in form of a matrix with a
fixed number of columns, ModelWorks can again support changes to the
attribute filing.
b) Changes to the attributes tabulation or graphing (SetMV,
ResetAllTabulation, ResetAllGraphing) may lead to a full redrawing of the table
or the graph, hereby loosing all previously monitored results. Note however,
curve attributes can be changed without disturbing already existing monitoring
results and it can be useful for the marking of different types of measurements
in the middle of a simulation run by changing the colour of a curve on the fly
(procedures SetCurveAttrForMV, ResetAllCurveAttributes).

• The following rule holds while SimRun or SimExperiment is executing:

- Changes to the stash file affect the currently opened stash file, e.g. by renaming
it. Note that this results in a slightly different behaviour opposed to calls in the
states No model or No simulation. In the latter case SetStashFileName would
produce a stash file with a different name and leave an eventually already exis-
ting stash file with the old name untouched. Use SwitchStashFile to force the
closing of an already opened stash file and the opening of a new one. How-
ever, if there is currently no stash file open, SwitchStashFile will have the same
effect as a call to SetStashFileName (procedures SetStashFileName, SetStash-
FileType, ResetStashFile, SwitchStashFile).

• The following hints or recommendations are valid in general:

- Current values should not be changed directly, e.g. the modeller must not
assign a new value to a state variable in the middle of an integration step,
despite the fact that the state variable belongs fully to her model definition
program. Instead the modeller is urged to call always the safe procedures
SetSV or SetP. This is because only ModelWorks run-time system can assign

ModelWorks 2.2 - Theory

T 76

a new value to a state variable at the right moment, i.e. when the assignment
won't disturb any other calculations, e.g. the integration of another model
which uses an output depending on the state variable to be changed (s.a. section
Integration respectively time step).

- Some procedures have actually the desired effect, i.e. changing the current va-
lues, yet this will have no immediate effect, but only a delayed one. For instan-
ce the procedures SetProjDescrs, SetTabFuncRecording, or SetIndepVarIdent
and the corresponding reset procedures all cause changes to some current va-
lues, but this has no visible effect until the next time these new values are ac-
tually used, often only in the next simulation run. For instance the project des-
cription is written to the stash file merely once at its begin, and it can't be cor-
rected once written. Or if the simulation has already started, the start time to can
not be altered anymore and the change of to does not become effective until the
next simulation run is actually started.

All changes affecting default values (procedures SetDefltxyz) will not become effective until a
corresponding reset is actually executed.

5.1.3.g Monitoring

ModelWorks displays simulation results only via a monitoring concept. It is based on the so-
called monitorable variables, which are declared in the model definition program. Once a vari-
able has been declared as monitorable variable via the client interface, it can be selected interacti-
vely in the corresponding IO-window in order to activate a certain kind of monitoring. Any va-
riable can be monitored as long as it is a real number. In this way the simulationist may obser-
ve the values of any variable, might it be an input, state, auxiliary or output variable. Monito-
rable variables might be understood as nothing else than probes attached to any information
flow circulating within the model system. They measure anytime anywhere any quantity with-
out disturbing the dynamics of the system, regardless whether this variable is an internal state,
auxiliary, input or output variable. This is different from conventions in systems theory, where
often additional outputs must be first introduced to monitor internal variables.

Since continuous time measurement would result in an exorbitant amount of data, monitoring is
possible only at discrete points in time, the monitoring times. The time interval between moni-
toring times is global, i.e. the same for all models and all kinds of monitoring, the so-called
monitoring interval hm. Although hm is normally kept constant, via the client interface the
modeller may change this global simulation parameter freely. ModelWorks computes values
exactly at the time points tm for which monitoring is requested. In case of a constant hm the
monitoring occurs at tm = to + i⋅ hm where (to - simulation start time; i = 0, 1, 2, ... i max) plus
an additional time for tend in case that imax⋅ hm ≠ tend. The monitoring takes place during an
integration step only (Fig. T22). For instance if tm = tend even the very last monitoring occurs
during the calculation of an additional last integration step, which is not fully completed, i.e.
not updated, in order to retain the state of the system at tend.

Standard monitoring of ModelWorks is available in one or any combination of the following
three kinds: The simulation results, may be written and stored on a so-called stash file for later
usage, tabulated as numbers in a table, or shown as curves in a graph.

During simulations, i.e. in state Simulating, unless disabled three windows, the graph, the table
window, and the time window, are automatically opened and brought to the front to display the
simulation results and the current simulation time.

At the begin respectively end of each elementary simulation run, the time window will always
appear respectively disappear automatically in the upper right corner of the main screen. This is
also the case in structured simulations or experiments. To facilitate the orientation of the simu-
lationist during experiments, ModelWorks displays in the time window not only the current si-

ModelWorks 2.2 - Theory

T 77

mulation time t, but also the number k (Fig. T21) of the current simulation run (format: k: t).
k can also be obtained by calling function procedure CurrentSimNr from SimMaster.

The stash file can store an arbitrary amount of information about the current status of the model
base, i.e. on models, model objects, and their associated current values and it is usually
produced for further numerical, e.g. statistical analysis, of the simulation results or for future
report generation to document simulation runs in any detail. The size to which the stash file
may grow is limited only by the available disk space. The file is written in a formally defined
syntax and contains several types of information, partly always included and partly included
only selectively by means of the so-called recording flags. The content consists of:

- General information on the simulation session consisting of a) the ModelWorks
version, type of computer, and the date and time of the session's begin, b) date and
time of begin and end of simulation runs, c) project title, remarks and footer, d) date
and time when the file was closed. This information is always written.

- Values of all global simulation parameters (Start and stop time of simulation (to/κo,
tend/κf), integration step (h) respectively maximum integration step (hmax) plus maxi-
mum local relative error (er), discrete time step respectively coincidence interval (c),
and monitoring interval (hm)). The parameters actually written on the stash file de-
pend on the type of models currently present: continuous time only, discrete time only
or both types mixed as well as the used integration methods (with or without variable
step length methods). This type of information is written always and in particular also
repeatedly for every simulation run.

- Lists of all models and their integration methods, of all state variables and their current
values, of all model parameters and their current values, of monitorable variables and
their settings, curve attributes and scaling are written selectively under control of the
recording flags. Note that not all monitorable variables are recorded but only those for
which either the stash filing is currently set (/writeOnFile) or those which are present
in the graph, given that the recording flag for graph dumping is currently set.

- Lists of the parameters of all table functions declared by means of module TabFunc
under control of the recording flag Table functions.

- Numerical simulation results tabulated for those monitorable variables for which the
stash filing is currently set (/writeOnFile).

- Messages (procedure Message) or changes of the current vales of models or model
objects (procedures with identifiers commencing with Setxyz, e.g. SetP).

- Graphical simulation results (encoded, only machine readable), dumped under control
of the recording flag Graph.

- A table of byte and line numbers at which an individual run starts and ends for speed-
ing-up the reading from the stash file during a post-simulation analysis.

ModelWorks can handle only one stash file at a time. In the states No model and No simula-
tion it is always closed to allow for the inspection of its content by the simulationist. Model-
Works automatically opens respectively closes the stash file at the begin respectively at the end
of an elementary simulation run. However, this is not the case in a structured simulation expe-
riment, where the stash file is only closed at the very end of the experiment. This allows to re-
cord the results of all elementary simulation runs involved in the experiment as a single se-
quence. Unless the stash file name is changed (its default name is ModelWorks.DAT), Model-
Works will use always the same file, i.e. if a file with the same name already exists, that file's
old content will be lost and completely rewritten!

The stash file is written in a format which can be read by the user as well as scanned by a com-
puter program (post-simulation analysis). Furthermore it is also possible to transfer the results
into another program, e.g. a spreadsheet program, or into a document processing program

ModelWorks 2.2 - Theory

T 78

which understands the RTF28 format. These formats are fully controlled by ModelWorks and
can not be changed by the user.

At the heart of the information written to the stash file is the writing of the values of the monito-
rable variables for which the stash file monitoring has been set at every monitoring time tm.
The format is such that these results can be transferred directly, for instance via the clipboard,
into another application: Only horizontal tab characters τ (ASCII ht = octal 11C) separate the
values and all values at a particular monitoring time are written on the same line terminated with
an end of line symbol ρ (ρ = string \par followed by ASCII cr = octal 15C). E.g.:

(*"t " τ "Ident var 1" τ "Ident var 2" τ *) τ ρ
0.000000 τ 1.0000000 τ 0.9025031 τ τ ρ
0.200000 τ 1.1764115 τ 0.6883310 τ τ ρ
0.400000 τ 1.2954322 τ 0.4211738 τ τ ρ
0.600000 τ 1.3516583 τ 0.0882961 τ τ ρ
0.800000 τ 1.3498297 τ -0.3198467 τ τ ρ
…

Normally the stash file is only opened and written if at least one monitorable variable has been
requested for the recording. However, if the particular simulation environment mode (see pref-
erences) is set appropriately, the stash file is opened during every simulation run and data are
recorded according to the current settings of the recording flags.

Unless disabled the table window is used to tabulate the values of monitorable variables during
a simulation. Values are written in a similar way as shown above under the stash file monito-
ring. Currently, only the values which fit into the window are displayed. Once the window is
full, ModelWorks erases most of its content29 and restarts tabulating from the top again (called
a «page up»). In the current version of ModelWorks any erased values are lost and the simula-
tion has to be repeated to display them again.

ModelWorks can display in the graph window one graph only. The graph has a linear abscissa
(x-axis) with time or any monitorable variable as independent variable (allowing for state space
curves), and a linear ordinate (y-axis) with a fixed scaling from [0,1]. According to the cur-
rently set minimum and maximum values for the range of interest, an arbitrary number of de-
pendent variables (range shown in the legend), can be plotted simultaneously in the graph. An
unlimited number of simulation runs can be recorded in one graph. The graph will be automati-
cally cleared after changes of the graph definition, the global simulation parameters (e.g. if the
start or stop time has been changed and time is the abscissa), or if the window is resized after a
simulation. However, this behaviour may differ depending on the currently set mode of the si-
mulation environment (preferences). An example graph is shown in Fig. T23.

The graph's size is automatically fit to the window's size. The actual graph is drawn as large as
possible, which depends on the number of curves to be listed in the legend at the bottom of the
window. However, if there are too many curves requested so that the legend would become
too big and there would not be left a minimal space for the panel of the graph, ModelWorks will
not be able to list all curves in the legend. Only the first ones will be visible, the remaining
ones at the bottom of the list will be missing.

If another than the standard monitoring of ModelWorks is required, the modeller can program
and install such a client monitoring by calling the procedure InstallClientMonitoring. Any type
of monitoring will then be possible, e.g. the writing of simulation results onto a file or the

28RTF stands for Rich Text Format. It is based on ASCII characters only but contains coded formatting infor-
mation and can be interpreted by many commercially marketed text processing applications.

29 Actual number of rows erased depends on the currently set preferences or simulation environment modes: The
number specified as Common rows between page ups in table defines what happens during a page up: First it
specifies how many rows at the bottom are not erased but copied to the top of the next page. Second only the
space below these now top rows will be used to add new rows. Hence this number specifies how many rows
are common to two consecutive pages.

ModelWorks 2.2 - Theory

T 79

Fig. T23: The graph window of ModelWorks (produced by the research sample
model LBM from the Appendix).

drawing of animated graphical objects which move within a window according to computed po-
sitions etc. In order to accomplish such tasks, the modeller uses the "Dialog Machine", to
which she has full access. Concerning values of state and other variables, the client monitoring
will be done as often and at the same time as the standard monitoring. The exact sequence ob-
served is that the client monitoring comes last, i.e. after ModelWorks has done its monitoring,
so that it can also be used to customize or extend the standard monitoring by ModelWorks, e.g.
by drawing tangents along a solution of a differential equation. Note however, at the end of a
simulation run this sequence is reversed, i.e. the termination of the client monitoring occurs be-
fore ModelWorks terminates its monitoring; this offers the advantage that all objects such as
the graph or table window, or the stash file can still be used for the client monitoring. Besides,
the client monitoring is terminated only after all terminate procedures have been executed.

5.1.4 STANDARD USER I NTERFACE

The ModelWorks' standard user interface provides menus, menu commands, input-output-win-
dows (IO-windows) and a series of entry forms which allow to edit various data.

The main purpose of the standard user interface is to allow the simulationist to issue a command
to ModelWorks and to observe simulation results. She has the following options to enter com-
mands: First an omnipresent menu bar offers a set of pull-down, pop-up, or tear-off menu
commands; second some menu commands (their text is followed by "…") will open so-called
entry forms offering from one to several editable fields to enter numbers or change settings via
check boxes etc. Thirdly the so-called IO-windows allow to select particular models or model
objects for modifications or to issue further commands. Efforts have been put into the design
of menus, menu commands, button palettes, and entry forms to support the convenient use by
researchers and to make the use as simple and as intuitively appealing as possible. The design
follows the general purpose user interface of the "Dialog Machine", which is hardware and sys-
tem software independent (FISCHLIN, 1986a,b; FISCHLIN et al., 1987; FISCHLIN & SCHAU-
FELBERGER, 1987; MANSOUR & SCHAUFELBERGER, 1989).

The standard user interface is invoked by a call to procedure RunSimEnvironment from module
SimMaster. ModelWorks installs then its menus and opens the IO-windows according to the
modeller’s specifications or internal predefinitions (s.a. Fig. T18). From now on and until the
interactive environment is quit, all operations on the client interface will normally become visib-
le on the user interface, e.g. as changes in the status of menu commands, updates in the I/O

ModelWorks 2.2 - Theory

T 80

windows and by display of simulation results into the table and graph windows. Once the in-
teractive environment is quit, the client program may proceed with calls to any ModelWorks
functions, the previously defined model base and the simulation environment's global settings
remain unchanged and are still available until the calling program is actually terminated.

5.1.4.a Multiple activations of the standard user interface

The interactive environment may be started (again) at any time from a client program, given that
it is not already running on the subprogram level in which the client program resides30. This
mechanism allows to stack model definition programs on top of each other, a behaviour which
may be useful for research purposes. For instance it is possible to replace submodels at run
time, while retaining its super model loaded; or it is possible to solve several models, which
were developed independently from each other, simultaneously in order to compare their
behaviour. The following program illustrates such a use of the simulation environment:

MODULE SimShell;

 FROM DMOpSys IMPORT GetFileDialog, CallM2SubProg, ProgStatus; FROM DMStrings IMPORT Concatenate;
 FROM DMMenus IMPORT Menu, Command, AccessStatus, Marking, InstallMenu, InstallCommand,
 InstallAliasChar, InstallQuitCommand;
 FROM DMMaster IMPORT RunDialogMachine, CallSubProg, SubProgStatus; IMPORT SimMaster; (*for preloading*)

 VAR theMenu: Menu; compCmd,editCmd,loadCmd: Command; pst: ProgStatus;

 PROCEDURE CompMDP; BEGIN CallM2SubProg('Compile',TRUE,pst) END CompMDP;
 PROCEDURE EditMDP; BEGIN CallM2SubProg('Edit2',TRUE,pst) END EditMDP;

 PROCEDURE LoadMDP;
 VAR path,mdp: ARRAY [0..127] OF CHAR; spst: SubProgStatus;
 BEGIN
 IF GetFileDialog('Select a model definition program','MOBJ|Mobj',path,mdp) THEN
 Concatenate(path,mdp,mdp); CallSubProg(mdp,spst)
 END;
 END LoadMDP;

 PROCEDURE Quitting(VAR rq: BOOLEAN); BEGIN rq:=TRUE END Quitting;

BEGIN
 InstallMenu(theMenu,'Shell',enabled);
 InstallCommand(theMenu,compCmd,'Compile',CompMDP,enabled,unchecked); InstallAliasChar(theMenu,compCmd,'C');
 InstallCommand(theMenu,editCmd,'Edit',EditMDP,enabled,unchecked); InstallAliasChar(theMenu,editCmd,'E');
 InstallCommand(theMenu,loadCmd,'Load…',LoadMDP,enabled,unchecked); InstallAliasChar(theMenu,loadCmd,'L');
 InstallQuitCommand('Quit shell',Quitting,0C); RunDialogMachine;
END SimShell.

Program SimShell allows to load any number of model definition programs on top of each
other, each on a different subprogram level. Once loaded, they can all be solved simultaneous-
ly, despite the fact that they belong to different subprogram levels. For example this technique
allows to compare directly the trajectories of the same model equations, but produced with two
different integration methods. A possible way to accomplish such a task is to follow these
steps: First, prepare and compile two separate instantiations of the same model, where the
second is just a copy except for the differently named program module. Then, load both
modules by means of SimShell into the same simulation environment. Both models can now
be solved simultaneously by choosing menu command Solve/Start run. Solving one with
integration method Euler, the other with method Runge-Kutta 4th order allows to compare
directly the performance of the two integration methods.

Note that the subprogram levels form a sort of program stack, where each level receives its own
about entry in the Apple menu, its own menu commands for Quit, Settings/Define simulation
environment, and Solve/Start experiment; all other standard menu commands are shared by all
levels. As a consequence it is possible to unload individually the top-most subprogram level by
choosing its specific menu command Quit. The quitting of a program level will result in a se-
lective removal of all models, model objects, and equations belonging to this level without af-

30Separate (sub)program levels are only available if the ModelWorks version is based on a Dialog Machine
which is implemented by means of a dynamic linking-loading Modula-2 language system. The MacMETH
Modula-2 Language System for the Macintosh (WIRTH et al., 1992) is such a Modula-2 system and fully sup-
ports the here described behaviour. Ignore any reference to subprogram levels if you are using an IBM PC ver-
sion, which supports static linking only.

ModelWorks 2.2 - Theory

T 81

fecting any other parts of the simulation environment's model base. It is even possible to quit a
subprogram level which is currently not on the top of the program stack; however this case ac-
tually results first in the quitting of all levels above, i.e. top-most levels are removed repeatedly
till the chosen one becomes the top-most one and can now finally be removed also.

(b) Menubar and menu commands

Set:
 Global simulation parameters...
 Project description...
Select stash file...
Reset:
 Global simulation parameters
 Project description
 Stash file

 Windows
 All model's integration methods
 All model's initial values
 All model's parameters
 All model's tabulation
 All model's graphing
 All model's scaling
 All model's curve attributes
 All above
Define simulation environment

Start run
Halt run (Pause) or
 Resume run
Stop (Kill) run or
 Stop (Kill) experiment

Start Experiment

Page setup...
Print graph...
Preferences...
Customize...
Quit

File

Undo
Cut
Copy
Paste
Clear

Edit Settings

Tile windows
Stack windows
Models
State variables
Model parameters
Monitorable variables
Table
Clear table

Graph
Clear graph

Windows Solve

(a) Program states and transition commands of menu Solve

Halt run (Pause)

Resume run

No model
I/O-window status:Menu status:

(all windows
 closed)

Menu status: I/O-window status:

Simulating
Menu status: I/O-window status:

Pause

No simulation
Menu status: I/O-window status:

Stop (kill) run
orStop (Kill) experiment

(≥1 model)

Stop (kill) run
or Stop (Kill) experiment

(≥1 model) (0 model)

Start run
or

Start experiment

Stop (kill) run
or Stop (Kill) experiment

(0 model)

Fig. T24: (a) State transition diagram of the simulation environment of Model-
Works and its effect on the standard user interface. The simulation envi ronment is
always in one of the following four states: No model the state when no model is
installed; No simulation, the state in which at least one model is present and no si-
mulation is running. In this state the simulationist may change values or settings,
e.g. simulation time, initial values of state variables, or values of model parame-
ters. During a simulation run or a structured simulation experiment ModelWorks is
in the state Simulating. In this state the simulationist may only temporarily pause
or stop (kill) the running simulation. The state Pause allows to change model para-
meters with the attribute RTC (Run Time Change) set, or to resume respectively
abort the simulation. For every state the status of the menu commands is symboli-
zed as follows: A black line signifies an active, a grey an inactive or unavailable
menu command (for the actual menu commands see (b)). The availability of the
button commands of a particular IO-window is indicated by a black (object selec-
tion with mouse clicks possible, palette buttons can be pushed) or grey (disabled
selection, inactive palette buttons) window title bar (s.a. Fig. T15, T16). (b) All
menus and menu commands (separators omitted) of the standard user interface
(except for the enlargement the same as in (a)).

ModelWorks 2.2 - Theory

T 82

Experiments can also be executed individually, yet note, that all involved simulation runs will
be executed in the same simulation environment. In particular this implies that the ModelWorks
run-time system will solve all currently declared models for a common domain of the inde-
pendent variable, i.e. the currently set global simulation parameters (to,t end,hm etc.), regardless
of their subprogram level. Any program level modifying the global simulation parameters or
other global settings, such as a window position, will affect the simulation environment and im-
mediately override any values, which might have been set by another program level, e.g. dur-
ing earlier loading. However, to preserve current values already present in the simulation envi -
ronment, every additional call to RunSimEnvironment on a new program level will only result
in a conditional reset, i.e. in contrast to the very first initialization (Fig. T18) RunSimEnviron-
ment calls ResetAll only if the simulation environment is in state No model. Whenever full co-
operation among mathematically well co-ordinated submodels is to be implemented, proper
measures can usually be programmed to overcome conflicts between multiple accesses to
shared items of the simulation environment (s.a. Appendix, chapter Sample Models).

5.1.4.b States of the standard user interface

In the standard user interface the states of the simulation environment (Fig. T15 and T16) are
characterized by the availability of certain commands (Fig. T24).

In the state No model it is not possible to choose any menu command, which requires at least
one model to operate on (e.g. Settings/Reset all model's parameters). In the state No simula-
tion model and model object attributes can be interactively changed. In the state Simulating
user interactions are limited, e.g. IO-windows are inactivated and will not respond to mouse
clicks. In the state Pause the simulation is temporarily brought to a halt to allow for interactive
changes of parameters only (s.a. Fig. T15, T16). Note that every state transition, regardless
whether it is caused via the user or the client interface, will cause the simulation envi ronment to
reflect this fact properly in all its parts, in particular also in the standard menus.

5.1.4.c IO-windows (Input-Output-windows)

Unless customized the standard user interface provides IO-windows (Fig. T25). They serve
two purposes:

Fig. T25: Basic structure of IO-windows subdivided into three fields: In the
middle the list of model objects (1), on the upper left corner the palette of button
commands (2), and on the upper right corner the scrollers to scroll the items in lists
too large to show all items at once (3) (s.a. text).

First they display all models and all model objects plus their current values and settings (Out-
put). Second they allow to modify interactively the current values and settings of these objects
(Input). For instance, the value of an individual model parameter can be changed or reset, or

ModelWorks 2.2 - Theory

T 83

the kind of monitoring for a particular variable during simulations can be specified. There are
four IO-windows: The first IO-window with the title Models lists all models ModelWorks
currently holds in its model base, i.e. which have been declared by the modeller via the client
interface. The second IO-window State variables lists all declared state variables, the third
Parameters all parameters, and the fourth Monitorable variables all monitorable variables.

All IO-windows have a common structure: The content area of any IO-window is subdivided
into three fields (Fig. T25). First the field in the middle of the window contains a list of Mo-
delWorks objects (1). Its title line (1a) displays the headers of the columns currently in use,
which describe, display, and designate ModelWorks objects and their values. Below, there is
the actual list of the objects, e. g. the parameters, which have been installed in ModelWorks by
the model definition program. The order follows the declaration order in the model definition
program, and objects belonging to the same model appear together under the bold title of the
corresponding model (1b). An object in the list can be selected as an operand by a mouse click
on the corresponding line, which is confirmed by inverting the line (1c).

From the described behaviour follow scope rules for the selection of operands (Fig. T26).

model object

model object

model object

model

model object

model object

model object

model

model object

model object

model object

model

ALL

Fig. T26: Scopes used for the selection of operands in the IO-windows. Selecting
a model implies the selection of all model's objects.

Since model objects belong to models, the selection of a model in the models IO-window can
be interpreted as the selection of all its objects. Hence the selection scopes in the models IO-
window are:

- individual model respectively all objects of a model
- all models respectively all objects of all models

For the IO-windows of the state variables, model parameters, and monitorable variables exist
the following selection scopes:

ModelWorks 2.2 - Theory

T 84

- all objects of a particular kind of all models
- all objects of a particular kind of a model
- individual object of a particular kind

Note that the operands actually affected by an operator are determined also by the operator it-
self. For instance: The selection of an individual model does not only allow to change an attri-
bute such as the integration method of this model, but also to reset the values of all its objects,
such as the resetting of all initial values of the model's state variables to their defaults.

Second the button palette (2) on the left side contains a palette of adjacent, square buttons.
Each button has a separate function (operator), which can be activated by clicking on the little
button picture with the mouse. There are two kinds of functions: basic window functions not
requiring an operand, e.g. a window set up, and functions (operators) operating on the selected
elements (operands). Two buttons are common to all windows: The button activates an
entry form where the columns to be displayed in the object field can be selected. The button
serves to select all objects of the particular kind listed in the IO-window, e.g. all parameters of
all models (Scope All in Fig. T26). The simulationist will be informed while ModelWorks is
executing a button function, e.g. by inverting the button picture or by any other appropriate
mean.

Third on the right side, there are the scrollers to scroll lines individually (,) or whole pages
(,) of the object list field up and down in case, that the window is too small to show all
objects at once (3). During the actual scrolling the button picture will be shown inverted.

In an inactive IO-window no selection of operands is possible, nor can a button function be ac-
tivated, nor is any scrolling possible. The simulationist can recognize this status if neither clic-
king within the list field nor on buttons or scrollers does invert the clicked object (Fig. T24).

The last group of elements are not specific to ModelWorks but are general and may be present
in any window (Fig. T25)31: the title bar to move the window (4), the close box to close it
(5), the zoom box to enlarge it to the size of the screen or back (6), and the grow box to change
the size of the window to any shape (7).

5. 1. 5 USER I NTERFACE CUSTOM IZATION

The standard user interface of ModelWorks can be customized, i.e. adapted to the users needs,
in various ways:

First, it is possible to override the predefined settings, such as the default position of windows
or the display of the lists in an IO-window. To this end the module SimBase exports various
routines such as SetDefltWindowPlace or SetDefltIOWColDisplay (for an application of this
technique see in the Appendix the sample model Markov).

Second, it is possible to disable certain functions within the standard user interface, e.g. the ta-
bulation of simulation results. To this end the module SimBase exports the routines Disable-
Window and EnableWindow. The corresponding menu commands will then still remain visib-
le, but the simulationist can not choose them since they are disabled (dimmed).

Third, when the modeller uses also the optional table functions, the standard user interface is
extended also by a graphical table function editor (s.a. Appendix chapter Auxiliary Library
section TabFunc; for an application of this technique see the sample models SwissPop and
UseTabFunc).

31The actual appearance of these elements may differ with the computer on which ModelWorks is running.
However, thanks to the underlying 'Dialog Machine' the basic functionality of managing a window's position,
size etc. remains the same.

ModelWorks 2.2 - Theory

T 85

Fourth, the modeller can customize the initialization of the standard user interface by installing
an initialization procedure with a call to the procedure InstallDefSimEnv from SimMaster before
calling procedure RunSimEnvironment. ModelWorks will then call the installed procedure as
the very first step taken before awaiting commands from the simulationist (Fig. T18). The si-
mulationist can request the execution of the installed procedure once more by choosing the cor-
responding menu command Settings/Define simulation environment (for an application of this
technique see in the Appendix the sample models SwissPop, Sensitivity, and Markov).

Fifth, it is possible to insert before or to add after the menus of the standard user interface
additional menus. In the first case the calls to the routines InstallMenu and InstallCommand
from module DMMenus must precede the installation of the ModelWorks standard menus, i.e.
the call of RunSimEnvironment (Fig. T18). In the latter case, i.e. adding menus to the right of
the ModelWorks standard menus, the routines InstallMenu and InstallCommand must be called
in the routine initSimEnv which has been passed as its actual argument to RunSimEnvironment.
Such additional menu commands can then be associated with any kind of procedures, e.g. the
opening of additional windows to display simulation results, the reading of data from files, the
loading and unloading of model definition programs, the calling of a compiler etc. Since Mo-
delWorks is only based on the "Dialog Machine", a co-operative coexistence of ModelWorks
objects with other "Dialog Machine" items is already guaranteed by the "Dialog Machine"32

(s.a. below subchapter Module Structure of ModelWorks) (s.a. Appendix chapter Auxiliary
Library section StructModAux; for an application of this technique see in the Appendix the
sample models Markov, GreenHouse, CarPollution, LBM, and ForestYield).

Sixth, it is possible to associate a handler with a ModelWorks window, e.g. the graph window.
This handler will then be executed as soon as the simulationist clicks into the content of that
window (s.a. Appendix chapter ModelWorks Optional Client Interface section SimGraphUtils;
for an application of this technique see in the Appendix the sample model VDPol). .

Seventh, it is not possible to remove a menu from the standard user interface; yet, with the
"Dialog Machine" and ModelWorks it is possible to build a completely new user interface with
relatively little effort, as the program module MySimEnv (following below) illustrates.

The user interface of MySimEnv provides all basic, i.e. the most frequently used functions,
which are required for interactive simulations. Educational or demonstration programs can be
built similarly, if they ought to offer only a few menu commands instead of the possibilities fea-
tured by the ModelWorks standard user interface, because the latter might only confuse the
beginner.

32On how to work with the Dialog Machine see the Appendix section Quick References, the separate booklet
«Installation Guide and Technical Reference of the RAMSES software», and FISCHLIN (1986a, b; et al.,
1989).

ModelWorks 2.2 - Theory

T 86

MODULE MySimEnv;

 FROM DMMenus IMPORT Menu, Command, AccessStatus, Marking, Separator, InstallMenu, InstallCommand,
 InstallAliasChar, InstallSeparator, DisableCommand, EnableCommand;
 FROM DMMaster IMPORT RunDialogMachine;
 FROM DMEntryForms IMPORT FormFrame, WriteLabel, DefltUse, RealField, UseEntryForm;

 FROM SimBase IMPORT MWWindow, GetWindowPlace, SetWindowPlace, ResetAll, GetGlobSimPars, SetGlobSimPars;
 FROM SimMaster IMPORT SimRun, StopRun, InstallStateChangeSignaling, MWState, GetMWState;

 FROM MyMDP IMPORT ModelDefinitions;

 VAR
 simMenu: Menu;
 setTCmd, resCmd, openWCmd, runCmd, stopCmd: Command;

 PROCEDURE AskForGlobSimPars;
 CONST lem = 5; tab = 35;
 VAR ef: FormFrame; ok: BOOLEAN; cl: INTEGER; to,tend,h,er,c,hm: REAL;
 BEGIN
 cl := 2; GetGlobSimPars(to,tend,h,er,c,hm);
 WriteLabel(cl,lem,"Global simulation parameters:"); INC(cl);
 WriteLabel(cl,lem,"to"); RealField(cl,tab,7,to,useAsDeflt,MIN(REAL),MAX(REAL)); INC(cl);
 WriteLabel(cl,lem,"tend"); RealField(cl,tab,7,tend,useAsDeflt,MIN(REAL),MAX(REAL)); INC(cl);
 WriteLabel(cl,lem,"h"); RealField(cl,tab,7,h,useAsDeflt,MIN(REAL),MAX(REAL)); INC(cl);
 WriteLabel(cl,lem,"hm"); RealField(cl,tab,7,hm,useAsDeflt,MIN(REAL),MAX(REAL)); INC(cl);
 ef.x:= 0; ef.y:= -1 (*display entry form in middle of screen*);
 ef.lines:= cl+1; ef.columns:= 55;
 UseEntryForm(ef,ok);
 IF ok THEN SetGlobSimPars(to,tend,h,er,c,hm) END;
 END AskForGlobSimPars;

 PROCEDURE OpenWindows;
 VAR x,y,w,h: INTEGER; enabl: BOOLEAN;
 BEGIN
 GetWindowPlace(MIOW, x,y,w,h, enabl); SetWindowPlace(MIOW, x,y,w,h);
 GetWindowPlace(SVIOW, x,y,w,h, enabl); SetWindowPlace(SVIOW, x,y,w,h);
 GetWindowPlace(PIOW, x,y,w,h, enabl); SetWindowPlace(PIOW, x,y,w,h);
 GetWindowPlace(MVIOW, x,y,w,h, enabl); SetWindowPlace(MVIOW, x,y,w,h);
 GetWindowPlace(TableW, x,y,w,h, enabl); SetWindowPlace(TableW, x,y,w,h);
 GetWindowPlace(GraphW, x,y,w,h, enabl); SetWindowPlace(GraphW, x,y,w,h);
 END OpenWindows;

 PROCEDURE StateHasChanged;
 VAR s: MWState;
 BEGIN
 GetMWState(s);
 CASE s OF
 | noSimulation: EnableCommand(simMenu,runCmd); DisableCommand(simMenu,stopCmd);
 | simulating: DisableCommand(simMenu,runCmd); EnableCommand(simMenu,stopCmd);
 ELSE
 END(*CASE*);
 END StateHasChanged;

BEGIN
 InstallMenu(simMenu,"Simulation",enabled);
 InstallCommand(simMenu,setTCmd,"Set time…",AskForGlobSimPars, enabled, unchecked);
 InstallSeparator(simMenu,line);
 InstallCommand(simMenu,resCmd,"Reset all",ResetAll, enabled, unchecked);
 InstallSeparator(simMenu,line);
 InstallCommand(simMenu,openWCmd,"Open windows",OpenWindows, enabled, unchecked);
 InstallSeparator(simMenu,line);
 InstallCommand(simMenu,runCmd,"Run",SimRun, enabled, unchecked);
 InstallAliasChar(simMenu,runCmd,"R");
 InstallCommand(simMenu,stopCmd,"Stop (kill)",StopRun, enabled, unchecked);
 InstallAliasChar(simMenu,stopCmd,"K");
 InstallStateChangeSignaling(StateHasChanged);
 ModelDefinitions;
 ResetAll;
 RunDialogMachine;
END MySimEnv.

Finally it is also possible to use only some parts of the standard user interface, e.g. just the IO-
window for the parameters, or even no user interface at all. The latter, a batch-type simulation
program, might just declare a model and the corresponding model objects, in particular some
monitorable variables with the stash filing activated (writeOnFile) and will then call SimRun
from SimMaster to solve the model. The simulation results will be written to the stash file
only. In combination with the "Dialog Machine", almost endless possibilities open up for the
implementation of simulation tools tailored to specific applications.

ModelWorks 2.2 - Theory

T 87

5.2 Modelling

5.2.1 THE MODEL DEVEL OPM ENT CYCL E

The modelling process consists of the model development cycle with the steps editing, compila-
tion, and execution of the model definition program (Fig. T27).

This process begins with a mathematical model given in form of the Equ. (4) or (5) respectively
(6), (7) to (10). Then the modeller or client has to write the so-called model definition
program, which represents an ordinary Modula-2 program, consisting of one or several
modules, which import from ModelWorks client interface and are programmed accordingly to
the rules described in this text. Typically at least one model with at least one state variable and
at least one dynamic equation (Eq. 4.1, 5.1, or 6.1) already represents such a model definition.
The resulting program is then capable to solve numerically the initial value problem of the
currently declared system of differential equations (DESS), and/or difference equations (SQM),
and/or discrete event system specification (DEVS). This corresponds to a translation process of
the initial value problem of the mathematical model to a simulation model. The latter may also
be termed a numerical problem with the initial values, model and global simulation parameters
as inputs plus the monitorable variables as outputs. The algorithms are given by the run time
system of ModelWorks.

Fig. T27: Flow chart of the development cycle of ModelWorks model definition
programs. The modeller writes model definition programs by means of an editor,
compiles and eventually links them, and executes them to obtain simulation
results33.

The «Mini RAMSES Shell» and some sessions of the «RAMSES Shell» provide means to
facilitate the development cycle. In particular does the «Mini RAMSES Shell» automatically

33Note, the «RAMSES Shell», in particular the «Mini RAMSES Shell», substantially simplify this cycle for
the modeller and perform many tasks automatically. However, in order to obtain maximum efficiency during
simulations, the principle remains the same.

ModelWorks 2.2 - Theory

T 88

switch between the steps shown in Fig. T27 and even hides the compilation step completely.
The user just switches between the two roles (part I Tutorial Fig. T1) simulationist (simulation)
and modeller (edit) only.

5. 2. 2 STRUCTURED MODEL DEFINITION PROGRAM S (MODUL AR MODEL ING)

A model definition program may be built from as many modules as the modeller wishes. Typi-
cally structured models are built from several modules (external or library modules), each sub-
model corresponding to a Modula-2 module (Fig. T28; see also Appendix, chapter Sample
Models the sample model GreenHouse or LBM and FISCHLIN, 1991).

If the modeller makes use of modular modeling, the only thing to pay attention to, is to make
sure that outputs from one submodel are computed in its procedure output, and the depending
inputs of another submodel in its procedure input (Fig. R16).

ModelMaster.MOD

Model2.MOD

Model2.DEF

Model1.MOD

Model1.DEF

The structure of the Modula-2 prog ramThe structure of the model

Output of
Model 1

Output of
Model 2Input to Model 2

Input to Model 1

u1:= y2 u2:= y1

Fig. T28: Mapping of a structured model composed of two subsystems (left) onto
a Modula-2 model definition program (right). The outputs are exported by the defi-
nition modules (DEF) and imported by the implementation modules (MOD) of the
other submodel. The program module ModelMaster links both submodels by im-
porting and executing the submodel declarations. All modules together form the
model definition program.

5.2.3 STRUCTURED SIM UL ATIONS (EXPERIM ENTS)

The modeller may also program a structured simulation, a so-called ModelWorks experiment.
Typically an experiment consists of many simulation runs and will call ModelWorks functions
similar to the way the simulationist would use them. The latter is useful to relieve the simula-
tionist from cumbersome, repetitive command sequences or if simulations are used as parts of
complex algorithms. For instance in order to create a phase portrait the simulationist would
have to assign a series of different initial values to the state variables as well as to start after
each assignment a simulation run. The same can be accomplished by programming a structured
simulation which the simulationist then can activate by a single command from within the simu-
lation environment. During the development phase models are often thoroughly explored inter-
actively; whereas, once fully developed, there arises the need for a sensitivity analysis or pa-
rameter identifications etc. Adding the needed program section in form of an experiment allows
to accomplish such tasks without having to modify the existing model definition code.

ModelWorks 2.2 - Theory

T 89

An elementary simulation run can be started via the client interface by calling procedure SimRun
from module SimMaster. A structured simulation or experiment consists typically of a se-
quence of calls to procedure SimRun, but all functions offered by the client interface may be
used to program a structured simulation experiment (for the few exceptional effects of some
functions see section Manipulating the model base at run-time). The following example
illustrates a situation in which four initial state vectors ([x,y] = [1, 1], [2, 2], [-1, -1] and [-2,
-2]) for a second order system of differential equations are to be used to produce a phase
portrait. Each combination will be used in a separate simulation run:

PROCEDURE MyExperiment;
BEGIN
 SetSV(m,x,1.0); SetSV(m,y,1.0); SimRun;
 SetSV(m,x,2.0); SetSV(m,y,2.0); SimRun;
 SetSV(m,x,-1.0); SetSV(m,y,-1.0); SimRun;
 SetSV(m,x,-2.0); SetSV(m,y,-2.0); SimRun;
END MyExperiment;

For more details see in the chapter Sample Models of the Appendix the sample model
LVPhasePlot.

Structured simulations are useful for a sensitivity analysis (see also Appendix, chapter Sample
Models the model GauseIdentif) or a parameter identification (s.a. the sample model
GauseIdentif). To illustrate this point the example of a little sensitivity analysis is presented
here: Given a set of n model parameters and for each parameter a triple of values, i.e. the lower
boundary of a confidence interval, the mean, and the upper boundary of the confidence interval
(α = 5%) we can declare the following data structure:

CONST n = 3;
TYPE PVal = (cur, min, mean, max);
 PType = RECORD
 v: ARRAY [cur..max] OF REAL;
 descr,ident,unit: ARRAY [0..64] OF CHAR;
 END;
VAR p: ARRAY [1..n] OF PType;

The sensitivity analysis may then be implemented by the following procedure MyExperiment,
which represents a generic recursive solution for any number of parameters:

PROCEDURE MyExperiment;
 PROCEDURE Sensitivity(i: CARDINAL);
 VAR j: [min..max];
 BEGIN
 FOR j:= min TO max DO SetP(m,p[i].v[cur], p[i].v[j]);
 IF i<n THEN Sensitivity(i+1) ELSE SimRun END;
 END(*FOR*);
 END Sensitivity;
BEGIN
 Sensitivity(1);
END MyExperiment;

For more details see in the chapter Sample Models of the Appendix the sample model
Sensitivity.

5. 2. 4 MODUL E STRUCTURE OF MODELWORKS

The ModelWorks client interface used by the modeller consists of a mandatory and an optional
part: The mandatory part (kernel) consists of the two library modules SimBase and SimMaster
and the optional part of the modules SimDeltaCalc, SimGraphUtils, SimIntegrate, and SimOb-
jects (Fig. T29). Any model definition program has to import at least from the mandatory
client interface and may import from the optional client interface and the auxiliary library
AuxLib.

ModelWorks itself consists of the 5 modules providing the client interface and in the current
implementation of 23 internal modules. All these modules import only from the "Dialog Ma-
chine", i.e. from the 11 kernel modules (DMConversions, DMLanguage, DMMaster, DMMe-
nus, DMMessages, DMStorage, DMStrings, DMSystem, DMWindowIO, DMWindows, and
DM2DGraphs), from 10 optional modules (DMClipboard, DMClock, DMEntryForms, DM-
Files, DMMathLib resp. DMMathLib20, DMFloatEnv, DMPrinting, DMPTFiles, DMWPict-
IO), and from the auxiliary library AuxLib of the RAMSES software, i.e. the modules Matrices

ModelWorks 2.2 - Theory

T 90

and JumpTab. Note that all modules from the auxiliary library do import only from the client
interface of the "Dialog Machine", from other auxiliary library modules, or from the
ModelWorks client interface. Thus, ModelWorks together with the auxiliary library can be
ported without modification to any new computer system on which the "Dialog Machine" is
available, regardless of the hardware and operating system.

AuxLib

""Fig. T29: Module structure of ModelWorks programs: The model definition
program imports from the client interface, which consists at least of the modules
SimBase and SimMaster (mandatory part). The model definition program may ac-
tually consist of just one program module up to any number of modules. Some in-
ternal ModelWorks modules are prelinked in SimMaster.OBM. mandatory
imports; optional imports.

Each module of the optional client interface serves a particular purpose: SimDeltaCalc allows to
calculate deviations between simulated and observed data series, which is required for model
validations or parameter identifications (see e.g. Appendix sample model GauseIdentif). Sim-
GraphUtils can be used to draw into the standard graph window. This feature can be used to
draw measurements with error bars into the graph or to customize the graph in any desired way
by using also routines from the "Dialog Machine" module DMWindowIO (see Appendix
sample models VDPol, GauseIdentif, and Lorenz). SimIntegrate can be used to integrate a
model only numerically without actually running a simulation, in particular without any
monitoring and without affecting the global independent variable of the simulation environment.
SimObjects allows an efficient access to the models and model objects contained in the
simulation environment's model base, for instance to associate additional data, such as an
index, an identifier, or measurements, with a model or model object.

The auxiliary library consists of many modules, of which the following are of particular interest
for simulations: Identification, JulianDays, RandGen, RandNormal, ReadData, StructModAux,
TabFunc, and WriteDatTim. Identification provides optimization routines which allow to iden-
tify unknown model parameters. Given some measurements and specific model equations, the
exported algorithms allow to minimize a performance index, e.g. the sum of squares of the dif-
ferences between measured and simulated values (see Appendix sample model GauseIdentif).
JulianDays provi des functions useful for the mapping of the simulation time to calendar dates
and vice versa. RandGen and RandNormal return uniformly (within (0,1]) respectively nor-
mally (N~(µ,σ)) distributed variates to support stochastic simulations (see Appendix sample

ModelWorks 2.2 - Theory

T 91

models such as Diversity, Markov, StochLogGrow, or CarPollution). ReadData facili tates the
reading of data from text files (see Appendix sample model SwissPop), for instance when the
user wishes to enter measured data into the simulation environment to compare them with simu-
lation results (s.a. Appendix research sample model LBM). StructModAux supports the
implementation of structured models where the submodels reside in separate modules (see Ap-
pendix sample models such as GreenHouse or LBM). TabFunc is useful if the modeller uses
non-linear functions, which are defined by a table of supporting points, so-called table func-
tions. During simulations the modeller can linearly interpolate or extrapolate needed values
(see Appendix sample models SwissPop or UseTabFunc). WriteDatTim, together with the
optional "Dialog Machine" module DMClock, allows to access the built-in computer clock in
order to record real time events such as the begin and end of a long simulation experiment (see
Appendix sample model Markov).

Since the auxiliary library is only based on defined client interfaces, i.e. either the "Dialog Ma-
chine" or ModelWorks, the modeller is free to add any modules she wishes. Note also that
some of these auxiliary library modules may depend themselves again on some not yet used
"Dialog Machine" parts, some ModelWorks client interface modules, or other auxiliary library
modules. E.g. TabFunc requires optional "Dialog Machine" modules not used by Model-
Works, i.e. DMEditFields, and the auxiliary library modules Matrices. A parameter identifica-
tion module Identification may import from the "Dialog Machine", from the ModelWorks mo-
dules SimMaster, SimBase, SimObjects, SimDeltaCalc, plus SimGraphUtils, and some auxilia-
ry library modules such as Matrices, Lists, and Optimizations.

For detailed information on the aforementioned library modules see part III Reference subchap-
ter Client Interface, the Appendix subchapters Definition Modules and Quick References and
for a complete list of all technical aspects the separate booklet «Installation Guide and Technical
Reference of the RAMSES software».

ModelWorks 2.2

T 92

R 93

Part III: Reference

This reference part contains a description of the usage of every feature ModelWorks offers.
However, it contains only little information on the elementary and typical usage or the
theoretical concepts of ModelWorks. In case you should not be familiar with the basic concepts
of ModelWorks, please read first the ModelWorks tutorial (part I). In particular you should
read the first chapter of the tutorial: General Description.

The descriptions given in this reference are brief and relate only to specific properties of
individual commands. In order to avoid redundancy they do not explain the general principles
behind a class of commands and functions of ModelWorks which are described in the part II,
Theory, in particular in the chapter Functions.

This part contains two chapters:

The chapter User interface lists all commands which are available to the simulationist via
the user interface.

The chapter Client interface contains the specifications of the client interface used by the
modeller. All functions and the use of all program objects exported by the
ModelWorks modules SimMaster and SimBase are explained.

Any serious modelling with ModelWorks requires to read at least the Part II ModelWorks
Theory and the second chapter on the client interface of the Part III Reference.

Reading Hint: For easier orientation, the pages, figures and tables of Part III Reference are prefixed with the
letter R. Within this part figures and tables are numbered separately, starting with Fig. R1 respectively
Tab. R1.

ModelWorks 2.2 - Reference

R 94

6 Standard User Interface

The standard user interfaces of the various ModelWorks versions differ slightly. This text has
been made for the standard Macintosh version (see Appendix). As long as just the appearance
is affected by the differing implementations (holds in particular for the IBM PC versions, which
have a slightly different appearance), the following information should be easy to interpret. In
all other cases particular explanations have been added.

Reading Hint: If there is a functional difference to the standard version, this fact will be stated in a phrase
within brackets with the same font as this example: [Not available in Reflex and PC versions].

This chapter describes all features and implementational details of ModelWorks standard user
interface and all its parts. This standard interactive environment is activated by calling the pro-
cedure RunSimEnvironment from module SimMaster in a model definition program [MDP];
since the modeller may customize or extend it easily, it may differ in some cases; in particular it
may offer more functionality to the simulationist than provided by the standard interface, func-
tions which of course can not be described herein (see also part II Theory chapter User
Interface Customization).

Note: In the Macintosh versions it is possible to load several model definition programs
[MDP’s] which all call RunSimEnvironment on top of each other1 [feature not available in static
linking versions such as the PC versions]. This allows for example to dynamically replace a model
by simply quitting the topmost program and by loading an alternative model definition program
instead, hereby leaving models declared on lower program levels untouched. For each additio-
nal program loaded dynamically, now called subprogram, the standard user interface is exten-
ded by four additional menu commands named About MDP n…, Quit MDP n, Define simula-
tion environment n and Execute Experiment of MDP n , which are again removed when the
program is quit (n counts the number of subprograms loaded which have called RunSimEnvi-
ronment). In particular, the last two commands allow the simulationist to execute a separate si-
mulation environment definition procedure or an experiment for each program level currently
loaded. For more information on running the interactive simulation environment and for loa-
ding of several subprograms on top of each other see also part II Theory section Multiple
activations of the standard user interface.

6.1 Menus and Menu Commands

This section explains all menu commands in detail. Many and often used menu commands can
also be invoked by using the keyboard instead of the mouse. For easier remembering the keys
to be used for the keyboard shortcuts are shown together with the texts of the menu commands
(Fig. R1). Keyboard shortcuts or so-called keyboard equivalents are entered by pressing the
command key (clover-leaf key �) simultaneously with another key "X"2.

Reading Hint: Throughout this reference manual such keyboard equivalents are abbreviated as "/� X".

The following keyboard commands are globally available in the simulation environment: In all
entry forms the simulationist may press the key Return or Enter instead of clicking into the push
button OK. Pressing the keys "� . " or Escape is equivalent to the clicking into the push button

1A new Modula-2 program module is loaded by calling the procedure DMMaster.CallSubProg(moduleName…),
e.g. via an extra installed menu.

2 In the PC GEM-Version press the Ctrl-key simultaneously with the key "X", in the PC Windows-Version
press the Alt-key simultaneously with the key "X".

ModelWorks 2.2 - Reference

R 95

Cancel3. The latter two keyboard equivalents may also be used to stop a simulation run (Stop
(Kill) run). Pressing the key tab in an entry form allows to move to the next edit field plus to
fully select its content. In some edit fields the key combination Shift tab is available to move
backwards from field to field (e.g. in the data table provided by the module TabFunc). While a
selection is currently made, the simulationist may use within an edit field the key equivalents
"� C" for copying the selection into the clipboard, "� X" to cut (copy plus delete) the selection
into the clipboard, and "� B" to blank (delete without copy) the selection. The current content
of the clipboard (if text) may be pasted into an edit field at the current location of the insertion
bar or as a replacement for the current selection by pressing "� V". This technique allows also
to transfer textual data between different entry forms and between different applications (given
they support the clipboard for text). If no entry form or other dialogue box is currently in use,
the clipboard accessing keyboard equivalents have the usual meaning (see below Menu Edit).
By pressing "� W" the currently active window will be closed, if ModelWorks is run from
within the RAMSES Shell4.

6. 1. 1 OVERVIEW OVER M ENUS

Fig. R1 shows an overview of all menus and menu commands of ModelWorks' standard user
interface [In the PC GEM-Version any of the menu commands starting with the phrase All model's…
are missing, but note that these functions are also available in the IO-windows]. If the modeller im-
ports from module TabFunc, an additional menu will appear (see Fig. A1 in the Appendix sec-
tion Auxiliary Library module TabFunc). A detailed explanation of all menus is given below.

M

Fig. R1: All ModelWorks standard menus. The two grey menus at the very left
indicate menus which are only present if ModelWorks is run from within the
«RAMSES Shell».

6. 1.2 QUIT COM M ANDS

The Quit command appears at the bottom of the second leftmost menu, i.e. the menu to the right
of the "ð"- or "*"-menu5.

3 In the PC GEM-Version keyboard shortcuts function only if a letter is involved, hence the cancel function
with "Ctrl^." is not available. Use Escape instead.

4In the PC Windows-Version use the keyboard shortcut "Ctrl^F4" to close a window.
5This menu will correspond to the ModelWorks menu File., unless ModelWorks is used from within another

environment which has already installed menus to the left of menu File, e.g. as does the simulation session of

ModelWorks 2.2 - Reference

R 96

Indeed, this menu will offer as many Quit commands as program levels currently exist [In the
PC versions only one program level is supported]. Selecting a quit command which is not the cur-
rent top-most program level, results in quitting at once all sub-programs from the selected till
the top-most program level. The keyboard equivalent � Q is always assigned to the last com-
mand of the menu and allows quitting of the current topmost program level.

Quit /� Q: Quits the interactive simulation environment of ModelWorks. According to
how ModelWorks is currently used, the application will change either to the next
lower program level within the interactive simulation environment, or to the calling
program of the model definition program6 [PC versions: The MDP is an application which
always returns to the calling program, for instance the operating system].

6. 1. 3 MENU FIL E

Allows to control the printing of the content of window Graph and the current settings and
modes of the simulation environment (preferences) (Fig. R2).

Fig. R2: Menu File.

Page setup...: Usual page set up dialogue box used for the printing of the graph on the
currently chosen printer. [Not available in Reflex and PC GEM-Version].

Print graph...: Prints the graph on the currently chosen printer. [Not available in Reflex
and PC GEM-Version].

Preferences...: Allows to set the modes of the simulation environment (Fig. R3).

Filing

If the simulation environment mode Always document run on stash file is active, the
stash file is opened at the begin of every simulation regardless of the current setting
for stash filing of the monitoring variables. If this mode is inactive, the stash file will
only be opened in case that at least one monitoring variable has the stash filing
currently set (F). In case you rather use the stash file for run documentation purposes
than for post run analysis purposes, it is recommended to have this simulation
environment mode active. It will then force the opening of the stash file always and
document every simulation experiment, e.g. by documenting the current parameter
settings together with some key results. The recording flags and the stash file settings
(F) of the monitorable variables will then no longer affect the file opening, but only
determine which data are to be written to the stash file (s.a. below menu command Set
Project description… recording flags in section Menu Settings).

the «RAMSES Shell». However, note the «Mini RAMSES Shell» suppresses this quit command; instead it
offers the menu command Shell/Exit simulation.

6 Typically the RAMSES- or the MacMETH-Shell

ModelWorks 2.2 - Reference

R 97

If the mode Ask for stash file type is activated, every time the simulationist selects a
new stash file, a dialogue is displayed allowing to specify the file's type and signature
(s.a. below menu command Select stash file…).

Fig. R3: Entry Form of the menu command Preferences… shown with settings
recommended for the beginner.

Tabulation

If the simulation environment mode Once changed, immediately redraw table is active,
the table is redrawn immediately after each change in the tabulation settings. Other-
wise the last table will be kept untouched until the next simulation run is started. Only
at that time the old table is cleared and a new one will be drawn.

The number Common rows between page ups in table defines what happens during a
page up. A page up occurs when the table window is full but more rows should be
writ ten; then ModelWorks attempts to erase most of the table and restarts tabulating
from the top again. This number specifies first how many rows at the bottom are not
erased but copied to the top of the next page. All remaining space below is then used
to add the rows of the new page. Thus this number specifies how many rows are
common to two consecutive pages.

Graphing

If the simulation environment mode Once changed, immediately redraw graph is ac-
tive, the graph is redrawn immediately after each change in the graph settings. Other-
wise the last graph will be kept untouched until the next simulation run is started.
Only at that time the old graph is cleared and a new one will be drawn.

Activating the simulation environment mode Restore graph with colours and high qua-
lity vector graphics for printing and clipboard is active, the graph is restored with co-
lours when a previously covered graph portion becomes visible again or will be prin-
ted or transferred to the clipboard in colours and with high quality. If this mode is tur-
ned off, a bitmap is used for restoring, printing, or transfer into the clipboard (pixel
based raster graphics). Graph restoration becomes necessary whenever the simulatio-
nist moves, rearranges, or closes windows and the graph window is involved. Note

ModelWorks 2.2 - Reference

R 98

that with this option active, graphs may be restored slower and more memory may be
needed. Otherwise graphs are restored in black and white only7. Vector graphics
contain data about particular objects and the coordinates defining them; e.g. a line is
stored as a line object together with the coordinates of its begin and end point. Hence
vector graphics are usually of a higher quality than raster graphics. However, the
printing of a vector graph may require too much time if draft quality of a graph would
be sufficient. Note that with this option active complicated graphs, particularly if
drawn during large experiments, may use up tremendous amounts of memory. On
black and white monitors activate this mode if you wish to use colour printers or
transfer the graph via the clipboard to other colour devices. [Not available in Reflex and
PC GEM-Version].

Customize...: Allows to customize alias characters (i.e. keyboard equivalents or short-
cuts) for the ModelWorks menu commands. First the simulationist is asked which
type of customization she wishes to perform (Fig. R4).

Fig. R4: Initial question asked when customizing keyboard shortcuts.

M

Fig. R5: Customization of keyboard shortcuts.

The choice “Edit” allows to modify the keyboard shortcuts for the frequently used
menu commands (the “core menu commands”) listed in the entry form shown in

7Note that these simulation environment modes have no default values. The current values are written in the
resource fork of the MacMETH-Shell. They are read from there at the start-up of your model definition
program.

ModelWorks 2.2 - Reference

R 99

Fig. R5. For the actual meanings of these commands see the explanations of the
menus Settings, Solve and Windows.

Fig. R6: Resetting of keyboard shortcuts.

“Reset” offers the possibility to reset the keyboard shortcuts for the core menu com-
mands, or for both, the core and all other ModelWorks menu commands to predefined
values (Fig. R6). The predefined values for the core menu commands are shown in
Fig. R5. For the other menu commands, which may be modified through the Model-
Works client interface, the default consists in no keyboard shortcuts being installed.

6.1.4 MENU EDIT

Menu Edit allows to transfer texts such as parameter values or the content of the window Graph
within ModelWorks' simulation environment respectively to import or export such objects
among ModelWorks and other applications (Fig. R7).

Fig. R7: Menu Edit

[The whole menu is not available in the Reflex and PC GEM-Version].

Undo /� Z: not available (present only for compatibility with user interface guide-lines).

Cut /� X: Clears the graph and copies it into the clipboard if no other window than a
ModelWorks window is the front most window. Otherwise, e.g. if a desk accessory
is the front most window, this command will perform the standard Cut command as
described in the computer owner's handbooks8. The quality of the transferred graph
depends on the current simulation environment mode as described under menu com-
mand File/Preferences….

Copy /� C: Copies the graph into the clipboard if no other window than a ModelWorks
window is the front most window. Otherwise, e.g. if a desk accessory is the front
most window, this command will perform the standard Copy command as described

8For instance Macintosh owner's guide

ModelWorks 2.2 - Reference

R 100

in the computer owner's handbooks. The quality of the transferred graph depends on
the current simulation environment mode as described under menu command
File/Preferences….

Paste /� V: If a ModelWorks window is the front most window, the current content of
the clipboard is pasted into the graph window.

Clear /� B: Clears the graph if no other window than a ModelWorks window is the front
most window. Otherwise, e.g. if a desk accessory is the front most window, this
command will perform the standard Clear command as described in the computer
owner's handbooks.

Keyboard equivalents of these commands are available often even when the simulation envi ron-
ment is in a mode which prohibits choosing menu commands, e.g. when an entry form is mo-
mentarily in display. The meaning of these commands is then such that textual objects such as
parameter values and not the graph are exchanged with the clipboard. For a more detailed des-
cription of these commands see the first section of this chapter.

6. 1. 5 MENU SETTINGS

This menu consists of four parts: Set, Select stash file..., Reset and Define simulation environ-
ment (Fig. R8).

Fig. R8: Menu Settings used to set or reset current values and to define current
settings of the simulation environment.

ModelWorks 2.2 - Reference

R 101

The first part lets you set the global simulation parameters such as the simulation start and stop
time, plus the project description. The second determines which file is going to be used as the
stash file. The third is used to reset the current values of global parameters, settings, and of
model objects; resetting means to copy the defaults to the corresponding current values
(Fig. T17 part II Theory). [The PC GEM-Version will not offer any of the menu commands starting
with the phrase All model's…(but note, these functions are also available via the IO-windows)]. The
menu’s last part allows you to execute a procedure which may have been installed by the
modeller via the ModelWorks client interface and which is typically used to (re)define
simulation environment settings according to your individual needs.

Set:

Set Global simulation parameters.../ � I: Displays an entry form (Fig. R9a-b) to set the
global simulation parameters such as the integration step. Note that all of these para-
meters are valid globally, i.e. they determine time and integration parameters for all
present (sub)models together. Hereby, the start and stop time for the simulation and
the monitoring interval can always be edited, whereas all remaining parameters may be
ignored in the entry form, depending on the kind of models which are present (see ex-
planations below and Fig. R9a-b).

Start time for simulation [to/ko]: The next simulation run will start with this time.

Stop time for simulation [tend/kf]: The next simulation run will stop with this time.

Integration step h [h]: If at least one continuous time (sub)model is present, h is the
fixed time step9 for the numerical integration of the differential equations.
Moreover, if a variable step length integration method is in use by at least one
of the continuous time (sub)models, this simulation parameter becomes the

Maximum integration step [hmax]: The actual integration step will be deter-
mined by the variable step numerical integration algorithm and globally used as
the integration step for all other submodels, even if they should be solved with
a fixed step length method.

Maximum relative local error [er]: If at least one continuous time (sub)model is
using a variable step length integration method, this simulation parameter deter-
mines the maximum relative local integration error ε estimated by comparing a
higher order result with a lower order result. If a norm of this error vector |ε|
divided by a norm of the state vector |x| exceeds er, the integration step length h
is halved till |ε| / | x| <= e r . Otherwise h is doubled unless one of the follow-
ing two conditions would become true |ε| / | x| > e r or h > h max.

Discrete time step [c]: If only discrete time (sub)models are present (case B) c may
be edited in place of the integration step h. In this case however, the actual va-
lue of c is irrelevant, since the length of an interval between two discrete time
points has no true meaning. If not only discrete time, but also continuous time
(sub)models are present, c may be edited in addition to h and becomes the
Coincidence interval [c] (see also part II Theory chapter Model Formalisms).

Monitoring interval [hm]: Interval at which the values of all monitorable variables are
either written onto the stash file, tabulated in the table, or drawn into the graph, depen-
ding on their current monitoring settings. Note, that if a discrete event model is pre-
sent with at least one monitorable variable activated for stash filing, tabulation, or

9The smaller the step h is, the more accurate is the calculation (unless h gets so small that truncation errors
become dominant); the larger h is, the faster runs the simulation. Therefore the simulationist has to select a
good compromise, which depends on the integration method used and on the nature of the model.

ModelWorks 2.2 - Reference

R 102

graphing, in addition to the regular monitoring given by hm, monitoring will also take
place at every occurrence of a discrete event.

(ignored)

(ignored)

Integration step h:

Fig. R9a: Entry form Global simulation parameters.../ � I for a case where only
continuous time (sub)models with a fixed step length integration method are
present.

Fig. R9b: Entry form Global simulation parameters.../ � I for a case where some
continuous as well discrete time (sub)models are present. In addition a variable
step length integration method is used.

Set Project description…/� D: Displays the entry form to edit a global project description
and control the recording of data on the stash file (Fig. R10).

Project title: String which can be freely used to describe the on-going project, i.e.
for instance a title for the current simulation session. If the menu command
Print graph... is chosen, this Project title string will always be printed in bold
above the graph. However, the graph displayed and transferred into the clip-
board will contain this string only if the flag Use in Graph has been checked.
In the graph window this string will be displayed in the middle and at the top of
the data panel.

ModelWorks 2.2 - Reference

R 103

Remarks: String which can be freely used to add some remarks on the on-going
project. For instance it may be used as a sub-title similar to the project title
string or it may contain some information on specific model parameter settings
used in the simulations. If the menu command Print graph... is chosen, this
Remarks string will always be printed just below the title in a smaller font and
with style plain. However, the graph displayed and transferred into the clip-
board will contain this string only if the flag Use in Graph has been checked.
In the graph window this string will be displayed to the right of the legend at
the bottom of the window.

Fig. R10: Entry form Project description.../ � D

Footer: By default the footer contains the date, the time, and the simulation run
number, but it may also be used to store any other information. If the flag
Automatic data & time update in footer is turned on, ModelWorks will update
this information at the begin of each simulation run. If the menu command
Print graph... is chosen, this footer string will always be printed in a small font
size below the graph. However, the graph transferred into the clipboard will
never contain this string.

Record data on the stash file during simulations for: With these recording flags the
simulationist may control which information and values are written onto the
stash file. Check the appropriate boxes for models, model parameters, state
variables, monitorable variables, table functions and the graph if you wish to
have them written onto the stash file at the begin (for all except the graph) and at
the end (graph only) of simulation runs.

Note that the flags Models, Model parameters, State variable, and Monitorable
variables mean that information about these objects is written to the stash file.
They are: the descriptor, the identifier, the unit (unless a model), and the object
specific current values.

Except for the monitorable variables, information about all objects will be
recorded. In case of the monitorable variables only the information about those
monitorable variables is recorded, which are involved in the stash filing (F) or
in the graph (X or Y). The latter requires also that the corresponding recording
flag (Graph, see below) has been set.

ModelWorks 2.2 - Reference

R 104

The recording flag Graph controls whether graphical simulation results are
written to the stash file. [Graph recording not available in Reflex and PC GEM-
Version].

Note that ModelWorks will record information on the stash file at the begin and
end of each simulation run, in particular also during experiments.

The optional recording flag Table functions is only shown if at least one table
function is present (s.a. see Appendix section Auxiliary Library module
TabFunc). It then allows to control whether the current values and settings of
all table functions are written to the stash file.

The stash file is written in the so-called RTF-Format10 which can be opened by
the Microsoft® Word, WriteNow™, or MacWrite II document processing
software11. Opening the file with other text editors which cannot interpret RTF
is also possible; however, neither the graph nor the RTF control strings can be
interpreted and remain dispersed throughout the text and distort its appearance.
However data from simulation results are written in a format which allows to
paste or import them directly into many other applications, such as the spread-
sheet program Excel from Microsoft® or the presentation graphics program
Cricket Graph12. The format of the stash file has also been designed to allow
for an efficient and simple post simulation analysis. In particular check the
recording flags for models and monitoring variables if you wish to produce a
stash-file which can be used successfully by a post analysis13.

Note that in case the simulation environment mode Always document run on
stash file is currently not active, the recording flag settings are irrelevant if no
monitoring variable has currently the stash file setting active (F). Only as soon
there is at least one variable, the stash file will be actually opened and the
recording flags then control which information is written onto the stash file in
addition to the simulation results. If you plan to run a post analysis from the
stash file, you should at least have the recording flags Models, and Monitorable
variables active. If you rather use the stash file for run documentation purposes
it is recommended to have the simulation environment mode Always document
run on stash file active. The recording flags together with the stash file setting
(F) of the monitorable variables will then solely control the kind of information
and data written to the stash file (s.a. menu command Preferences…).

Select stash file.../� F Allows to select a stash file (Fig. R11, left) with the usual open
file dialogue box. Note that this command will not really open the file until the
simulation starts. This behaviour offers the advantage, that the simulationist may
open it for inspection whenever the simulation environment is in state No simulation.

In case the mode Ask for stash file type is activated, the stash file selection is
followed by the dialogue shown in Fig. R11 (right) . The file's type and signature

10RTF stands for Rich Text Format. It is based on ASCII characters only but contains coded formatting
information that can be interpreted by many commercially marketed text processing applications on various
computer platforms.

11Microsoft® Word is available from Microsoft® Corporation. WriteNow™ has been written by Anderson,
D.J., Tschumy, B. & Stinson, C. and is available from NeXT Inc. MacWrite II is available from Claris Corp.

12Cricket Graph is a program to edit and produce presentation graphics for science and business by Rafferty, J.
& Norling, R. and is available from Cricket Software Inc.

13The current version of ModelWorks does not feature a post analysis session. However, the RAMSES post-
simulation analysis tool allows to explore, interactively or under program control, simulation results and other
data contained in any ModelWorks stash-file.

ModelWorks 2.2 - Reference

R 105

may then be typed in the respective fields or set by example, the latter by selecting any
application or document by means of the standard open file dialogue box. [file types
and signatures are not available in Reflex and PC versions]

Fig. R11: Dialogue box Select stash file... /� F (left) and dialogue for
specification of stash file type and signature (right) [file types and signatures are not
available in Reflex and PC versions].

Once a simulation starts, i.e. ModelWorks enters the program state Simulating, the
stash file will be automatically opened and remains open till the state Simulating will
be left. Since during a whole structured simulation ModelWorks remains in the state
Simulating this means that all results from all simulation runs are normally written on
the same stash file. The default name used in the file selection dialogue box is the
current stash file name. Note that if there is not at least one monitorable variable
present for which the current stash filing setting is activated (F/writeOnFile),
ModelWorks will never open a stash file regardless of the current settings of the
recording flags (this behaviour may be overridden by means of the simulation en-
vironment mode Always document run on stash file , see above).

Reset:

The reset menu commands (Fig. R8) assign to the selected element(s) the default value(s) (s.a.
section on Resetting, Fig. T17 part II Theory). The latter have been defined by the modeller in
the model definition program or have been predefined by ModelWorks. All commands in this
menu operate on the scope of all models respectively all objects of all models (Fig. T26 part II
Theory); other scopes are available in the IO-windows only.

Reset Global simulation parameters: Resets all global simulation parameters.

Reset Project description: Resets all strings and flags used to describe the current project
to their defaults.

Reset Stash file: Resets the stash file name, type and signature.

Reset Windows. All windows are reset to their default status. Typically, this will recon-
struct the state entered after start up of the interactive simulation environment.
Hereby, individual windows may be (re)shown, hidden, or repositioned, and for all
IO-windows the original set up for the display of columns is assumed.

Reset All model's integration methods: Resets the integration methods of all models.
[Not available as a menu command in Reflex and PC GEM-Version].

Reset All model's initial values: Resets the initial values of all state variables of all
models. [Not available as a menu command in Reflex and PC GEM-Version].

ModelWorks 2.2 - Reference

R 106

Reset All model's parameters: Resets all parameters of all models. [Not available as a
menu command in Reflex and PC GEM-Version].

Reset All model's stash filing: Resets the stash file setting (writeOnFile/ notOnFile) of all
monitorable variables of all models. The stash file name and directory as defined with
the menu command Select stash file... is not affected. [Not available as a menu
command in Reflex and PC GEM-Version].

Reset All model's tabulation: Resets the tabulation settings (writeInTable/ notInTable) of
all monitorable variables of all models. [Not available as a menu command in Reflex and
PC GEM-Version].

Reset All model's graphing: Resets the graph settings (isX/isY/notInGraph) of all
monitorable variables of all models. [Not available as a menu command in Reflex and PC
GEM-Version].

Reset All model's scaling: Resets the minimum and maximum values used for the
scaling of all monitorable variables of all models on the ordinate. These scaling
extremes define the range of interest (Fig. T2 part Tutorial) and are used during the
drawing of values of the monitorable variables in the graph. [Not available as a menu
command in Reflex and PC GEM-Version].

Reset All model's curve attributes: Resets the curve attributes of all monitorable variables
of all models to their default values. [Not available as a menu command in Reflex and PC
GEM-Version].

Reset All above: Encompasses a reset of all reset commands listed above, in particular:
resetting of the global simulation parameters, of the project description, of the stash
file, of the windows, of all integration methods for all models, of all initial values, of
all parameters, and of all monitoring settings (stash filing, tabulation, graphing,
scaling and curve attributes). See Resetting in the part Theory. If the modeller has
not changed any defaults by calling a SetDeflt-procedure (see this part chapter Client
Interface section Modification of defaults) since the simulation environment has been
started up, the simulation environment’s status and the current values of all objects
will be exactly the same as they were right after the start up of the model definition
program. However, since table functions are optionally added objects, note that this
command does not affect, i.e. not reset, the current values of a table function; use the
separate reset function provided by module TabFunc (see Appendix section Auxiliary
Library module TabFunc).

Define simulation environment. Calls the procedure which was installed by the modeller
by means of InstallDefSimEnv (see this part chapter Client Interface section Running a
simulation session, in particular procedure InstallDefSimEnv from module
SimMaster). If no such installation has been done, the menu command will appear
dimmed (inactive) and can not be chosen. For every additional program level at which
the simulation environment has been started, an additional Define simulation environ-
ment. command is appended to the Settings menu [In the static linking versions such as
the PC versions only one program level is supported]. Note that a procedure associated
with the menu command has already been called at least once during the start-up of the
interactive simulation environment on the respective level. Be warned that it should
not erroneously contain calls to procedures, which must not be called repeatedly. For
instance, the installation of an additional menu should normally only be done once
when starting up the interactive simulation environment (see also chapter Simulation
environment section Simulations in the previous part II Theory and the next chapter
Client interface of this part).

ModelWorks 2.2 - Reference

R 107

6.1.6 MENU WINDOWS

This menu contains all commands which operate on windows (Fig. R12). The commands can
be used to rearrange all windows, to open a window, or to bring it to the front, and to clear the
graph or table window. If the simulationist closes a window, ModelWorks remembers its size
and position and will reopen it at the same place it was positioned before its closing.

M

Fig. R12: Menu Windows

Tile windows: All IO-windows, plus the table and graph window are closed and re-
opened so that they do no longer overlap. On small screens the IO-windows for the
state variables, model parameters, and monitorable variables are shown beside each
other on top of the screen, on larger screens all four IO-windows are displayed in two
rows on top of the screen. The remaining windows are fit into the bottom portion of
the screen, making the graph window as large as possible. The column display in the
IO-windows is also affected. Only the short identifiers (ident) and the current value
columns are shown: current integration method for models, current initial values for
state variables, current values for model parameters, and current monitoring settings
for the monitorable variables.

Stack windows: All IO-windows, plus the table and graph window are closed and re-
opened in a stacked way. The locations and sizes of all windows, plus the columns
displayed in the IO-windows are the same as at the begin of a simulation session.
However in contrast to that situation, the table and the graph window are also opened.

Models: The IO-window Models is opened respectively brought to the front.

State variables/� S: The IO-window State variables is opened respectively brought to the
front.

Model parameters/� P: The IO-window Model parameters is opened respectively
brought to the front.

Monitorable variables/� M: The IO-window Monitorable variables is opened respective-
ly brought to the front.

Table /� T: The table window is opened respectively brought to the front. If there are
no monitorable variables which have an active tabulation setting (T), some Model-
Works versions may not allow to open this window in the program state Simulating.

ModelWorks 2.2 - Reference

R 108

Clear table: This command clears the table, i.e. erases the content of the table window if
it is currently open.

Graph /� G: The graph window is opened respectively brought to the front. If there are
no monitorable variables which have an active graphing setting (Y/isY), some Model-
Works versions may not allow to open this window in the program state Simulating.

Clear graph /� B: Clears (blanks) all curves in the panel of the graph if the graph win-
dow is currently open. If the latter condition is true it is the same command as
Edit/Clear (see above Menu Edit).

6. 1. 7 MENU SOL VE

If a simulation is started by any of the menu commands available under this menu (Fig. R13),
ModelWorks will enter the state Simulating (Figs. T15, T16, and T24 part II Theory)

Fig. R13: Menu Solve

Start run /� R: Starts an elementary simulation run with the current settings of all values.
Previously drawn curves are not erased unless demanded by a change of the graph
settings since the last simulation (a curve added or removed, scaling changed). In the
upper right corner, the current run number (k) and the current simulation time (t) are
displayed in a small window ('k: t'). This command lasts as long as the simulation
runs. It may be terminated by the simulationist (menu command Stop (Kill) run) or
by the modeller, i.e. if the simulation time reaches the stop time or if the installed ter-
mination condition returns true. Note that the menu command Halt run (Pause) does
not really terminate this command.

Halt run (Pause) /� H or Resume run /� R: Temporarily halts or pauses a simulation run
if the current program state is Simulating. The new program state entered is Pause. If
the current program state is Pause, this menu command will resume the interrupted si-
mulation run where it has been left, i.e. reenter the state Simulating and continue with
the integration, monitoring etc.. A pause can be used to study a curve or a tabulated
result in more detail, or can be used to change model parameters in the middle of a si-
mulation. Note however, that current values of model parameters can only be modi-
fied if the flag rtc (run time change) has been set for that particular parameter. [Key-
board equivalent for Resume run is not available in the PC GEM-Version].

Stop (Kill) run /� K or Stop (Kill) experiment /� K: This command terminates the simu-
lation before the simulation time reaches the stop time tend/kf. It is the only menu com-
mand within the standard simulation environment which allows to terminate a single
simulation run or a structured simulation (experiment) interactively.

ModelWorks 2.2 - Reference

R 109

Start experiment /� E: Executes the currently installed structured simulation, a so-called
experiment. It enters the program state Simulating and calls the procedure which has
been declared as the doExperiment procedure by the model definition program (see
(see this part chapter Client Interface section Simulation Control and Structured Simu-
lation Runs, in particular procedure InstallExperiment from module SimMaster). If no
such procedure has been installed, this command will appear dimmed (inactive) and
can not be chosen. For every additional program level at which the simulation envi -
ronment has been started, an additional Start experiment / command is appended to the
Solve menu [The PC versions support only one program level].

If the monitoring settings for the stash filing of at least one monitorable variable is set
(F/writeOnFile), a stash file with the current stash file name is automatically opened and data are
writ ten onto it according to the current recording flags (see menu command Project descrip-
tion...). However, this behaviour depends also on the current simulation environment mode
(see above menu command File/Preferences…). In case that the mode Always document run
on stash file is currently active, the stash file is opened even if the stash filing is set for no mo-
nitorable variable.

I m p o r t an t n o t i c e: In case there exists already a file with the same name as the current
stash file name, this file will be overwritten without any warning!14 Due to the nature of inter-
active simulation, the overwriting is quite normal and frequent and causes usually no harm.
Hence, the display of an alert would be too cumbersome, but the quiet overwriting can become
dangerous if the modeller programs the stash file name erroneously (see this part chapter Client
Interface section Display and Monitoring, in particular procedures SetStashFileName and
SwitchStashFile from module SimBase).

If the monitoring settings for tabulation or graphing are activated, at begin of a single simulation
run or of a structured simulation the corresponding windows are automatically opened or
brought to the front. If already any of the windows Table or Graph is the front most window,
ModelWorks will not automatically open the other window or bring it to the front. This allows
the simulationist to suppress the automatic opening or bringing to the front of either the table or
graph window by bringing first the other one to the front before she starts or resumes a simula-
tion. If there are no monitorable variables which have an active tabulation setting (T/writeIn-
Table), the table window may not remain open and will be automatically closed in case it should
be already open at the begin of the simulation. If there are no monitorable variables which have
an active graphing setting (Y/isY), the graph window may not remain open and will be automa-
tically closed in case it should be already open at the begin of the simulation. In all other cases
ModelWorks leaves the windows where they are.

6.2 IO-Windows (Input-Output-Windows)

IO-windows serve the entering of new current values (Input) and the display of the current va-
lues (Output) of all models and model objects momentarily present in ModelWorks model base.
For a description of the general operation of IO-windows see also the section on IO-windows
and for the states in which IO-windows accept input see Fig. T24 in part II Theory .

If an IO-windows is currently active, i.e. it is the front most window and enabled, the key-
board's navigation keys (page up/down, home etc.) can be used to scroll and the cursor keys
(cursor up/down) plus key A to select items respectively models or model objects (Tab. R1).

14When using the menu command Select stash file... the simulationist will always be first asked if she really
wants to overwrite in case there should already exist a file with the same name as the stash file.

ModelWorks 2.2 - Reference

R 110

Key
(keyboard
shortcut)

Button
(push
button)

Requires
selection

Effect

Cursor up –

(or)

no Selects the adjacent line respectively item
(model or model object) above the momentari-
ly selected one. In case none is momentarily
selected or no selection is presently visible,
the first at the top of the current page is selec-
ted. In case the item to be selected is on the
adjacent page, the content of the window is
implicitly scrolled by one line (equivalent to
button or). In case all are momentarily
selected (scope All , Fig. T26 part II
Theory), none is selected.

Cursor
down

–

(or)

no Like Cursor up but selects the adjacent item
below the momentarily selected one.

Page up no Scrolls to the adjacent page above the one
shown presently, i.e. scrolls the list of items
down by as many items as given by the cur-
rent size of the IO-window. Note, eventual
selections are not lost when scrolled out of
sight, but remain active.

Page
down

no Like Page up but scrolls to the adjacent page
below respectively scrolls the items up.

Home –
{ }

no Jump to the very first page of the list of items
(equivalent to many clicks into button)

Tail –
{ }

no Like Home but jumps to the very last page

A no Select all items including those currently not
shown (scope All , Fig. T26 part II Theory)
as operand for a subsequent action such as
editing current values.

Tab. R1: In an IO-window generally available keyboard shortcuts, the equivalent
palette buttons, and the corresponding effects. Note, these keyboard shortcuts are
only effective if a currently enabled IO-window is actually the front most window.

By pressing one of the keys Return or Enter, an IO-window specific default action is launched,
given the particular IO-window is active. Depending on the IO-window the default action al-
lows to edit a model’s integration method, a state variable’s initial value, or a parameter’s cur-
rent value, respectively to toggle the drawing of a monitorable variable in the graph. In case of
the IO-window Monitorable variables, additional actions may be launched by pressing one of
the keys C, F, S, T, X, or Y (for details see below).

Note that the keyboard shortcuts of the IO-windows differ from keyboard equivalents for menu
commands, since they do not require to press the key � simultaneously with the short cut.

6. 2. 1 IO-WINDOW MODEL S

The IO-window Models (Fig. R14) displays information (name, identifier, current integration
method) about the installed models. Furthermore it offers a mechanism to select models and to
execute functions, which operate on the selected models as well as their model objects.

ModelWorks 2.2 - Reference

R 111

Fig. R14: IO-window Models showing the list of all (sub)models and offering a
palette of button functions operating on the momentarily selected model(s) and their
model objects. In the example shown the (sub)model pollM and implicitly all its model ob-
jects such as state variables, parameters etc. are momentarily selected.

 Columns set-up: Activates an entry form in which the display of the columns in the IO-
window Models can be controlled (Fig. R15). The columns of which the display can be
turned on or off are:

- Model names: Full names of the models.
- Ident: Short identifiers of the models.
- Integration method: Current integration method.

Fig. R15: Entry form opened by the button in the IO-window Models.

Selects all models. All subsequent button functions will operate on the scope All
(Fig. T26 part II Theory), i.e. on all models respectively all objects of all models currently
installed in the model base.

This function can also be activated by pressing key A, given IO-window Models is front most.

Help respectively model information: Opens or brings a window with the title Model
Help/Info to the front and executes the help or about procedure (formal parameter about) for the
momentarily selected model (works only on a single model and not on multiple selections).
ModelWorks opens only the window, but writes nothing into it. It is up to the procedure about
to write information into this window by output procedures from module DMWindowIO. The
procedure about has been installed by the modeller while declaring the model (see this part
chapter Client Interface section Declaring Models and Model Objects, in particular procedure
DeclM from module SimBase). Typically the modeller uses this help function to inform the si-
mulationist about some model characteristics. For instance the written information may consist
of the model equations, the name of the author(s), or some help information on the model.
This Model Help/Info window remains open until the simulationist closes it. The simulationist
may close, move, or resize it freely.

ModelWorks 2.2 - Reference

R 112

 Set integration method: Opens an entry form in which the integration method for the
momentarily selected model(s) can be set (Fig. R16). This is possible only for continuous
time models (DESS); of course the «integration method» for discrete time models (SQM) or
discrete event models (DEVS) can not be altered.

The following integration methods are available:

Fig. R16: Entry form to select the numerical integration method with which a
continuous time (sub)model is to be integrated during simulations.

- Euler: Simple first order, one-step integration method with fixed integration step (also
Euler-Cauchy method or Runge-Kutta 1st order). This method is fast, but should be
used with caution as it is more likely to produce numerical errors.

- Heun: Second order one-step integration method with fixed integration step (also
Runge-Kutta 2nd order). This method is similar to the trapezoidal rule, but differs
from it inasmuch as it is not iterative.

- Runge-Kutta-4th order: Fourth order one-step integration method with fixed
integration step.

- Runge-Kutta-4/5th order, variable step length 4th/5th order, variable step length
Runge-Kutta-Fehlberg method (ATKINSON & HARLEY, 1983; ENGELN-MÜLLGES &
REUTTER, 1988). The local error is estimated comparing the 5th order with the 4th
order result. Depending on the error estimate the step length is increased or reduced to
obtain optimal results in terms of efficiency and accuracy. This method is most useful
for solving models with derivatives, which strongly vary during the course of a
simulation. [Not available in Reflex and PC GEM-Version]

The number of times the procedure Dynamic is called is equal to the order of the integration
method. Be aware that despite their higher computing load, high order methods are often more
efficient than those of lower order. This is because higher order methods allow for larger
integration steps while retaining the same accuracy. The latter may result in a reduction of the
total number of times the procedure Dynamic has to be computed. However, since the actual
performance depends also on the characteristics of the model, the best method for a particular
model has often to be identified by theoretical considerations or numerical experiments.

This editing function can also be activated by pressing either the key Return or Enter, given the
IO-window Models is front most.

 Reset integration method: Resets the integration method of the momentarily selected
model(s) to their default.

ModelWorks 2.2 - Reference

R 113

Reset initial values: Resets all initial values of the state variables of the momentarily
selected model(s) to their default values.

 Reset parameters: Resets all parameters of the momentarily selected model(s) to their
default values.

 Reset stash filing: Resets the monitoring settings for the stash filing
(F/writeOnFile/notOnFile) of all monitorable variables of the momentarily selected model(s) to
their default settings.

 Reset tabulation: Resets the monitoring settings for the tabulation
(T/writeInTable/notInTable) of all monitorable variables of the selected model(s) to their default
settings.

 Reset graphing: Resets the monitoring settings for the graphing
(X/Y/isX/isY/notInGraph) of all monitorable variables of the selected model(s) to their default
settings.

 Reset scaling: Resets the scaling (minimum and maximum on ordinate) of all moni-
torable variables of the selected model(s) to their default values.

Reset curve attributes: Resets all curve attributes (colour or stain, line style, and
symbol) of all monitorable variables of the selected models to their default values.

6.2.2 IO-WINDOW STATE VARIABL ES

The IO-window State variables displays information (name, identifier, unit, current initial va-
lue) about the installed state variables of all models (Fig. R17). Furthermore it offers a mecha-
nism to select state variables and to execute functions, which operate on the current initial va-
lues of the selected state variables.

Fig. R17: IO-window State variables showing the list of all state variables and of-
fering a palette of button functions operating on the current initial values of the mo-
mentarily selected state variables. In the example shown the model Larch Bud Moth... has
two state variables, i.e. rf and eggs. Momentarily all state variables are selected, which has been
accomplished by clicking button .

ModelWorks 2.2 - Reference

R 114

 Columns set-up Activates an entry form in which the display of the columns in the IO-
window State variables can be controlled (Fig. R18). The columns of which the display can
be turned on or off are:

- State variable names: Full names of the state variables.

- Ident: Short identifiers of the state variables.

- Unit: Unit in which to measure the values of the state variables.

- Initial value: Current initial value of the state variable used to initialize the state
variables at the begin of each simulation run.

Fig. R18: Entry form opened by the button in the IO-window State variables.

Selects all state variables: All subsequent button functions will operate on the scope All
(Fig. T26 part II Theory), i.e. on all state variables of all models currently installed in the
model base.

This function can also be activated by pressing the key A, given the IO-window State variables
is front most.

Set initial value: Opens an entry form in which the current initial value for the selected
state variable(s) can be edited. ModelWorks rejects any attempt to enter a value out of the range
as defined by the modeller in the model definition program. If a multiple selection of state
variables has been made, not only one but a series of entry forms will be offered, one form for
each state variable. This sequence can be terminated by pressing the push-button Cancel. Note
however, that in the latter case all changes which have been made to state variables before, can
no longer be reversed (since their editing has already been made final by pressing the push
button Ok). Only eventual changes made to the state variable momentarily in display will be
discarded.

This editing function can also be activated by pressing either the key Return or Enter, given the
IO-window State variables is front most.

Reset initial value: Resets the initial values of the momentarily selected state variable(s)
to their default values.

6.2.3 IO-WINDOW MODEL PARAM ETERS

The IO-window Model parameters displays information (name, identifier, unit, value, change at
run time enabled/disabled) about the installed model parameters of all models (Fig. R19).
Furthermore it offers a mechanism to select model parameters and to execute functions, which
operate on the current values of the selected model parameters.

ModelWorks 2.2 - Reference

R 115

Fig. R19: IO-window Model parameters showing the list of all model parameters
and offering a palette of button functions operating on the current values of the mo-
mentarily selected model parameters. In the example shown the first (sub)model Potato...
has five model parameters (kGrowth, kLeaf etc.), the second Weather... has more than could be
displayed here, thus only the first, i.e. Inp, is visible in this page of the IO-window. To see more
parameters the list would have to be scrolled by clicking into the button or by enlarging the
size of the window. Momentarily no model parameter is selected.

 Columns set-up: Activates an entry form in which the display of the columns in the IO-
window Model parameters can be controlled (Fig. R20). The columns of which the display
can be turned on or off are:

- Parameter names: Full names of the model parameters.

- Ident: Short identifiers of the model parameters.

- Unit: Unit in which to measure the values of the model parameters.

- Value: Current value of the model parameters.

- RTC: (rtc/noRtc - runtime change/no runtime change). The value in this column
shows whether a parameter may be changed during a simulation run or not. In order
to warrant consistency, the modeller can prevent the changing of a parameter value in
the middle of a simulation by disabling this flag (noRtc) when declaring the model
parameter. By default, this column is not shown.

Fig. R20: Entry form opened by the button in the IO-window Model
parameters.

Selects all model parameters: All subsequent button functions will operate on the scope
All (Fig. T26 part II Theory), i.e. on all model parameters of all models currently installed in
the model base.

ModelWorks 2.2 - Reference

R 116

This function can also be activated by pressing the key A, given the IO-window Model
parameters is front most.

Set model parameter value: Opens an entry form in which the current parameter value
for the selected model parameter(s) can be edited. ModelWorks rejects any attempt to enter a
value out of the range as defined by the modeller in the model definition program. If a multiple
selection of model parameters has been made, not only one but a series of entry forms will be
offered, one form for each model parameter. This sequence can be terminated by pressing the
push-button Cancel. Note however, that in the latter case all changes which have been made to
model parameters before, can no longer be reversed (since their editing has already been made
final by pressing the push button Ok). Only eventual changes made to the model parameter
momentarily in display will be discarded.

This editing function can also be activated by pressing either the key Return or Enter, given the
IO-window Model parameters is front most.

Reset model parameter: Resets the parameter values of the momentarily selected model
parameter(s) to their default values.

6.2.4 IO-WINDOW MONITORABL E VARIABL ES

The IO-window Monitorable variables displays information (name, identifier, unit, minimal and
maximal value for scaling, current output selection) about the installed monitorable variables of
all models (Fig. R21). Furthermore it offers a mechanism to select monitorable variables and
to execute functions, which operate on the current monitoring settings, scaling, and curve
attributes of the selected monitorable variables.

Fig. R21: IO-window Monitorable variables showing the list of all monitorable
variables and offering a palette of button functions operating on the current monito-
ring settings, scalings, and curve attributes of the momentarily selected monitorable
variables. In the example shown the third (sub)model Observer... is momentarily selected,
which implies that actually all its three monitorable variables (accCPool, totCFixed, avgTotCFix)
are selected. Any subsequent action affects only these selected objects. For instance the button

 would toggle the graphing according to the current setting of the first monitorable variable
(accCPool) and copy that result to all remaining selected objects (totCFixed, avgTotCFix); here
the result would then be that during the next simulation all monitorable variables of submodel
Observer will be plotted in the window Graph.

ModelWorks 2.2 - Reference

R 117

 Columns set-up: Activates an entry form in which the display of the columns in the IO-
window Monitorable variables can be controlled (Fig. R22). The columns of which the
display can be turned on or off are:

- Monitorable variable names: Full names of the monitorable variables.

- Ident: Short identifiers of the monitorable variables.

- Unit: Unit in which to measure the values of the monitorable variables.

- Minimum scaling: Lower value used to scale the values of the monitorable variable on
the ordinate of the graph. By default this column is not shown.

- Maximum scaling: Upper value used to scale the values of the monitorable variable on
the ordinate of the graph. By default this column is not shown.

- Monitoring: This column shows the current output settings, where:

F: Monitorable variable is written onto the stash file

T: Monitorable variable is tabulated in the table

X: Monitorable variable is used as independent or abscissa variable (x-values). If
there is no monitorable variable selected as the abscissa variable, ModelWorks
provides the so-called default independent variable, the simulation time.

Y: Monitorable variable is used to draw a curve. Its values are drawn as ordinate
values (y-values) versus the current independent variable (x-values).

Fig. R22: Entry form opened by the button in the IO-window Monitorable
variables.

Selects all monitorable variables: All subsequent button functions will operate on the
scope All (Fig. T26 part II Theory), i.e. on all monitorable variables of all models currently
installed in the model base.

This function can also be activated by pressing the key A, given the IO-window Monitorable
variables is front most.

Set/delete stash filing (F/writeOnFile/notOnFile): Adds the selected monitorable
variable(s) to the list of variables which are to be written onto the stash file. The function
toggles actually the setting, i.e. if the current setting is on (F) it is disabled, otherwise enabled.
In the monitoring-column of the IO-window the monitorable variables to be written onto the
stash file are marked with an F (Fig. R21). If a multiple selection is active, the function adds
or removes all momentarily selected variables to or from the list, reversing the current setting of
the first variable in the selection.

ModelWorks 2.2 - Reference

R 118

This toggling function can also be activated by pressing the key F, given the IO-window
Monitorable variables is front most.

Reset stash filing: Resets the stash filing of the momentarily selected monitorable
variable(s) to their defaults.

Tabulation: Generally note, that in case that the simulationist makes any fundamental changes
to the table such as removing or inserting columns, ModelWorks redraws the table not later
than the begin of the next simulation run. The actual redrawing time (immediate or deferred) is
determined by the current settings of the mode Once changed, immediately redraw table
(RedrawTableAlwaysMode) of the simulation environment (see also menu command
File/Preferences).

Set/delete tabulation (T/writeInTable/notInTable): Adds the selected monitorable
variable(s) to the list of variables which are to be tabulated in the table window. The function
toggles actually the setting, i.e. if the current setting is on (T) it is disabled, otherwise enabled.
In the monitoring-column of the IO-window the monitorable variables to be tabulated are
marked with an T (Fig. R21). If a multiple selection is active, the function adds or removes all
momentarily selected variables to or from the list, reversing the current setting of the first
variable in the selection.

This toggling function can also be activated by pressing the key T, given the IO-window
Monitorable variables is front most.

 Reset tabulation: Resets the tabulation of the momentarily selected monitorable
variable(s) to their defaults.

Graphing: Generally note, that in case that the simulationist makes any fundamental changes to
the graph such as a redefinition of scales (may also be caused by changing the start (to/κo) or
stop (tend/κf) time, see menu command Settings/Set Global simulation parameters...), removal
or new activation of curves, ModelWorks redraws the graph never later than the begin of the
next simulation run. The actual redrawing time (immediate or deferred) is determined by the
current settings of the mode Once changed, immediately redraw graph (RedrawGraph-
AlwaysMode) of the simulation environment (see also menu command File/Preferences).

Set/cancel variable as x-axis in the graph (X/isX): Sets the selected variable as
independent or abscissa variable (x-values) for the graph. The function toggles actually the
setting, i.e. if the current setting is on (X) it is disabled, otherwise enabled. In the monitoring-
column of the IO-window the monitorable variable to be used as abscissa variable is marked
with an X. If another variable was already selected as the abscissa variable, that is automatically
deselected, since ModelWorks allows only one independent variable at a time. In case that no
monitorable variable is selected as abscissa variable, ModelWorks uses the default independent
variable time. This function will completely erase and redraw the content of the graph window.
This is because it has to redraw the x-axis. This function does not work on a multiple
selection.

This toggling function can also be activated by pressing the key X, given the IO-window
Monitorable variables is front most.

ModelWorks 2.2 - Reference

R 119

Set/delete curve (Y/isY): Adds the selected monitorable variable(s) to the list of variables
which are to be drawn as curves in the graph window. The function toggles actually the
setting, i.e. if the current setting is on (Y) it is disabled, otherwise enabled (Fig. R21). In the
column Monitoring of the IO-window the symbols F, T, or Y are shown in the same colour as
that which is used to draw values of the corresponding variable in the graph. If a multiple
selection is active, the function adds or removes all momentarily selected variables to or from
the list, reversing the current setting of the first variable in the selection (for an example see
Fig. R21). This function will completely erase and redraw the content of the graph window, if
the mode Once changed, immediately redraw graph (RedrawGraphAlwaysMode) of the
simulation environment is currently active (see also File/ Preferences).

This toggling function can also be activated by pressing either the key Return, Enter, or Y,
given the IO-window Monitorable variables is front most.

 Reset graphing: Resets the graphing (X/Y/isX/isY/notInGraph) of the selected
monitorable variable(s) to their defaults.

Set scaling: Opens an entry form in which minimum and maximum values for the
scaling of the selected monitorable variable in the graph can be edited (Fig. R23).

Fig. R23: Entry form opened by the button in the IO-window Monitorable
variables. It allows to set the scaling of a particular monitorable variable in the
window Graph. Only values within these limits will be displayed, i.e. all parts of
the curve which are outside the range [Min,Max] will be clipped.

If a multiple selection of monitorable variables has been made, not only one but a series of entry
forms will be offered, one form for each monitorable variable. This sequence can be terminated
by pressing the push-button Cancel. Note however, that in the latter case all changes which
have been made to variables before, will not be reversed (since their editing has already been
made final by pressing the push button Ok). Only eventual changes made to the monitorable
variable momentarily in display will be discarded. This function causes sooner or later a
complete erase and redrawing of the content of the graph window, because it always affects the
legend. The actual redrawing takes place according to the current settings of the mode Once
changed, immediately redraw graph (RedrawGraphAlwaysMode) of the simulation
environment (see also File/ Preferences).

This editing function can also be activated by pressing the key S, given the IO-window
Monitorable variables is front most.

 Reset scaling: Resets the scaling (minimum and maximum) of the selected monitorable
variable(s) to their default values.

ModelWorks 2.2 - Reference

R 120

Set curve attributes: Opens an entry form in which the attributes for the drawing of a
monitorable variable's curve in the graph window can be edited (Fig. R24). This editing
serves to set or override the automatic definition of curve attributes by ModelWorks. [Since no
colours are available in the PC GEM-Version any settings of the curve attribute stain (colour) is
without effect].

Fig. R24: Entry form opened by the button in the IO-window Monitorable
variables used to edit curve attributes.

The following curve attributes are available: A colour with which curves are drawn on colour
screens, printed on colour printers, or exposed on slide recorders. Note, the colours are
effective regardless of the current screen; for instance, despite a black-and-white screen, once
set, a colour curve attribute, e.g. ruby, will result in the printing of a red curve when the graph
is printed on a colour printer. Line styles affect the style with which connecting lines between
points are drawn. Points can be emphasized by drawing plotting symbols.

The colours are coal (black), snow (white), ruby (red), emerald (green), sapphire (blue),
turquoise (cyan), pink (magenta), and gold (yellow). The graph monitoring procedure
produces line charts, i.e. points are connected with lines, which can be drawn with one of the
following styles:

unbroken _________
broken - - - - - - - -

dashSpotted -.-.-.-.-.-.-
spotted
invisible no drawing of lines at all, may be used to draw scatter plots or

to stop the drawing of a particular section of a curve
purge used to erase already drawn curves
autoDefStyle line style will be determined by ModelWorks according to the

automatic definition mechanism of curve attributes

ModelWorks 2.2 - Reference

R 121

Any character can be used as a plotting symbol, for instance using the plotting symbol "*"
results in curves like ---* ---* ---. Note that using a blank (or 0C) will result in the drawing of
no plotting symbol at all.

If automatic definition of curve attributes is active for one or several monitorable variables, Mo-
delWorks follows a strategy to distribute four colours (stains), four line styles and four sym-
bols to draw curves (see Tab. T1 in part II Theory) for these monitorable variables. This stra-
tegy helps the simulationist to tell curves better apart, regardless whether a particular graph is
displayed on a colour screen or is printed on a black and white printer only. Colours, line
styles, and symbols are distributed among the monitorable variables which currently have the
automatic definition of curve attributes setting active. Which attribute, e.g. colour, is used for
which curve is influenced by the position of a monitorable variable within the chronological
sequence in which it has been activated (Y-toggling) for the graphing. For instance if four
monitorable variables have been activated for graphing, the first activated will automatically be
drawn in black, the second in red, the third in blue, and the fourth in green. However, if the
second is removed from the monitoring, the previously third will be drawn in red and the
previously fourth in blue. If the previously second is now reactivated, it will be drawn in green
(no longer red)!

In case this automatic definition does not please the simulationist, she may override it anytime
and use a particular colour, line pattern, and marking symbol for a curve of a given monitorable
variable. This allows e.g. to use always the same colour for the same variable, such as green
for state variable Grass or blue for a water level. Mark symbols are characters drawn exactly at
the points as defined by the monitoring, line patterns are used to connect these points with
lines. With this technique it is also possible to draw only scatter-grams, instead of line charts
(line style = invisible). The colour currently in use for a particular monitorable variable is not
only shown in the legend and used to draw curves in the graph, but also used to display the
current monitoring settings (F, T, or Y) in the column Monitoring of the IO-window
Monitorable variables (of course only visible on a colour screen).

In order to toggle between automatic definition and its overriding, the simulationist must click
into one of the line style radio buttons or into the radio button Automatic definition. In particu-
lar note, that in the current version of ModelWorks it is not sufficient to select just another
colour (stain) to turn automatic definition off without selecting simultaneously also a new line
style. This is because automatic definition can not be set individually for the various curve
attributes but hold for all curve attributes of a monitorable variable at once; either the curve
attributes of a particular monitorable variable are all defined automatically or all are user
defined.

If a multiple selection of monitorable variables has been made, not only one but a series of entry
forms will be offered, one form for each monitorable variable. This sequence can be terminated
by pressing the push-button Cancel. Note however, that in the latter case all changes which
have been made to variables before, can no longer be reversed (since their editing has already
been made final by pressing the push button Ok). Only the eventual changes made to the moni-
torable variable momentarily in display will be discarded.

This function causes sooner or later a complete erase and redrawing of the content of the graph
window, because it always affects the legend. The actual redrawing takes place according to
the current settings of the mode Once changed, immediately redraw graph (RedrawGraphAl-
waysMode) of the simulation environment (see also menu command File/Preferences).

This editing function can also be activated by pressing the key C, given the IO-window
Monitorable variables is front most.

 Reset curve attributes: Resets the curve attributes of the momentarily selected
monitorable variable(s) to their default values.

ModelWorks 2.2 - Reference

R 122

7 Client Interface

The client interface consists of a mandatory part and an optional part (Fig. T29 part II Theory).
The mandatory part consists of the two modules SimBase and SimMaster, the optional part of
the modules SimDeltaCalc, SimEvents, SimGraphUtils, SimIntegrate, and SimObjects.
Although every model definition program must import from both modules of the mandatory
part, only a small subset of the exported Modula-2 objects are actually needed always. These
few Modula-2 Objects, five procedures and six data types, form the core of the ModelWorks
client interface (Fig. T29 Part II Theory).

All other types and procedures also exported from this interface are optional. Their purpose is
either to serve the convenience of the simulationist or to support the modeller in the program-
ming of advanced structured simulations. For instance, if the simulationist wishes to run a
model in a time range different from the one predefined by ModelWorks, the modeller can
overwrite the ModelWorks predefined defaults (Tab T1 part II Theory) with the values the
simulationist prefers. This is much more convenient as if the simulationist would always have
to assign the desired values interactively at the begin of each simulation session. If a simulation
study has advanced to a later stage, it is often desirable to be able to run multiple simulation
runs in a systematic, well defined way. The interactive control of the simulations becomes then
rather an obstacle than a help. On the other hand, if much effort has been invested in the devel-
opment of a complex model it is desirable to be able to run structured simulations under prog-
ram control using the same model implementation. To support the modeller in such tasks is
exactly the purpose of most of the additional objects exported by the client interface.

The principles behind the usage of the client interface have been described elsewhere (Manual
Part II Theory, in the chapter Modelling). Please consult also the listings of the client interface
definition modules1 plus the sample model definition programs in the appendix while reading
the following explanations of the Modula-2 objects exported by the client interface.

The two mandatory client interface modules which are explained later in more detail serve
the following purposes:

SimBase: Provides procedures for the declaration or modification of models and model
objects; provides control over global simulation parameters, project description,
recording and monitoring options, windows, various preferences, menu keyboard
equivalents and simulation environment modes; allows to specify defaults or current
values and to reset the current values to the defaults.

SimMaster: Exports procedures for starting of the interactive simulation environment and
for the control of single simulation runs or of structured simulations (experiments).

The following five modules constitute the optional client interface of ModelWorks and
will only be briefly described as follows2:

1The appendix contains the definitions of all optional ModelWorks modules and of all auxiliary library modules
listed below. The definitions of SimBase and SimMaster are not in the appendix since all objects exported by
these modules are discussed in the following chapters.

2For more details on the functions provided by these modules refer to the listings of the definition modules in
the appendix.

ModelWorks 2.2 - Reference

R 123

SimDeltaCalc: Provides utilities to calculate deviations between simulated and observed
time series. It is typically used in model validations or in model parameter identifi-
cations.

SimEvents: Supports discrete event simulations.

SimGraphUtils: Provides utilities to make output to the graph window and the graph
such as drawing of additional curves and displaying of validation data at discrete time
points with or without error bars.

SimIntegrate: Provides means to integrate autonomous models without any monitoring
and without affecting the global simulation time of the simulation environment.

SimObjects: Allows for a lower-level, efficient access to models and model objects and
also for attaching of additional attributes to these objects. Using SimObjects may
improve performance of object management substantially, because the mandatory
module SimBase stresses safety over efficiency and traverses the internal data base
before each access: when calling e.g. SetP or SetSV, the owner model's existence is
always tested and the parameter or state variable is searched in the model’s object list.
Hence, using these procedures from within a loop may be very tedious and cumber-
some. To better support object access, for instance in order to change the default and
current values of model objects in a loop, you may better use the access mechanisms
provided by SimObjects . CAUTION: wrong usage of these mechanisms can have
serious consequences! Particularly do not remove or add any objects, nor change the
addresses of any objects in the lists available. Usage of this module is recommended
for advanced programmers only.

The following modules belong to the auxiliary library . They may also be used
independently of ModelWorks, but are briefly described below since they are frequently needed
in research involving modelling and simulation studies3:

Identification: to identify model parameters of a ModelWorks model definition program.
It minimizes a performance index (see also SimDeltaCalc) between a given particular
model behavior and the current model behavior by various minimization methods (for
an example see Appendix sample model GauseIdentif).

JulianDays: Provides calendar procedures to convert calendar dates into Julian days and
vice versa. Julian days are needed for calculations on dates, e.g. to compute an
elapsed time between two dates.

RandGen: Contains a pseudo-random number generator for variates uniformly
distributed within interval (0,1] (for examples see Appendix sample models Diversity,
Markov, StochLogGrow, or CarPollution).

RandNormal: provides a pseudo-random number generator for normally distributed
variates ~N(µ,σ) (for an example see Appendix sample model StochLogGrow).

ReadData: Allows to read data from an input file and to test various conditions (such as a
minimum-maximum range) in an easy way. It is typically used to enter measurements
stored on text data files into ModelWorks, for instance to compare simulated with
observed data (for an example see Appendix sample model SwissPop).

3For more details on the functions provided by these modules refer to the listings of the definition modules in
the appendix.

ModelWorks 2.2 - Reference

R 124

StructModAux: Provides support for the implementation of structured models where the
submodels reside in separate modules. The module allows to install a custom menu to
activate/deactivate models or submodels, and supports the maintenance of the global
simulation parameters by a master model definition program. (for examples see Ap-
pendix sample models GreenHouse or LBM)

TabFunc: Allows for usage and graphical editing of non-linear functions which are
defined by piece wise linear inter- resp. extrapolation according to a table of x-y
values (for examples see Appendix sample models SwissPop or UseTabFunc).

WriteDatTim: Can be used to write dates and times as accessed by means of DMClock .
This may be useful to record begin and end of a long simulation experiments (for an
example see Appendix sample model Markov).

Since ModelWorks has been designed as an open architecture and is based on Modula-2, the
modeller is free to extend the auxiliary library by any module she wishes. In particular, there is
also the possibility to use any object from the "Dialog Machine". The majority of the latter is
contained in the kernel of ModelWorks and resides together with any model definition program
already in the memory. Hence this part of the "Dialog Machine" can be used by the modeller
without any penalty. Those modules of the "Dialog Machine" which are not in use by
ModelWorks can then be considered as a particular extension of the auxiliary library (Fig. T29
in part II Theory).

7.1 Declaring Models and Model Objects

This section describes the core of the ModelWorks client interface, i.e. those procedures and
types which are used by every model definition program.

Fundamental functions, for instance the activation by the standard, interactive simulation
environment or states of the environment, are exported by module SimMaster. The
instantiation respectively declaration of models and model objects, the accessing, i.e. retrieval
and new setting, of these objects, as well as the removal of them are functions exported by
module SimBase.

7. 1. 1 RUNNING A SIM UL ATION SESSION

The standard, interactive simulation environment is started whenever a program calls the
procedure from the client interface module SimMaster.

 PROCEDURE RunSimEnvironment(initSimEnv: PROC);

This is the only statement which the model definition program must execute in order to use the
standard ModelWorks interactive simulation environment. The argument initSimEnv refers to a
procedure which will typically declare the models including all their model objects by calling the
procedure DeclM from module SimBase (s.a. below section Declaration of model). The proce-
dure often contains also calls to procedures which set defaults for the global simulation parame-
ters such as SetDefltGlobSimPars. Upon returning from this procedure, all elements of the
standard user interface (menus and windows) are removed, but the calling program may pro-
ceed with the full ModelWorks functionality still present at the client interface.

It is also possible to use RunSimEnvironment only for the installation of extra menus and menu
commands in the "Dialog Machine" to expand the standard simulation environment. For
instance the procedure may contain no calls to any model object declarations at all, but the menu
commands it installs allow for the activation of models, since they are bound to procedures
which call the model and model object declaration procedures DeclM, DeclSV, DeclP, and
DeclMV (s.a. below section Declaration of model). There may also be menu command

ModelWorks 2.2 - Reference

R 125

procedures installed which remove models, so that a full dynamic model loading and unloading
becomes possible during a simulation session (for an example see the research sample model
Population dynamics of larch bud moth in the Appendix). Any menu installation called within
procedure initSimEnv will be placed on the right side of the menu bar as it is installed by
ModelWorks' simulation environment. After the execution of the initSimEnv procedure
RunSimEnvironment starts the "Dialog Machine" by calling procedure RunDialogMachine from
module DMMaster.

The modeller can declare a “simulation environment definition (or customization) procedure”
defineSimEnv to ModelWorks by calling DeclDefSimEnv from SimMaster. ModelWorks will
then call this procedure after having called initSimEnv and after having performed a global
reset. Execution defineSimEnv is the last action performed at starting up of the interactive envi-
ronment. Also, it represents the first event that will be handled by the "Dialog Machine".

 PROCEDURE InstallDefSimEnv(defineSimEnv: PROC);

The installed defineSimEnv procedure will be also executed whenever the simulationist chooses
the command Settings/Define simulation environment., e.g. in order to (re)show a window, to
read data (anew) from a file, or to customize monitoring settings by means of calls to SetMV.

The currently installed defineSimEnv procedure may be executed from the client interface by
calling

 PROCEDURE ExecuteDefSimEnv;

Since the standard simulation environment may not be started more than once on the same
program level, the procedure

 PROCEDURE SimEnvRunning(progLevel:CARDINAL):BOOLEAN;

allows to find out whether the simulation environment is currently running on a particular
program level or not.

7. 1. 2 DECL ARATION OF M ODEL S

Models are represented in ModelWorks by means of variables of the type

 TYPE Model;

It is recommended to initialize all model-variables in the body of a model definition program
using the variable

 VAR notDeclaredModel: Model; (* read only variable *)

as follows:

MODULE MyModelDefProg;

...

VAR

 myModel: Model;

...

BEGIN

 myModel := notDeclaredModel;

 ...

END MyModelDefProg.

A model or a submodel is declared to ModelWorks or installed in the interactive simulation
environment with the procedure DeclM:

ModelWorks 2.2 - Reference

R 126

 PROCEDURE DeclM (VAR m: Model;
defaultMethod: IntegrationMethod;
initialize, input, output, dynamic, terminate: PROC;
declModelObjects: PROC;
descriptor, identifier: ARRAY OF CHAR;
about: PROC);

This procedure can be called any number of times, but should be called for each model only
once4, unless it has been removed in the meantime. Normally, DeclM will be called in the
states No Model or No Simulation of the simulation environment. However, it may also be
called in any other state of the simulation environment. Hereby DeclM may be called either
from within a client procedure (e.g. initialize or during integration (dynamic) of an other
model), or by the simulationist, based on an extension of the standard user interface (e.g. by
means of a separately installed menu) (s.a. part II Theory Fig. T15, T16 and Tab. T4).

m is a variable of the opaque type Model exported by SimBase. It may be used for
further references to the model, e.g. when accessing a model in order to change its
integration method with procedure SetM. It must be declared in the model definition
program. It does not matter where, but m must be a global variable which exists as
long as the model definition program.

 IntegrationMethod = (Euler, Heun, RungeKutta4,
 RungeKutta45Var, stiff,
 discreteTime, discreteEvent);

defaultMethod is the default integration method with which the model will be solved
during simulations5. Moreover the modeller defines with this parameter also the type
of model, i.e. whether it is a continuous time, a discrete time, or a discrete event
model. If the method discreteTime or discreteEvent is specified, the model is
declared as a discrete time or discrete event model, respectively. Note that models of
type discreteEvent must not be declared by means of DeclM but should be declared
with the corresponding procedure DeclDEVM from module SimEvents6. All
remaining integration methods are used for the class of the continuous time models.
The default integration method is (re)assigned to the current integration method by
ModelWorks when the model is declared, at starting up of the interactive simulation
environment7, or after every reset of the integration methods. During a simulation
session the current integration method may be changed by the modeller via the
procedure SetM, or by the simulationist via the models IO-window. Note that this
mechanism makes it possible, that every continuous time model uses a different
integration method. Though the simulationist may change only the integration method
of continuous time models, the modeller may do so for all types of models; e.g. she
may change a discrete time model to a continuous time model and vice versa at any
time using SetM or preferablySetDefltM (the latter is preferable since it implies a
change of the model equations, thus the procedure dynamic needs also to be changed).

The following five formal procedure parameters are procedures which will be called by
ModelWorks during simulations:

4 Should DeclM be called for the same model variable m more than once, ModelWorks will display an error
message and the simulation program will be halted.

5Integration method stiff is not available in the current implementation of ModelWorks, such that any attempts
to assign this method to a model will lead to an error message and a halt of the simulation program.

6See the description of the definition module in the Appendix, section ModelWorks Optional Client Interface.
7Reset is however not performed if the interactive simulation environment is already running and is only

restarted on a new program level.

ModelWorks 2.2 - Reference

R 127

initialize is called only once at the begin of each simulation run (Fig. T18 part II
Theory). It may be used freely to execute any task at the begin of a run, such as
opening a file for writing data during the simulation run or assigning new initial values
to state variables by calling SetSV.

input calculates the input variables of model m (Eq. 4.4 resp. 5.4). It is called only
once during a time step, but many times during a simulation run (Fig. T19).

output calculates the output variables of model m (Eq. 4.2 resp. 5.2). It is called
only once during a time step, but many times during a simulation run (Fig. T19).
Note the implementation restriction that output variables must not depend directly on
input variables (see Manual Part II Theory, chapter Model formalisms.

dynamic contains the model equations of model m (Eq. 4.1 resp. 5.1 or 8a, 8b, and
8c). In the case of a continuous time model it calculates the new derivatives from the
current values of the state variables (Eq. 4.1 or 8a and 8c). Depending on the order of
the integration method, this procedure is called at least once up to several times during
a time step. In the case of a discrete time model (Eq. 5.1 or 8b and 8c) it calculates the
new state vector directly and is only called once during a time step (Fig. T19).

terminate is called once at the end of each simulation run (Fig. T18). It may be used
freely to execute any task at the end of a run, such as closing a file which has been
written during the simulation run etc.

declModelObjects declares all model objects, i.e. state variables, model parameters, and
monitorable variables of model m. Typically this procedure contains calls to the
procedures DeclSV, DeclP, and DeclMV. It is also possible to leave the body of this
procedure empty, e.g. by using NoModelObjects, and to defer all model object
declarations to a later time (note that this requires proper programming of such a
feature, since it is not available in the standard simulation environment).

See to it that calculations, which should be performed only once per time step, are included in
the procedure input or output only, not in the procedure dynamic, which may called more than
once per time step. For further information on the correct use of these procedures see part II
Theory, chapter Simulations and the Run-Time System in particular section Integration
respectively time step (s.a. Figs. T19-T22).

Note that if ModelWorks resides in either the state No Model or No Simulation, DeclM calls
the declModelObjects-procedure only. However, if DeclM is called in one of the states
Simulating or Pause, it behaves differently and calls more client procedures than just
declModelObjects. In order to synchronize the newly declared model with the already existing
ones, one or several of the client procedures initialize, output, input, or dynamic will also be
called. The calling sequence will depend on which part of the model integration loop is
currently executed (see part II Theory, chapter Simulations and the Run-Time System in
particular Figs. T19-T22, section Manipulating the model base at run-time and Tab. T4)8.

The last three formal procedure parameters are used to identify and describe a model, so that the
simulationist may recognize it during simulation sessions:

descriptor String containing a long description of the model m

8For example, if a model is declared from within an other model’s terminate procedure, the procedures initialize,
output, input and dynamic of the new model will be called by DeclM (dynamic: may be hereby called more than
once, depending on the model’s integration method). Than the run-time system will proceed with the
termination of the run by calling the terminate procedures of any remaining, already declared models, followed by
the terminate procedure of the new model, which is always inserted at the end of the models list.

ModelWorks 2.2 - Reference

R 128

identifier Short string identifying the model m. Although there is no limit to the actual
size of this string, it is advisable to keep it as short as possible.

about Procedure allowing to write information about the model, e.g. by using
routines such as WriteString, WriteLn etc. from the "Dialog Machine" module
DMWindowIO, into the help window. This procedure is called for the currently se-
lected model whenever the simulationist clicks into the Help/model information button
of the Models IO-window (s.a. chapter 6.2.1, Part III, Reference/User Interface).

If the modeller wishes to share the same about procedure for several models, the actually
requested model may be find out by means of

 PROCEDURE CurAboutM(): Model;

which returns the reference to this model. If called outside an about-procedure, CurAboutM
will return notDeclaredModel.

For more convenience the following procedures from module SimBase with an empty body can
be used as actual arguments when calling DeclM.

 PROCEDURE NoInitialize;
 PROCEDURE NoInput;
 PROCEDURE NoOutput;
 PROCEDURE NoDynamic;
 PROCEDURE NoTerminate;
 PROCEDURE NoModelObjects;
 PROCEDURE NoAbout;
 PROCEDURE DoNothing;

In particular, the currently set procedures initialize, input, output, dynamic, terminate and about
may be dynamically changed by calling SetDefltM at a later stage (see below).

Once a model has been declared, it is ready for the declaration and the attaching of model
objects to it. Typically model object declaration procedures are called immediately following
the call to DeclM. However, the following procedure can be used to change this behaviour, so
that model objects can be attached to models in any sequence:

 PROCEDURE SelectM (m: Model; VAR done: BOOLEAN);

The latter is particularly important if models and their model objects are declared dynamically
during a simulation session. This feature is not supported by the standard simulation
environment, but such an extension can be easily programmed via the client interface by the
modeller. The modeller will then use procedure SelectM to attach model objects to the proper
model.

7. 1. 3 DECL ARATION OF STATE VARIABL ES

The following types should be used to declare state variables and their derivatives or new states:

 TYPE StateVar = REAL; Derivative = REAL; NewState = REAL;

These types are equal to and fully compatible with the type REAL. Their usage is recom-
mended since the identifiers are self-documenting and enhance the readability of the model
definition program.

State variables are declared as variables of the type StateVar in the model definition program,
derivatives are of type Derivative. In case of discrete time models it is recommended to use the
types StateVar for x(k) and NewState for x(k+1). They may be declared anywhere in the

ModelWorks 2.2 - Reference

R 129

program and may be part of a structured data type. E.g. the following variables x and z may be
used as state variables respectively state vector:

CONST MaxStateVars = 16;

VAR

 x : StateVar;

 xDot: Derivative;

 z : ARRAY [1..MaxStateVars] OF StateVar;

 zDot: ARRAY [1..MaxStateVars] OF Derivative;

In order to declare a state variable s to ModelWorks and install it in the simulation environment,
the procedure DeclSV must be called. This procedure may not be called another time with the
same variable s (see below), unless the state variable has been removed in the meantime.
Typically, DeclSV is called in the states No Model or No Simulation of the simulation
environment (s.a. part II Theory Fig. T15),. This is done either from within the parent
model’s declModelObjects procedure, or at some later time point, once the parent model has
been declared.

 PROCEDURE DeclSV (VAR s: StateVar; VAR ds: Derivative (*or NewState*);
defaultInitial, minCurInit, maxCurInit: REAL; descriptor,
identifier, unit: ARRAY OF CHAR);

The state variable will belong to the last declared model (procedure DeclM), unless the
procedure SelectM has been called to select another model. The meanings of the formal
procedure parameters of DeclSV are:

s Variable to be declared as a state variable. DeclSV assigns to s the value defaultInitial.
The real variable s can be declared anywhere in the model definition program and may
be even part of any data structure. However make sure that it is declared as a global
variable and that it does exist as long as the model definition program.

ds Variable to be declared as the derivative ds/dt (for continuous time models using time
t as independent variable) or the new value s(k+1) (for discrete time models using time
k as independent variable) of s. For every state variable the derivative or the new
value must be assigned to this variable by the procedure dynamic, which is called
during numerical integration. Normally ds appears only on the left side of the
dynamic equations in procedure dynamic. DeclSV assigns to ds the value 0.0.

defaultInitial Default initial value for state variable s. ModelWorks uses the current
initial value at the beginning of each simulation run to initialize s. The default initial
value is assigned to the current initial value at declaration of the state variable, at
starting up of the interactive simulation environment9, or after every reset of the
model’s state variables. The default initial value may be changed only by the model-
ler, using procedure SetDefltSV, whereas the current initial value may be changed by
both, the modeller and the simulationist, via the procedure SetSV, or via the state
variables IO-window, respectively. Note that in case the modeller directly overwrites
variables within procedure initialize (see procedure DeclM), the current initial value
displayed in the IO-window will be inconsistent with the initial value actually used in
the simulation. This is because ModelWorks assigns the current initial value to s just
before the initialize procedure is called. Avoid direct overwriting of s and use the
procedure SetSV instead.

minCurInit, maxCurInit Lower and upper bounds for the current initial value.
Attempts by the simulationist to assign values out of this range are not accepted.

9Reset is however not performed if the interactive simulation environment is already running and is only
restarted on a new program level.

ModelWorks 2.2 - Reference

R 130

descriptor String containing a long description of the state variable s. This string may
have any length, but might not be visible till its end when it is too long to fit into the
IO-window column where it is displayed during a simulation session (see also
identifier). Example: "Density of alga Scenedesmus obliquus".

identifier Short string identifying the state variable s. This string should be kept as
small as possible in order to ensure full visibility for the display in small IO-windows
during a simulation session. In particular on small screens, IO-windows become
small in the tiled window position (see menu command Tile windows) and they will
display only this identifier to denote the state variable s. Example: "sa".

unit String containing the unit used to measure values of the state variable s. This
string is displayed in IO-windows during a simulation session. Example: "cells/ml".

7. 1. 4 DECL ARATION OF M ODEL PARAM ETERS

A time invariant model parameter p, which the simulationist should be able to change
interactively during simulation sessions, should be declared as being of the type

 TYPE Parameter = REAL;

Declaration is done by means of the procedure

 PROCEDURE DeclP (VAR p: Parameter; defaultVal, minCurVal, maxCurVal: REAL;
runTimeChange: RTCType; descriptor, identifier,
unit: ARRAY OF CHAR);

DeclP may not be called with the same variable p, unless the model parameter has been
removed in the meantime. It will typically be used in a similar manner as already described for
DeclSV above. The value of the parameter p can be changed within the range [minCurVal,
maxCurVal], and be reset to its default value defaultVal. A parameter change in the middle of a
simulation run can lead in some application to data inconsistencies. It can therefore selectively
be allowed or prevented with the parameter runTimeChange of the type

 TYPE RTCType = (rtc, noRtc);

The meanings of the parameters of procedure DeclP are:

p Variable of type Parameter to be declared as model parameter. DeclP assigns to p its
default value defaultVal. The real p can be declared anywhere in the model definition
program and may be even part of any data structure. However make sure that it is
declared as a global real variable and does exist as long as the model definition
program.

defaultVal Default value for the model parameter p. The default value is (re)assigned to
the current parameter value p by ModelWorks at the parameter’s declaration, at
starting up of the interactive simulation environment10, or after every reset of the
model parameters. During a simulation session the current parameter value p may be
changed by the simulationist (using an IO-window) or by the modeller via overwriting
the value of p with another value, e.g. within procedure initialize (see procedure
DeclM) by calling procedure SetP.

10Reset is however not performed if the interactive simulation environment is already running and is only
restarted on a new program level.

ModelWorks 2.2 - Reference

R 131

minCurVal, maxCurVal Lower and upper value bounds for p. Attempts by the
simulationist to assign values out of this range are not accepted.

runTimeChange rtc (=run time change) allows for interactive changing of values of
model parameter p during a simulation run in the program state Pause . noRtc (=no
run time change) disallows completely any changing of values of the model parameter
p during a simulation run, even in the program state Pause.

descriptor String containing a long description of the model parameter p. This string
may have any length, but might not be visible till its end when it is too long to fit into
the IO-window column where it is displayed during a simulation session (see also
identifier). Example: "Half saturation constant for algal growth".

identifier Short string identifying the model parameter p. This string should be kept as
small as possible in order to ensure full visibility for the display in small IO-windows
during a simulation session. In particular on small screens, IO-windows become
small in the tiled window position (see menu command Tile windows) and they will
display only this identifier to denote the model parameter p. Example: "Ks".

unit Unit in which to measure values of the model parameter p. This string is
displayed in IO-windows during a simulation session. Example: "µg/l".

Besides ordinary, i.e. time independent, model parameters and state variables, complex
systems contain other classes of variables. They are time variant parameters, inputs, outputs,
and the so-called auxiliary variables. The latter are internal, time dependent variables which are
neither state variables, nor inputs nor outputs. In order to support these types of variables,
module SimBase exports three additional real types:

 TYPE AuxVar = REAL; InVar = REAL; OutVar = REAL;

Time variant parameters which do not depend on the state of any model are best treated as input
variables or auxiliary variables. Variables of type AuxVar are typically used to store
intermediate results during complex calculations of derivatives or new states. If a time variant
parameter depends on the state of a model, it is best treated as an output variable of the model
on which it depends, and as an input variable in all other models. If the simulationist wishes to
edit the values of time variant parameters interactively during a simulation session, it is
recommended to use the series of values as a table function, where the independent variable is
time11. Note, since auxiliary, input, and output variables are fully compatible with the standard
type REAL, all can also be declared as monitorable variables (see DeclMV below).

7. 1.5 DECL ARATION OF M ONITORABL E VARIABL ES

Every real variable may be declared as a monitorable variable. This allows the simulationist to
monitor or observe its values from within the interactive simulation environment, as well as the
modeller to document simulation results on file, independent from whether the standard
interactive simulation environment is running or not. There apply no restrictions nor does the
monitoring exert any influence on the variables monitored. Simply call procedure

 PROCEDURE DeclMV(VAR mv: REAL; defaultScaleMin, defaultScaleMax: REAL;
 descriptor, identifier, unit: ARRAY OF CHAR;
 defaultSF: StashFiling; defaultT: Tabulation;
 defaultG: Graphing);

11See the Appendix, section Auxiliary Library for a detailed description on how to work with table functions.

ModelWorks 2.2 - Reference

R 132

and the real mv passed as actual argument is associated with the ModelWorks monitoring
mechanism, i.e. its values may be written onto the stash file, tabulated or plotted in the graph
from within the simulation environment. You can also pass variables of types compatible with
the type REAL (e.g. StateVar, Derivative or NewState, and AuxVar, InVar, or OutVar) as
arguments. DeclMV may not be called another time for the same real variable mv, unless it
should have been removed in the meantime.

Note that calling DeclMV in one of the simulation environment states Simulating or Pause (s.a.
part II Theory Fig. T26) – either directly, or implicitly from within a model’s declModel-
Objects procedure – may affect the monitoring settings of the ongoing simulation. If tabulation
or graphing are requested for the new variable, the respective window will be cleared at the next
monitoring event and any previously displayed results will be lost. If stash filing is requested,
a new sub-section of simulation results containing the new monitorable variable will be started
in the stash file.

The following types are used to control the actual monitoring settings for each kind of
monitoring:

 TYPE
 StashFiling = (writeOnFile, notOnFile);
 Tabulation = (writeInTable, notInTable);
 Graphing = (isX, isY, isZ, notInGraph);

The monitoring settings can be independently activated or deactivated and for every monitorable
variable the simulationist can control them interactively during simulation sessions. The
meaning of the formal procedure parameters of DeclMV are:

mv The variable to be declared as monitorable variable. The real mv can be declared
anywhere in the model definition program and may be even part of any data structure.
However make sure that it is declared as a global real variable and does exist as long
as the model definition program.

defaultScaleMin/defaultScaleMax Default minimum and maximum values used
for the scaling of the curve to the ordinate while drawing values of the monitorable
variable mv in the graph. The default minimum and maximum of the ordinate scale
are (re)assigned to the current scale minimum and scale maximum by ModelWorks at
the monitorable variable’s declaration, at starting up of the interactive simulation
environment12 or after every reset of the scaling. During a simulation session the
current scale minimum and scale maximum may be changed by the simulationist
(using an IO-window) or by the modeller via procedure SetMV. There apply no
restrictions to the values of these variables. During interactive changes ModelWorks
will use the range boundaries MIN(REAL) and MAX(REAL).

descriptor String containing a long description of the monitorable variable mv. This
string may have any length, but might not be visible till its end when it is too long to
fit into the IO-window column where it is displayed during a simulation session (see
also identifier). Example: "Density of alga Scenedesmus obliquus".

identifier Short string identifying the monitorable variable mv. This string should be
kept as small as possible in order to ensure full visibility for the display in small IO-
windows during a simulation session. In particular on small screens, IO-windows
become small in the tiled window position (see menu command Tile windows) and
they will display only this identifier to denote the monitorable variable mv. Example:
"xa".

12Reset is however not performed if the interactive simulation environment is already running and is only
restarted on a new program level.

ModelWorks 2.2 - Reference

R 133

unit String containing the unit used to measure values of the monitorable variable
mv. This string is displayed in IO-windows during a simulation session. Example:
"cells/ml".

defaultSF, defaultT, defaultG Default settings for the kind of monitoring for the
monitorable variable mv. If defaultSF, defaultT, defaultG are selected to be written
on a file, tabulated or to be plotted, the values of the variable mv is written in the
default stash file, resp. table, or drawn in the graph as a curve versus the current
independent variable, usually simulation time. The defaults for the kind of monitoring
are (re)assigned to the current kind by ModelWorks at the monitorable variable’s
declaration, at starting up of the interactive simulation environment or after every reset
of the stash filing, tabulation respectively graphing. During a simulation session the
current kind of monitoring may be changed by the simulationist (using the IO-window
for monitorable variables) or by the modeller via procedure SetMV.

7. 1. 7 TESTING FOR THE PRESENCE OF OBJECTS

The following procedures can be used to check, whether models or model objects have already
been declared:

 PROCEDURE MDeclared (m: Model) : BOOLEAN;
 PROCEDURE SVDeclared(m: Model; VAR sv: StateVar) : BOOLEAN;
 PROCEDURE PDeclared (m: Model; VAR p : Parameter): BOOLEAN;
 PROCEDURE MVDeclared(m: Model; VAR mv: REAL) : BOOLEAN;

Note that the last three procedures will also return FALSE in case the corresponding model is
not known to ModelWorks.

7.2 Accessing Defaults and Current Values

During simulations ModelWorks uses many internal parameters, settings and other variables,
the so-called defaults and current values (Fig. T22). They can be accessed by the modeller in
order to control simulations in a similar way the simulationist may access them. One class of
procedures lets the modeller retrieve values, but not change them (read only values), e.g. the
simulation time or the default independent variable. Another class of procedures lets the model-
ler get and set values, e.g. GetGlobSimPars or GetP respectively SetGlobSimPars or SetP.
The accessible values are grouped into several categories: the global simulation parameters
(including the flags controlling the types of data written to the stash file), the variables
associated with the models and the model objects, the settings of the ModelWorks windows,
and the name and signature of the stash file. Each of these categories exists in two copies, the
defaults and the current values. The following subchapters explain the procedures available for
all above categories, except for the window-settings and attributes of the stash file, which are
explained later.

7. 2. 1 GL OBAL SIM UL ATION PARAM ETERS AND PROJECT DESCRIPTION

The global read-only variables are given in Tab. R1 and the global simulation parameters used
to control simulations in Tab. R2. The variables listed in Tab. R3 are used for the project
description.

The first column in each table contains the identifiers used to designate the variables in the client
interface. The second column contains the symbols used to denote the variables in this manual,
in particular part II, Theory.

ModelWorks 2.2 - Reference

R 134

Identifier Symbol Meaning
CurrentTime t Current simulation time or independent variable for continuous

time models
CurrentStep k Current simulation time or independent variable for discrete

time models
LastCoinci-
denceTime

– Last simulation time point at which the state of all discrete time
models was updated, or would have been updated if such
models were present

CurrentSimNr – Number of the current simulation run

Tab. R1: Read-only global simulation variables internally used by ModelWorks.

Identifier Symbol Meaning
t0 to/ko Simulation start time

tend tend/kf Simulation stop time

h h/hmax Integration step (if fixed step length method) maximum
integration step (if at least one variable step length method in
use) (h is only used if at least one continuous time model is
present)

er er Maximum relative local error (er is only used if at least one
variable step length method is in use)

c c Discrete time step (if only discrete time models present).
Coincidence interval (if continuous as well as discrete time
models present)

hm hm Monitoring interval

Tab. R2: Global simulation parameters of ModelWorks.

Identifier Symbol Meaning
title – Project title string

remark – Remark string

footer – Footer string

wtitle – With title in graph

wremark – With remarks in graph

autofooter – Automatic update of date, time, and run number in footer

recM – Recording of data on models in stash file

recSV – Recording of data on state variables in stash file

recP – Recording of data on model parameters in stash file

recMV – Recording of data on monitorable variables in stash file

recG – Recording of graph in stash file at end of run

recTF – Recording of data on table functions in stash file

Tab. R3: Global project description of ModelWorks.

ModelWorks 2.2 - Reference

R 135

7.2.1.a Retrieval of read only current values

A user can access internal variables (Tab. R1) of ModelWorks by means of special procedures.
This guarantees undisturbed data consistency. For instance, the procedure

 PROCEDURE CurrentStep(): INTEGER;

exported by module SimMaster, returns the current simulation step, i.e. the current value of
discrete time (must not be confounded with the integration step used by numerical integration
for continuous time models). Note that this simulation step can only be read but not changed.

 PROCEDURE CurrentTime(): REAL;

Returns the current simulation time, i.e. the current value of continuous time. Note that the
simulation time can only be read but not changed.

 PROCEDURE LastCoincidenceTime(): REAL;

Returns the last time point at which the state of all discrete time models was (would have been)
updated . Note that this time point may be retrieved even if no discrete time models are
currently declared within ModelWorks. This time point can only be read but not changed.

 PROCEDURE CurrentSimNr(): INTEGER;

Returns the current simulation run number k during structured simulations (k = 1, 2, 3...)
(Fig. T16). Note that even aborted runs are numbered. This procedure is typically called in
the client procedure initialize, e.g. to assign parameter values depending on the current run.
Note k can only be read but not changed.

7.2.1.b Modification of defaults

The predefined values ModelWorks uses as defaults are listed in Tab. T1 (manual part II
Theory). If the modeller wishes to change, i.e. overwrite, them she may access any of the
variables listed in the tables Tab. R2 or R3 with a SetDefltxyz procedure, i.e. a procedure with
an identifier starting with SetDeflt.

 PROCEDURE SetDefltGlobSimPars(t0, tend, h, er, c, hm: REAL);
 PROCEDURE GetDefltGlobSimPars(VAR t0, tend, h, er, c, hm: REAL);

 PROCEDURE SetDefltProjDescrs(title,remark,footer: ARRAY OF CHAR;
 wtitle,wremark,autofooter,
 recM, recSV, recP, recMV, recG: BOOLEAN);

 PROCEDURE GetDefltProjDescrs(VAR title,remark,footer: ARRAY OF CHAR;
 VAR wtitle,wremark,autofooter,
 recM, recSV, recP, recMV, recG: BOOLEAN);

 PROCEDURE SetDefltTabFuncRecording(recTF: BOOLEAN);
 PROCEDURE GetDefltTabFuncRecording(VAR recTF: BOOLEAN);

Above procedures set or get the defaults for the global simulation parameters, the project
description, or the recording flags. The meanings of the formal procedure parameters are listed
in the tables Tab. R2 and R3.

Calling one of the procedures SetDefltGlobSimPars, SetDefltProjDescrs or SetDefltTabFunc-
Recording will have no effect until the global simulation parameters respectively the project
description or table function recording are reset.

ModelWorks 2.2 - Reference

R 136

ModelWorks solves equations, e.g. differential equations, by using an independent variable, by
default named "time". The independent variable is used as the default abscissa variable in the
graph, if no monitorable variable has been selected for this purpose.

 PROCEDURE SetDefltIndepVarIdent(descr,ident,unit: ARRAY OF CHAR);
 PROCEDURE GetDefltIndepVarIdent(VAR descr,ident,unit: ARRAY OF CHAR);

SetDefltIndepVarIdent overwrites the defaults of the descriptor descr, identifier ident, and the
unit unit of the independent variable. The predefined default values ModelWorks uses are the
descr "time", ident "t", and no unit (empty string). The call of this procedure will have no
effect until the global simulation parameters are reset.

The following procedures are actually only kept for convenience and upward compatibility with
previous versions of the ModelWorks client interface. In ModelWorks versions later than V1.1
their functions are also available by using the procedures SetDefltGlobSimPars respectively
SetGlobSimPars.

 PROCEDURE SetMonInterval(hm: REAL);

Sets the default of the monitoring interval only, not the current value. The call of this procedure
will have no effect until the global simulation parameters are reset.

 PROCEDURE SetIntegrationStep(h: REAL);

Sets the default integration step only, not the current value. The call of this procedure will have
no effect until the global simulation parameters are reset.

 PROCEDURE SetSimTime(t0,tend: REAL);

Sets the defaults for the simulation start and stop time as well as the current simulation start and
stop time. It differs in this respect from all other parameter setting routines, which affect either
only the defaults or only the current values.

7.2.1.c Modification of current values

Modification of current values of the parameters and variables listed in Tab. R2 and R3 can be
accomplished by the following procedures whose identifiers start with Set:

 PROCEDURE SetGlobSimPars(t0, tend, h, er, c, hm: REAL);
 PROCEDURE GetGlobSimPars(VAR t0, tend, h, er, c, hm: REAL);

 PROCEDURE SetProjDescrs(title,remark,footer: ARRAY OF CHAR;
 wtitle,wremark,autofooter,
 recM, recSV, recP, recMV, recG: BOOLEAN);
 PROCEDURE GetProjDescrs(VAR title,remark,footer: ARRAY OF CHAR;
 VAR wtitle,wremark,autofooter,
 recM, recSV, recP, recMV, recG: BOOLEAN);

 PROCEDURE SetTabFuncRecording(recTF: BOOLEAN);
 PROCEDURE GetTabFuncRecording(VAR recTF: BOOLEAN);

The above procedures set or get the current values for the global simulation parameters, the
project description, or the recording flags. The meanings of the formal procedure parameters
are listed in the tables Tab. R2 and R3. Note that calls to the procedures SetGlobSimPars and
SetSimTime only have effect if to < tend holds. If these procedures are called in one of the sub-
states Running or Pause (s.a. part II Theory Fig. T15-T16) the additional restrictions to ≤ t
and tend ≥ t apply.

ModelWorks 2.2 - Reference

R 137

The effects of calling one of the procedures SetProjDescrs or SetTabFuncRecording in the sub-
states Running or Pause will not become visible to the simulationist until the next simulation
run, except if the call occurs just before the very first monitoring of the current run has taken
place13. Changes in the flags wtitle and wremark and/or the associated title and remark will
become visible only if the graph window is resized during the simulation. Changes in the flag
recG which controls whether the graph will be dumped to the stash file will apply to an ongoing
simulation run, since the graph is dumped to the stash file at termination of the run.

 PROCEDURE SetIndepVarIdent(descr,ident,unit: ARRAY OF CHAR);
 PROCEDURE GetIndepVarIdent(VAR descr,ident,unit: ARRAY OF CHAR);

SetIndepVarIdent and GetIndepVarIdent allow to set and get the current descriptor descr,
identifier ident, and the unit unit of the independent variable.

Note that calling of one of the procedures SetSimTime, SetIndepVarIdent, or SetGlobSimPars
during a simulation may result in redrawing of the graph, such that any previously displayed
simulation results will be lost.

7.2.1.c Resetting of current values to the defaults

The following two procedures have exactly the same effect as the execution of the menu
commands Reset Global simulation parameters: and Reset Project description:, respectively,
from the menu Settings (s.a. part III Reference/User Interface).

 PROCEDURE ResetGlobSimPars;

resets the current values for t0, tend, h, er, c, hm as well as the descr, ident and unit of the
default independent variable to their defaults. This procedure will typically be used within the
simulation environment definition procedure which may be installed in ModelWorks by means
of DeclDefSimEnv (see above).

 PROCEDURE ResetProjDescrs;

resets the project title, remark, footer as well as the flags wtitle, wremark, autofooter, recM,
recSV, recP, recMV, recG and recTF to their respective default values. This procedure may be
called at any time. It will have the same effects as described for SetProjDescrs and
SetTabFuncRecording above.

7.2.2 I NSTAL L ED M ODEL S AND M ODEL OBJECTS

Once declared, model and model objects may be modified in any way, except for their binding
to a particular variable in the model definition program. In order to break even this binding, you have
to remove the model or model object completely by calling a remove procedure (see below section Removing
models and model objects). Modifications affect attributes and values associated with a model or
model object. To support model and model object editing there exists for each object class a
procedure pair: a get and a set procedure. The get procedure retrieves the objects attributes, the
set procedure modifies (overwrites) them. Moreover the procedures are grouped into two sets:
The first set is to modify the defaults, the other to modify the current values. The meanings of
the formal procedure parameters are the same as described under the declaration procedures
DeclM, DeclSV, DeclP and DeclMV. Also, the parameter lists were kept similar to the ones
used by the declaration procedures.

13This will be the case if one of these procedures is e.g. called from within a model’s initialize-procedure.

ModelWorks 2.2 - Reference

R 138

7.2.2.a Modification of defaults

Setting of defaults (signified by formal parameter names starting with “default…”) in the
procedures listed below will not imply a setting of the current values, i.e. no implicit reset.
That is, changes of the defaults will not become effective or visible until the next corresponding
reset. Setting of all other values however will have immediate effects. In particular, this
concerns a model’s initialize, input, output, dynamic, terminate and about procedures, the
descriptors, identifiers, and unit strings of models or model objects, as well as changes of
range boundaries (used during the interactive changing of initial values or model parameter
values via IO-windows) or a parameter’s runTimeChange option.

 PROCEDURE GetDefltM(VAR m: Model;
 VAR defaultMethod: IntegrationMethod;
 VAR initialize, input, output, dynamic, terminate: PROC;
 VAR descriptor, identifier: ARRAY OF CHAR;
 VAR about: PROC);
 PROCEDURE SetDefltM(VAR m: Model;
 defaultMethod: IntegrationMethod;
 initialize, input, output, dynamic, terminate: PROC;
 descriptor, identifier: ARRAY OF CHAR;
 about: PROC);

 PROCEDURE GetDefltSV(m: Model; VAR s: StateVar;
 VAR defaultInit, minCurInit, maxCurInit: REAL;
 VAR descriptor, identifier, unit: ARRAY OF CHAR);
 PROCEDURE SetDefltSV(m: Model; VAR s: StateVar;
 defaultInit, minCurInit, maxCurInit: REAL;
 descriptor, identifier, unit: ARRAY OF CHAR);

 PROCEDURE GetDefltP (m: Model; VAR p: Parameter;
 VAR defaultVal, minVal, maxVal: REAL;
 VAR runTimeChange: RTCType;
 VAR descriptor, identifier, unit: ARRAY OF CHAR);
 PROCEDURE SetDefltP (m: Model; VAR p: Parameter;
 defaultVal, minVal, maxVal: REAL;
 runTimeChange: RTCType;
 descriptor, identifier, unit: ARRAY OF CHAR);

 PROCEDURE GetDefltMV(m: Model; VAR mv: REAL;
 VAR defaultScaleMin, defaultScaleMax: REAL;
 VAR descriptor, identifier, unit: ARRAY OF CHAR;
 VAR defaultSF: StashFiling; V
 VAR defaultT: Tabulation;
 VAR defaultG: Graphing);
 PROCEDURE SetDefltMV(m: Model; VAR mv: REAL;
 defaultScaleMin, defaultScaleMax: REAL;
 descriptor, identifier, unit: ARRAY OF CHAR;
 defaultSF: StashFiling;
 defaultT: Tabulation;
 defaultG: Graphing);

7.2.2.b Modification of current values

Most of the so-called Set… procedures affect the corresponding current values immediately.
They may be called freely at any simulation environment state. Note however that for reasons
of consistency if they are called in the environment state Simulating , their effect will take place
only at the end of the current integration loop (see part II Theory, chapter Simulations and the
Run-Time System in particular section Manipulating the model base at run-time). Any new or
changed values will be displayed in the corresponding IO-windows. Note that the updating of
some changes may require some time before they become actually visible on the screen,

ModelWorks 2.2 - Reference

R 139

because the "Dialog Machine" may need several integration steps till all updates have been
completed.

 PROCEDURE GetM (VAR m: Model; VAR curMethod: IntegrationMethod);
 PROCEDURE SetM (VAR m: Model; curMethod: IntegrationMethod);

 PROCEDURE GetSV (m: Model; VAR s: StateVar; VAR curInit: REAL);
 PROCEDURE SetSV (m: Model; VAR s: StateVar; curInit: REAL);

 PROCEDURE GetP (m: Model; VAR p: Parameter; VAR curVal: REAL);
 PROCEDURE SetP (m: Model; VAR p: Parameter; curVal: REAL);

 PROCEDURE GetMV (m: Model; VAR mv: REAL;
 VAR curScaleMin, curScaleMax: REAL; VAR curSF: StashFiling;
 VAR curT: Tabulation; VAR curG: Graphing);
 PROCEDURE SetMV (m: Model; VAR mv: REAL;
 curScaleMin, curScaleMax: REAL; curSF: StashFiling;
 curT: Tabulation; curG: Graphing);

It is recommended to avoid the direct modification of state variables, parameters etc. by directly
assigning a new value to the respective variable. There are two reasons why: First, there may
result a confusing discrepancy in the value actually used for simulations and the one visible in
the IO-window. Secondly, ModelWorks is likely to overwrite the value, so that the assignment
is fictitious and the modeller may have difficulties to understand subsequent simulation results.
To avoid any such problems, use always the set procedures and they will preserve consistency
between the model definition program and ModelWorks.

7.2.2.c Resetting of current values to the defaults

The following procedures correspond to the menu commands Reset All model’s integration
methods, initial values, parameters, stash filing, tabulation, graphing, scaling and curve
attributes, respectively, from the menu Settings (s.a. part III Reference/User Interface).

 PROCEDURE ResetAllIntegrationMethods;
 PROCEDURE ResetAllInitialValues;
 PROCEDURE ResetAllParameters;

 PROCEDURE ResetAllStashFiling;
 PROCEDURE ResetAllTabulation;
 PROCEDURE ResetAllGraphing;
 PROCEDURE ResetAllScaling;

The first three procedures reset the integration methods of all currently declared models, the
initial values of all state variables and the values of all parameters, respectively, to their de-
faults. The remaining procedures operate on the respective attributes of all currently declared
monitorable variables. If you wish to reset a single model or model object only, call GetDeflt…
to retrieve a default followed by Set… to assign it to the object’s current value.

Same as for Set…, calls to these Reset… procedures will have a slightly delayed effect if
occurring in the environment state Simulating. Note also that (re)setting of monitorable
variables may affect an ongoing simulation’s monitoring in a similar way as described for
DeclMV above.

7.2.2.d Model and model object attributes

ModelWorks provides a mechanism to attach one integer-type attributes to each model or model
object. These attributes are typically used as array indices to access some data associated with
the object, which are stored in an array.

ModelWorks 2.2 - Reference

R 140

 TYPE
 Attribute = INTEGER;
 CONST
 noAttr = MIN(Attribute);

 PROCEDURE SetModelAttr(m: Model; val: Attribute);
 PROCEDURE GetModelAttr(m: Model): Attribute;

 PROCEDURE SetObjAttr(m: Model; VAR o: REAL; val: Attribute);
 PROCEDURE GetObjAttr(m: Model; VAR o: REAL): Attribute;

In case there is currently no attribute attached to a model or model object, the procedures
GetModelAttr and GetAttr will return the value noAttr .

See also the optional module SimObjects listed in the Appendix which allows for the installation
and efficient retrieval of an additional attribute of the generic type ADDRESS for each model or
model object.

7.2.2.e Access support for models and model objects

The following procedures allow to access all currently declared models and model objects.
They are especially useful for manipulating objects from program modules which are not
possessors of the variables. For exactly this reason however, they must be applied carefully,
i.e. the modeller should ensure that no inconsistencies occur. In order to allow for an efficient
usage of attributes, the attribute values currently attached to an object are also passed in the
procedures of type ModelProc respectively ModelObjectProc which are repeatedly called by the
respective DoForAll… procedures.

 TYPE
 ModelProc = PROCEDURE(VAR Model, VAR Attribute);
 ModelObjectProc = PROCEDURE(Model, VAR REAL, VAR Attribute);

 PROCEDURE DoForAllModels(p: ModelProc);
 PROCEDURE DoForAllSVs (m: Model; p: ModelObjectProc);
 PROCEDURE DoForAllPs (m: Model; p: ModelObjectProc);
 PROCEDURE DoForAllMVs (m: Model; p: ModelObjectProc);

The following program fragment exemplifies the usage of the DoForAll-mechanism. The pro-
cedure named SetReducedMonitoring is used to reduce all monitoring to the current stash filing
settings of all monitorable variables, e.g. in order to increase simulation performance for a
sensitivity experiment in batch mode.

...

FROM SimBase IMPORT

 Model, Attribute, StashFiling, Tabulation, Graphing,

 GetMV, SetMV, DoForAllMVs, DoForAllModels;

...

PROCEDURE ReduceMonitoringForMV (m: Model; VAR mv: REAL; VAR dummy: Attribute);

 VAR curScaleMin,curScaleMax:REAL; curSF:StashFiling; curT:Tabulation; curG:Graphing;

BEGIN

 GetMV(m, mv, curScaleMin, curScaleMax, curSF, curT, curG);

 SetMV(m, mv, curScaleMin, curScaleMax, curSF, notInTable, notInGraph);

END ReduceMonitoringForMV ;

PROCEDURE ReduceMonitoringForModel(VAR m: Model; VAR dummy: Attribute);

BEGIN

 DoForAllMVs(m, ReduceMonitoringForMV);

ModelWorks 2.2 - Reference

R 141

END ReduceMonitoringForModel;

PROCEDURE SetReducedMonitoring;

BEGIN

 DoForAllModels(ReduceMonitoringForModel);

END SetReducedMonitoring;

...

7.3 Removing Models and Model Objects

Models and model objects can be removed by calling any of the procedures listed below. Note
that removing means only that the linkage of, e.g. a state variable s to the simulation
environment is removed, not the real variable s itself, which remains a part of the model
definition program. Once removed, a model or model object is completely unknown to
ModelWorks and has become inaccessible by ModelWorks' routines. E.g. removed model
objects are no longer listed in IO-windows and can no longer be integrated.

 PROCEDURE RemoveM (VAR m: Model);
 PROCEDURE RemoveAllModels;

 PROCEDURE RemoveSV (m: Model; VAR s : StateVar);
 PROCEDURE RemoveMV (m: Model; VAR mv: REAL);
 PROCEDURE RemoveP (m: Model; VAR p : Parameter);

Remove procedures may not be called another time, unless the model or the model object has
been redeclared in the meantime. Remove procedures may also be called in the sub-states
Running or Pause , but with a slightly delayed effect (s.a. part II Theory, section Manipulating
the model base at run-time and Tab. T4). Note that RemoveMV may affect a running
simulation’s monitoring in the way already described for DeclMV above.

Calling procedure RemoveM results in an implicit removal of all model objects belonging to this
model. In case there is a simulation currently running, in order to guarantee consistent
simulation results at least the model’s terminate procedure will be called prior to removing the
model objects. For example, if a model m is removed from within an other model’s output
procedure, first the current integration step for m will be accomplished by calling its output (if
not already called), input and dynamic procedures, than its simulation is terminated by calling
its terminate procedure, and than its model objects are removed (s.a. part II Theory, section
Manipulating the model base at run-time and Tab. T4).

7.4 Simulation Control and Structured Simulation Runs

The following Modula-2 objects serve the control of simulations.

 PROCEDURE SimRun;

This procedure performs an elementary simulation run with the current parameter and other
variable settings. Typically this routine is used to execute a series of simulation runs, e.g. in a
loop within procedure InstallExperiment (see below this section). Simulation runs can then be
executed under the control of the modeller, for instance to construct a whole phase portrait by
means of a single menu command or to identify a model parameter. Note that SimRun may be
called without the standard interactive simulation environment currently running.

 PROCEDURE CurrentSimNr(): INTEGER;

ModelWorks 2.2 - Reference

R 142

Returns the current simulation run number k during structured simulations (k = 1, 2, 3...) (see
part II Theory, Fig. T21). A typical usage of this procedure looks similar to the following
statement:

REPEAT SimRun UNTIL CurrentSimNr()=maxSimNr

Note however that even aborted runs are numbered. To handle properly abortion of structured
simulation runs see below procedure ExperimentAborted.

 TYPE
 StartConsistencyProcedure = PROCEDURE(): BOOLEAN;
 TerminateConditionProcedure = PROCEDURE(): BOOLEAN;

 PROCEDURE InstallStartConsistency(startAllowed: StartConsistencyProcedure);

Procedure startAllowed is called at the begin of a simulation run, right after the execution of the
procedure initialize (see procedure DeclM), and after resuming a run from the state Pause.. If it
returns FALSE, the simulation will be aborted and the simulation environment immediately
returns into the program state No simulation. Otherwise the simulation is normally continued.
Typically this procedure is used to check consistency in the initial conditions, e.g. to test
relations among parameters and initial values. Since the simulationist may interactively change
values of parameters independently from each other (entry forms test only syntax and ranges),
this consistency test is important in case the model equations would become undefined if the
conditions were not met. Moreover, the modeller may use this procedure to compute values of
auxiliary variables, which depend on the current values of parameters.

 PROCEDURE InstallTerminateCondition(isAtEnd: TerminateConditionProcedure);

Procedure isAtEnd is called at the end of each time (integration) step in the program state
Simulating and continuously in the state Pause . If it returns TRUE, the simulation will be
terminated. This behaviour can be used to program state events which lead to the simulation
termination. Note however, that this does not fully conform to a proper handling of state
events, since ModelWorks performs no iterations to find the exact location of the event. You
have to program tc such that the value returned is correct even if the current time is not exactly
that of the event, i.e. the procedure tc must be able to detect the state event even if it occurs
anywhere in the time interval of the current integration step h.

 PROCEDURE CurCalcM(): Model;

Procedure CurCalcM returns the model of which the initialize, output, input, dynamic or
terminate procedure is currently being called by ModelWorks. It is typically used in a situation,
where several models use common procedures e.g. for input or dynamic. Knowing the model,
the model definition program can set e.g. array indices or exhibit a different behaviour.

 PROCEDURE PauseRun;

Makes a state transition from the program state Simulating into the program state Pause (part II
Theory, Fig. T15, T16 and T24) and will only return after the simulationist has chosen the
menu command Resume run under menu Solve. This feature allows to temporarily interrupt a
simulation run exactly at a particular point, such as a state event (e.g. a state variable becomes
negative), and allows the simulationist to take some action, e.g. changing a parameter value,
before resuming the simulation.

 PROCEDURE ResumeRun;

Makes the opposite state transition than PauseRun, i.e. from the program state Pause into the
program state Simulating. This procedure allows to resume simulation after e.g. execution of a
menu command which does not belong to the standard interactive simulation environment.

ModelWorks 2.2 - Reference

R 143

 PROCEDURE StopRun;

Makes a state transition from the program state Simulating into the program state
No Simulation (part II Theory, Fig. T15), i.e. stops the current simulation run.

 PROCEDURE InstallExperiment(doExperiment: PROC);

Installs an experiment doExperiment which may be executed by the simulationist by selecting
the menu command Execute Experiment under menu Solve. The procedure doExperiment is
provided by the modeller and contains typically calls to the procedure SimMaster.SimRun. If
the procedure InstallExperiment has at least been called once in the course of a simulation
session, the menu command Execute Experiment under menu Solve will no longer appear
dimmed but will be active and can be chosen by the simulationist in the state No Simulation.

 TYPE
 MWState = (noSimulation, simulating, pause, noModel);

 PROCEDURE GetMWState(VAR s: MWState);

The current state of the simulation environment can be determined by calling procedure
GetMWState from SimMaster. The meaning of the returned value s, either noSimulation,
simulating, pause, or noModel corresponds exactly to the program states shown in Fig. T15
(part II Theory).

 TYPE
 MWSubState = (noRun, running, noSubState, stopped);

 PROCEDURE GetMWSubState(VAR ss: MWSubState);

The current substate of the simulation environment while a structured simulation (experiment) is
currently in execution, can be determined by calling procedure GetMWSubState from
SimMaster. The meaning of the returned value ss, either noRun, running, noSubState, or
stopped corresponds exactly to the program substates shown in Fig T16 (part II Theory). If
the value noSubState is returned, no experiment is currently running, i.e. the simulationist has
reached state simulating by choosing the menu command Solve/Start run (s.a. below procedure
ExperimentRunning).

 PROCEDURE InstallStateChangeSignaling(doAtStateChange: PROC)

Installs the client's procedure doAtStateChange in ModelWorks which will be called each time a
change in MWState or MWSubState occurs.

 PROCEDURE ExperimentRunning(): BOOLEAN;

ExperimentRunning from SimMaster returns TRUE if a structured simulation (experiment) is
currently in execution, i.e. if the simulationist has reached the state simulating by choosing the
menu command Solve/Execute Experiment (s.a. above procedure GetMWSubState).

 PROCEDURE ExperimentAborted(): BOOLEAN;

ExperimentAborted from SimMaster returns TRUE if the simulationist has stopped (killed) a
running structured simulation (experiment). A typical use of this procedure is to skip super-
fluous calls to procedure SimRun. E.g.:

REPEAT

 SimRun;

UNTIL (CurrentSimNr()=maxRunNr) OR ExperimentAborted()

ModelWorks 2.2 - Reference

R 144

7.5 Display and Monitoring

7.5.1 WINDOW OPERATIONS

The following Modula-2 objects serve to control the display on the screen, e.g. the arrangement
of windows or the monitoring.

 PROCEDURE TileWindows;
 PROCEDURE StackWindows;

The two procedures stack or tile windows on the screen. Stacking is with overlapping
windows similar to the ModelWorks predefined start-up display. Tiled windows don't overlap
and fill the screen as much as possible. The actual arrangement may depend on the screen in
display.

 PROCEDURE InstallTileWindowsHandler(doAtTile:PROC);
 PROCEDURE InstallStackWindowsHandler(doAtStack:PROC);

The above two procedures allow to install a procedure which is executed when windows are
tiled or stacked. doAtTile or doAtStack will be called immediately after windows are tiled or
stacked, e.g. in order to rearrange additional windows managed by the modeller.

The following type enumerates all windows of the ModelWorks simulation environment

 TYPE
 MWWindow = (MIOW, SVIOW, PIOW, MVIOW, TableW, GraphW, AboutMW, TimeW);

MIOW, SVIOW, PIOW and MVIOW designate the IO-windows for the models, state
variables, model parameters, and the monitorable variables. TableW, GraphW and AboutMW
are the table, graph, and the about model window with the title "Model Help/Info". The latter
window is displayed if the simulationist clicks into the question mark button of the models IO-
window. TimeW is the window in the top right corner of the main screen used to display the
current simulation number and time while in substates Running or Pause. Since the time-
window only exists in these substates, no default attributes are maintained for it. TimeW may
be passed as a formal parameter value to the procedures SetWindowPlace, CloseWindow,
GetWindowPlace, DisableWindow and EnableWindow; but has no effect if passed to any of
the remaining procedures operating on ModelWorks windows; also, at resetting of these
windows its size and position will actually not be changed.

 PROCEDURE SetWindowPlace(mww: MWWindow; x,y,w,h: INTEGER);

SetWindowPlace places the window mww with its lower left corner at the position x,y and
resizes it to the width w and height h (size of outer frame including title bar, frame, and
shadows). The point [x,y] is given in pixel coordinates with an origin at the lower left corner
of the main computer screen. If this procedure is called in case the window should not already
be open, it will open the window in the proper size at the specified location. Calls to
SetWindowPlace for the TimeW will be discarded, if the simulation environment is not in the
state Running.

 PROCEDURE CloseWindow(w: MWWindow);

CloseWindow closes the window w and remembers the location plus size for the next
reopening.

 PROCEDURE GetWindowPlace(mww: MWWindow; VAR x,y,w,h: INTEGER;
 VAR isOpen: BOOLEAN);

ModelWorks 2.2 - Reference

R 145

GetWindowPlace returns the current position of the window mww and whether it is currently
open or not. Since the simulation environment remembers the location and size of a window
when it was open the last time, this procedure returns meaningful values even if isOpen should
be FALSE.

 PROCEDURE SetDefltWindowPlace(mww: MWWindow; x,y,w,h: INTEGER);

SetDefltWindowPlace sets the default size and position of the window mww.

 PROCEDURE GetDefltWindowPlace(mww: MWWindow; VAR x,y,w,h: INTEGER;
 VAR enabled: BOOLEAN);

GetDefltWindowPlace returns the default size and position of the window mww plus the
current IO-window status. If enabled is TRUE, it means that the editing functions of the IO-
window are currently available to the simulationist. This is the case in the state No simulation
or partially in the state Pause, but editing is disabled in the state Simulating (s.a. part II Theory,
Fig. T15, in particular the title bars with horizontal lines vs. dimmed bars in Fig. T24)

To control the format in which information is displayed in a particular IO-window use the
following data structure:

 TYPE
 IOWColsDisplay = RECORD
 descrCol, identCol : BOOLEAN;
 CASE iow: MWWindow OF
 MIOW : m : RECORD
 integMethCol: BOOLEAN;
 END(*RECORD*);
 | SVIOW : sv: RECORD
 unitCol, sVInitCol: BOOLEAN;
 fw,dec: INTEGER;
 END(*RECORD*);
 | PIOW : p : RECORD
 unitCol, pValCol, pRtcCol: BOOLEAN;
 fw,dec: INTEGER;
 END(*RECORD*);
 | MVIOW : mv: RECORD
 unitCol, scaleMinCol, scaleMaxCol, mVMonSetCol: BOOLEAN;
 fw,dec: INTEGER;
 END(*RECORD*);
 END(*CASE*)
 END(*RECORD*);

The Booleans determine whether a column is to be displayed or not; they correspond to the
check boxes which may be set by the simulationist in the entry form which is activated when
the IO-window button Set Up is clicked. The integers specify the format in which to display
real numbers, where fw is the field width and dec is the number of decimal digits.

 PROCEDURE SetIOWColDisplay(mww: MWWindow; wd: IOWColsDisplay);

SetIOWColDisplay allows to set a new setup of the columns and new display formats in the IO-
window mww. The predefined default of the simulation environment is 3 decimal digits to
display or parameter values; this procedure allows to alter this format to any other value.

 PROCEDURE GetIOWColDisplay(mww: MWWindow; VAR wd: IOWColsDisplay);

GetIOWColDisplay returns the setup of the columns and the display formats currently in use by
the IO-window mww.

ModelWorks 2.2 - Reference

R 146

Instead of the current values, the following two procedures affect the default values; otherwise
they function the same way as the previous two procedures:

 PROCEDURE SetDefltIOWColDisplay(mww: MWWindow; wd: IOWColsDisplay);
 PROCEDURE GetDefltIOWColDisplay(mww: MWWindow; VAR wd: IOWColsDisplay);

The following procedures allow the modeller to customize the simulation environment even a
step further; she may even completely disallow or allow any usage of an IO-window. This
control is only available to the modeller but not to the simulationist.

 PROCEDURE DisableWindow(w: MWWindow);

DisableWindow disables the ModelWorks window w for any usage, i.e. neither the opening
nor the editing (IO-windows) by the simulationist is any more possible. In case the window w
should be currently open, it is closed. Menu commands possibly associated with the window
(IO-windows, graph and table window) are disabled (dimmed). Note that in case the
AboutMW is disabled, a model’s about procedure will still be executed when the simulationist
clicks into the question mark button available in the models IO-window. Thus, disabling of the
AboutMW allows the modeller to entirely replace the predefined ModelWorks help mechanism
by her own procedures. Similarly, responsibility for the display of the current simulation time
may entirely be taken over by the modeller by disabling the TimeW.

 PROCEDURE EnableWindow (w: MWWindow);

EnableWindow reverses the effect of DisableWindow and enables the subsequent usage of the
window w by the simulationist to its normal and full functionality. However, the window will
not be opened until the simulationist executes the corresponding menu command (only possible
for IO-windows, graph and table window) or the modeller explicitly calls SetWindowPlace.

 TYPE
 MWWindowArrangement = (current, stacked, tiled);

 PROCEDURE SetDefltWindowArrangement(a: MWWindowArrangement);

The procedure SetDefltWindowArrangement allows to set the default positions, sizes and
columns-display settings (IO-windows only) of all ModelWorks windows to the values
corresponding to stacked or tiled windows, or according to the current settings. Typical usage
of this procedure may look as follows:

SetWindowPlace(MIOW,…);

SetWindowPlace(SVIOW,…);

SetWindowPlace(GraphW,…);

...

SetDefltWindowArrangement(current);

This solution is more convenient than having to specify first the current values and then the
defaults with exactly the same values.

 PROCEDURE ResetWindows;

copies the default window positions, sizes and column-display settings (IO-windows only) to
the current values. It has exactly the same effect as execution by the simulationist of the menu
command Settings /Reset Windows available at the standard user interface and will close and
(re)open all windows, which are not already in their default states.

7. 5.2 GENERAL M ONITORING

After having called SuppressMonitoring, all subsequent monitoring will be suppressed.

ModelWorks 2.2 - Reference

R 147

 PROCEDURE SuppressMonitoring;

The procedure

 PROCEDURE ResumeMonitoring;

resumes all monitoring exactly as it was before procedure SuppressMonitoring was called.

 PROCEDURE InstallClientMonitoring(initClientMon, doClientMon, termClientMon: PROC);

Installs in ModelWorks a client provided monitoring mechanism. During the simulation run the
monitoring procedure doClientMon is called every time ModelWorks does its standard
monitoring once. Hereby doClientMon will be called as the last monitoring procedure, i.e.
after ModelWorks calls the stash file, the tabulation, and the graph monitoring procedures.
This allows for instance to draw into the ModelWorks graph window from within the
doClientMon (to this end you might wish to use the module SimGraphUtils from the optional
client interface). At the begin respectively the end of every simulation run the procedures
initClientMon respectively termClientMon are called (to locate these events in more details see
the calling sequence in Fig. T19, part II Theory). Note that initClientMon is called for to
respectively ko only, and that for all subsequent monitoring, including the very last one for tend
respectively kf, the procedure doClientMon is used. Typically initClientMon does some initial
preparations such as opening a file or initializing a data structure, and then it calls doClientMon.
Note also that the procedure termClientMon is called at the very end of the simulation run, in
particular even after all model's terminate procedures have been executed. Usually the model's
terminate procedures are used to analyze the run, e.g. to compute a mean, and termClientMon is
typically only used to do some house-keeping such as closing a file or discarding no longer
needed global data structures.

7.5.3 STASH FIL ING

 PROCEDURE SetStashFileName (sfn: ARRAY OF CHAR);
 PROCEDURE GetStashFileName (VAR sfn: ARRAY OF CHAR);

These procedures allow to set or get the current name of the stash file (may contain a path, e.g.
MyDisk:Folder:TheFile.DAT). The call to SetStashFileName will have no effect until the stash
file is actually opened during a subsequent simulation. Calling this procedure in the middle of a
simulation run (state Simulating) will rename the current stash file.

The current stash file may be changed at any time by calling

 PROCEDURE SwitchStashFile (newsfn: ARRAY OF CHAR);

If SwitchStashFile is called in the state Simulating, the current stash file is closed, and
monitoring is continued in the file with name newsfn. Since this may be done in the middle of
a simulation run, as well as in the substate No run, SwitchStashFile allows to distribute the
documentation of individual, very long simulations, as well as of different simulation runs
belonging to one and the same experiment among different files. If SwitchStashFile is called in
the state No Simulation it will have the same effect as SetStashFileName.

I M P O R T A N T N O T I C E: If a file with the name specified in the procedure
SetStashFileName or SwitchStashFile should already exist, it will be overwritten without any
warning!! This behaviour contrasts with the setting of the name via the user interface (menu
command Settings/Select stash file…).

 PROCEDURE SetStashFileType (filetype, creator: ARRAY OF CHAR);
 PROCEDURE GetStashFileType (VAR filetype, creator: ARRAY OF CHAR);

ModelWorks 2.2 - Reference

R 148

On the Macintosh, any file is of a particular type and is associated with a particular application
characterized by the creator, each given by a 4 character long string. The purpose and timing of
the effects by these routines is exactly the same as that described for the routines affecting the
name of the stash file. The predefined defaults are those inherited from the ˝Dialog Machine˝.

 PROCEDURE SetDefltStashFileName(dsfn: ARRAY OF CHAR);
 PROCEDURE GetDefltStashFileName(VAR dsfn: ARRAY OF CHAR);

 PROCEDURE SetDefltStashFileType(dFiletype,dCreator: ARRAY OF CHAR);
 PROCEDURE GetDefltStashFileType(VAR dFiletype,dCreator: ARRAY OF CHAR);

The above procedures allow to get or set the default name, type and creator of the stash file.
Setting of the defaults will not show any effects until a reset is performed by the modeller using

 PROCEDURE ResetStashFileNameAndType;

or by the simulationist, when executing the equivalent menu command Settings/Reset Stash
File. Calling ResetStashFileNameAndType has the same effect as calling the corresponding
Set… procedures with the current defaults.

 PROCEDURE Message(m: ARRAY OF CHAR);

Writes the text m onto the stash file and inserts it in the table. Hereby, the string m is
surrounded with quotation marks '"' and preceded with the reserved word MESSAGE. This
procedure allows to bring state events to the user's attention, which would otherwise slip by
undetected or it helps the user to locate particular events while viewing large stash files.

 PROCEDURE DumpGraph;

If the stash file is currently open (currently stashFiling attribute (F) for at least one monitorable
variable, or the simulation environment mode Always document run on stash file is active),
DumpGraph writes the current graph onto the stash file. The data are written in the so-called
RTF-Format which can be opened by several, commercially available document processing
software (s.a. previous section on recording flags in the entry form Project description… under
menu Settings). [Not available in Reflex and PC version]

7.5.4 GRAPHICAL M ONITORING

The following objects allow to control the curve attributes used by ModelWorks for display of
individual monitorable variables in the graph .

 TYPE
 Stain =
 (coal, snow, ruby, emerald, sapphire, turquoise, pink, gold, autoDefCol);
 LineStyle =
 (unbroken, broken, dashSpotted, spotted, invisible, purge, autoDefStyle);

 CONST
 autoDefSym = 200C;

Stains and colour variables from module DMWindowIO correspond to each other. They can be
paired following this sequence:

 black, white, red, green, blue, cyan, magenta, yellow

Stain coal is black, snow is white, ruby is red etc. The following line styles are available to
connect points in the graph:

ModelWorks 2.2 - Reference

R 149

unbroken _________
broken - - - - - - - -

dashSpotted -.-.-.-.-.-.-
spotted
invisible no drawing at all, may be used to stop drawing of a particular

curve, while others are still drawn
purge used to erase already drawn curves
autoDefStyle line style will be determined by ModelWorks according to the

automatic definition mechanism of curve attributes

To set or get defaults respectively current curve attributes for the monitorable variable mv
belonging to model m use the following procedures:

 PROCEDURE SetCurveAttrForMV(m: Model; VAR mv: REAL;
 st: Stain; ls: LineStyle;
 sym: CHAR);
 PROCEDURE GetCurveAttrForMV(m: Model; VAR mv: REAL;
 VAR st: Stain; VAR ls: LineStyle;
 VAR sym: CHAR);

 PROCEDURE SetDefltCurveAttrForMV(m: Model; VAR mv: REAL;
 st: Stain; ls: LineStyle;
 sym: CHAR);
 PROCEDURE GetDefltCurveAttrForMV(m: Model; VAR mv: REAL;
 VAR st: Stain; VAR ls: LineStyle;
 VAR sym: CHAR);

Where:

st Stain (color) is used to draw the lines and/or plotting symbols of a curve

ls Style of the connecting lines drawn between monitoring points.

sym Plotting symbol drawn at monitoring points

The latter two procedures which affect the defaults require a reset before becoming effective.
This is not the case for the first two procedures, which take effect immediately. [Colours are not
available in the PC version]. Resetting of the curve attributes is possible by means of

 PROCEDURE ResetAllCurveAttributes;

which corresponds to the menu command Settings /Reset all model’s curve attributes available
to the simulationist at the standard ModelWorks user interface.

Note that if either autoDefCol, or autoDefStyle, or autoDefSym is used, the automatic definition
mechanism for colours, line styles, and for symbols as provided by the simulation environment
becomes active (see part II Theory, Tab. T1). Hence if you wish to really set a curve attribute,
make sure that all(!) attributes are set different from an autoDef-value.

In particular note, that the procedures affecting current values function also in the middle of a
simulation. This behaviour may be useful, for instance to make a portion of a curve for a
certain time invisible. A typical application is the simultaneous display of a measured time
series and the monitoring of solutions of a system of differential equations; if some
measurements are missing there arises the need to suppress partially the monitoring, i.e. to
display nothing for the measurements but to monitor the behaviour of the model equations.
Using procedure SetCurveAttrForMV with the line style invisible will allow to achieve the
desired effect. The same effect can be achieved even with a much more convenient technique:

ModelWorks 2.2 - Reference

R 150

Assign the value UndefREAL from module DMConversions to the monitorable variable.
Anytime ModelWorks encounters this value while plotting a monitorable variable, the
corresponding curve is automatically interrupted and drawing resumed nicely as soon as the
values are defined again. Note, however, this value may lead to program aborts if it is
encountered as operand in calculations. Thus, make sure that this value is only assigned just
for drawing purposes.

Note that if curve attributes are changed dynamically there may appear inconsistencies between
the curve attributes used for the curves themselves and those used to draw the legend. This is
because the legend shows only those curve attributes which are currently active while it is
drawn. Unfortunately the simulation environment draws the legend in many situations for
different reasons and the modeller can not directly control this drawing. However if the model-
ler follows the following guidelines there should result a satisfying behaviour: The model
which changes curve attributes dynamically during the course of a simulation must set all curve
attributes exactly as they should appear in the legend at the end of the procedure Output if
current time t = to resp. k = ko and always at the end of the procedure Terminate (for an
example see the research sample model LBM module LBMObs in the Appendix).

 PROCEDURE ClearGraph;
 PROCEDURE ClearTable;

Clear the panel of the graph or thetable window, respectively.

7. 5. 5 SIM UL ATION ENVIRONM ENT M ODES

The following four procedures allow to define the so-called simulation environment modes.
They can be used to set under program control the preferences available to the simulationist
under the menu command File /Preferences .

 PROCEDURE SetDocumentRunAlwaysMode(dra: BOOLEAN);
 PROCEDURE GetDocumentRunAlwaysMode(VAR dra: BOOLEAN);

If the mode «document run always» is activated, every execution of a simulation run will be
documented onto stash file according to the current settings of the project descriptors. Note that
the stash file gets rewritten with every new run.

 PROCEDURE SetAskStashFileTypeMode(asft: BOOLEAN);
 PROCEDURE GetAskStashFileTypeMode(VAR asft: BOOLEAN);

If the mode «ask for stash file type» is activated, every time the simulationist has selected a new
stash file a dialogue is displayed allowing to specify the file's type and creator.

 PROCEDURE SetRedrawTableAlwaysMode(rta: BOOLEAN);
 PROCEDURE GetRedrawTableAlwaysMode(VAR rta: BOOLEAN);

The mode «redraw table always» describes the behaviour of the table window with respect to
modifications of the tabulation monitoring settings. For further explanations see mode «redraw
graph always» below.

 PROCEDURE SetCommonPageUpRows(rows: CARDINAL);
 PROCEDURE GetCommonPageUpRows(VAR rows: CARDINAL);

This mode controls the number of common rows between page ups in the table window. A
page up occurs when the table window is full but more rows should be written; then
ModelWorks attempts to erase most of the table and restarts tabulating from the top again. The
number rows specifies how many rows at the bottom are not erased but scrolled to the top of
the next page. The rest of the table window is then used to add the rows of the new page.
Thus rows specifies how many rows are common to two consecutive pages.

ModelWorks 2.2 - Reference

R 151

 PROCEDURE SetRedrawGraphAlwaysMode(rga: BOOLEAN);
 PROCEDURE GetRedrawGraphAlwaysMode(VAR rga: BOOLEAN);

If the mode RedrawGraphAlways is activated, each modification of the graphing settings in the
state No Simulation will be displayed immediately, not only at the begin of the next simulation
run. This implies an immediate loss of all simulation results eventually currently visible in the
graph as soon the simulationist edits any graphing settings. If this mode is not active, the
current graph will not be touched unless the user starts another simulation; at its begin the
whole graph will be redrawn.

 PROCEDURE SetColorVectorGraphSaveMode(cvgs: BOOLEAN);
 PROCEDURE GetColorVectorGraphSaveMode(VAR cvgs: BOOLEAN);

Above procedures allow to control the mode of graph restoration, graph printing, and transfer
of graph into clipboard. If the mode «color and vector graph saving» is activated (cvgs is
TRUE), each time the graph window needs to be redrawn the graph will be reconstructed in
colours. Restoration is necessary after some parts of it become visible again after they have
been covered by another window (see also description of restore or update mechanism in
module DMWindows of the "Dialog Machine"). Deactivation of this mode results in storing
graphical output in a hidden bitmap without colours, with a coarser resolution and more modest
memory requirements. Note that this mode won't affect the very first drawing of the graph,
i.e. on a color screen you may still get coloured curves, even if this mode should be turned off.
Since the full reconstruction in colours for complicated graphs may be slow, especially on
monochrome monitors it may be preferable to deactivate this mode (trade-off between colours
and speed). In addition to the colours all graphical output is stored as vectored objects. This
allows printing and copying to the clipboard of graphs in high resolution quality, but requires a
corresponding amount of memory. [Not available in Reflex and PC version]

7.5.6 SETTING OF PREDEFINED DEFAUL TS AND GL OBAL RESETTING

 PROCEDURE SetPredefinitions;

Sets the defaults for the global simulation parameters, project description, stash file (name,
type, creator) and the windows (positions, columns displays) to the ModelWorks-predefined
values.

 PROCEDURE ResetAll;

Resets all global simulation parameters, project description, stash file (name, type, creator),
windows (positions, columns displays) as well as all declared models, state variables, para-
meters, monitorable variables (filing, tabulation, graphing, scaling, curve attributes) to their
current defaults. This procedure corresponds to the menu command Settings /Reset all above
available to the simulationist in the ModelWorks standard simulation environment.

7. 5. 7 CUSTOM IZATION OF KEYBOARD SHORTCUTS FOR M ENU COM M ANDS

 TYPE
 MWMenuCommand =
 (pageSetUpCmd, printGraphCmd, preferencesCmd, customizeCmd,
 (*core m.c.*) setGlobSimParsCmd, setProjDescrCmd, selectStashFileCmd,
 resetGlobSimParsCmd, resetProjDescrCmd, resetStashFileCmd,
 resetWindowsCmd, resetAllIntegrMethodsCmd,
 resetAllInitialValuesCmd, resetAllParametersCmd,
 resetAllStashFilingCmd, resetAllTabulationCmd,
 resetAllGraphingCmd, resetAllScalingCmd, resetAllCurveAttrsCmd,
 resetAllCmd, defineSimEnvCmd,
 (*core m.c.*) tileWindowsCmd, stackWindowsCmd, modelsCmd, stateVarsCmd,

ModelWorks 2.2 - Reference

R 152

 (*core m.c.*) modelParamsCmd, monitorableVarsCmd, tableCmd, clearTableCmd,
 (*core m.c.*) graphCmd, clearGraphCmd,
 (*core m.c.*) startRunCmd, haltOrResumeRunCmd, stopCmd, startExperimentCmd);

Alias characters associated with ModelWorks menu-commands may be customized according to
the needs of the simulationist either interactively (see menu command File/Customize… of the
standard simulation environment) or by means of the following procedures. While an inter-
active specification is only possible for the most important commands, the so-called “core”
menu commands (“core m.c.”), the client interface allows to modify the keyboard equivalents
for all commands available in the standard ModelWorks user interface, except the ones listed
under the menu Edit. The newly set alias characters for all ModelWorks menu commands are
immediately used and remembered by the simulation environment when it is started the next
time.

 PROCEDURE SetMenuCmdAliasChar(cmd: MWMenuCommand; alias: CHAR);
 PROCEDURE GetMenuCmdAliasChar(cmd: MWMenuCommand; VAR alias: CHAR);

Get, respectively set, an alias character (i.e. keyboard equivalent or shortcut) associated with a
particular ModelWorks menu-command.

 PROCEDURE ResetCoreMenuCmdsAliasChars;
 PROCEDURE ResetAllMenuCmdsAliasChars;

Allow to reset the interactively specifiable alias characters and the alias characters of all menu
commands, respectively, to their default values as described in Part III, Reference: User
Interface of this manual. Note that setting or resetting of menu command alias characters is
only possible in the states No Model or No Simulation.

A 153

Appendix

The Appendix contains sample models, all given in complete source form, to demonstrate the
possibilities of ModelWorks and of the auxiliary library modules. They have been carefully
selected to be useful for many modellers, in particular for the beginner as well as the advanced
modeller. Moreover, it contains technical information on ModelWorks which are needed in the
daily use of ModelWorks. Finally, especially the material towards the end serves frequent
reference purposes.

The Appendix contains the following chapters:

The chapter Sample Models explains the working of selected sample models which cover
most of ModelWorks’ more important features and lists their source code.

The chapter Literature lists the references of all literature cited throughout this text.

The chapter ModelWorksVersions and Implementations explains the main features of all
available ModelWorks versions plus the availability of the RAMSES software.

The chapter Use and Definitions of ModelWorks and Library Modules explains the
functioning and use of all the modules which are likely to be relevant for the modeler's
work. It lists first the definition modules of the optional client interface and secondly
of selected auxiliary modules often used in the context of modeling and simulation.

For the modeler the chapter Quick References serves as a quick reference for all the
objects exported by the RAMSES software. In order to allow for quick access and
better overview, these listings omit any comments and explanatory texts.

Any serious modeling with ModelWorks requires to consult the Appendix regularily and to
carefully study at least those model definition programs of the chapter Sample Models which
are similar to the ones the reader is working with.

Note, the Appendix contains no details on the installation and internal implementational aspects
of the software architecture. To learn more about those topics, please consult the separate
booklet "Installation Guide and Technical Reference of the RAMSES Software" distributed
together with the RAMSES software package or read some of the publications listed in the part
Literature.

Reading Hint: For easier orientation, the pages, figures and tables of the Appendix are prefixed with the
letter A. Within this part figures and tables are numbered separately, e.g. Fig. A1.

ModelWorks 2.2 - Appendix (Sample Models)

A 154

A Sample Models

The following sample model definition programs have all been implemented and tested with the
ModelWorks Macintosh versions V2.2 and V2.2/II, the IBM PC Windows-Version V2.2/PC,
and some with the V2.0/Reflex and the PC Gem-Version 1.1/PC. Except for GrassAphids,
they are distributed in source form, eventually even with some additional sample models not
listed in this chapter. For the Macintosh all source files reside in the folder Sample Models, for
the IBM PC in the directory \MW\SAMPLES. All distributed sample models are ready to be
run.

The sample models have been selected according to the following criteria: a) They have been
referenced in some parts of this text such as the part I Tutorial or part II Theory; b) they
illustrate a typical use of ModelWorks to implement any of the fundamental elementary or
structured model types; c) they demonstrate useful implementation techniques, or d) represent
more advanced applications such as sensitivity analysis or parameter identification, which are
often essential in the context of modeling and simulation of non-linear systems. It is
recommended to study the sample models carefully, in particular those which appear to be
similar to the applications in which the reader is interested; because of the open nature of
ModelWorks it is important to understand the design principles behind ModelWorks not only in
an abstract, but also in the specific ways for which the design strives to provide optimal
solutions. Not only pictures can tell more than 1000 words!

ModelWorks 2.2 - Appendix (Sample Models)

A 155

A.1 THE CONTINUOUS TIM E SAM PL E MODEL S (DESS) OF THE TUTORIAL

A.1.1 The Sample Model “Logistic Grass Growth” - Logistic

The following listing defines the sample model described in the part I Tutorial in the section
Getting started with the simulation environment. For explanations see the subsection The
sample model.

MODULE Logistic;

 (********************************)
 (* MODEL: Logistic grass growth *)
 (* Author: mu, 9.4.88, ETHZ *)
 (********************************)

 FROM SimBase IMPORT
 Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
 StashFiling, Tabulation, Graphing, DeclMV, SetSimTime,
 NoInitialize, NoInput, NoOutput, NoTerminate, NoAbout,
 StateVar, Derivative, Parameter;

 FROM SimMaster IMPORT RunSimEnvironment;

 VAR
 m: Model;
 grass: StateVar;
 grassDot: Derivative;
 c1, c2: Parameter;

 PROCEDURE Dynamic;
 BEGIN
 grassDot:= c1*grass - c2*grass*grass;
 END Dynamic;

 PROCEDURE ModelObjects;
 BEGIN
 DeclSV(grass, grassDot,1.0, 0.0, 10000.0,
 "Grass", "G", "g dry weight/m^2");

 DeclMV(grass, 0.0,1000.0, "Grass", "G", "g dry weight/m^2",
 notOnFile, writeInTable, isY);
 DeclMV(grassDot, 0.0,500.0, "Grass derivative", "dG/dt", "g dry weight/m^2/day",
 notOnFile, notInTable, notInGraph);

 DeclP(c1, 0.7, 0.0, 10.0, rtc,
 "c1 (growth rate of grass)", "c1", "/day");
 DeclP(c2, 0.001, 0.0, 1.0, rtc,
 "c2 (self inhibition coefficient of grass)", "c2", "m^2/g dw/day");
 END ModelObjects;

 PROCEDURE ModelDefinitions;
 BEGIN
 DeclM(m, Euler, NoInitialize, NoInput, NoOutput, Dynamic,
 NoTerminate, ModelObjects, "Logistic grass growth model",
 "LogGrowth", NoAbout);
 SetSimTime(0.0,30.0);
 END ModelDefinitions;

BEGIN
 RunSimEnvironment(ModelDefinitions);
END Logistic

ModelWorks 2.2 - Appendix (Sample Models)

A 156

A.1.2 The New Model - GrassAphids

The following listing defines the sample model described in the manual part I Tutorial in the
section Getting started with modeling. For explanations see the subsection The new model.

MODULE GrassAphids;

 (**

 MODEL: GrassAphids, Lotka-Volterra grass and aphids model

 Frank Thommen, 29.11.91, ETHZ

 **)

 FROM SimBase IMPORT
 Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
 StashFiling, Tabulation, Graphing, DeclMV, SetSimTime,
 NoInitialize, NoInput, NoOutput, NoTerminate, NoAbout,
 StateVar, Derivative, Parameter;

 FROM SimMaster IMPORT RunSimEnvironment;

 VAR
 m: Model;
 grass, aphids: StateVar;
 grassDot, aphidsDot: Derivative;
 c1, c2, c3, c4, c5: Parameter;

 PROCEDURE Dynamic;
 BEGIN
 grassDot := c1*grass - c2*grass*grass - c3*grass*aphids;
 aphidsDot:= c3*c4*grass*aphids - c5*aphids;
 END Dynamic;

 PROCEDURE ModelObjects;
 BEGIN
 DeclSV(grass, grassDot,200.0, 0.0, 10000.0,
 "Grass", "G", "g dry weight/m^2");
 DeclSV(aphids, aphidsDot,20.0, 0.0, 1000.0,
 "Aphids", "A", "g dry weight/m^2");

 DeclMV(grass, 0.0,10000.0, "Grass", "G", "g dry weight/m^2",
 notOnFile, writeInTable, isY);
 DeclMV(grassDot, 0.0,500.0, "Grass derivative", "dG/dt", "g dry weight/m^2/day",
 notOnFile, notInTable, notInGraph);
 DeclMV(aphids, 0.0, 1500.0,"Aphids", "A","g dry weight/m^2",
 notOnFile, writeInTable, isY);

 DeclP(c1, 0.4, 0.0, 10.0, rtc,
 "c1 (growth rate of grass)", "c1", "/day");
 DeclP(c2, 8.0E-5, 0.0, 1.0, rtc,
 "c2 (self inhibition coefficient of grass)", "c2", "m^2/g dw/day");
 DeclP(c3, 1.5E-3, 0.0, 1.0, rtc,
 "c3 (coupling parameter)", "c3", "m^2/g dw/day");
 DeclP(c4, 0.1, 0.0, 10.0, rtc,
 "c4 (ratio of grass net use by aphids)", "c4", "-");
 DeclP(c5, 0.2, 0.0, 10.0, rtc,
 "c5 (death rate of aphids)", "c5", "/day");
 END ModelObjects;

 PROCEDURE ModelDefinitions;
 BEGIN

ModelWorks 2.2 - Appendix (Sample Models)

A 157

 DeclM(m, Heun, NoInitialize, NoInput, NoOutput, Dynamic,
 NoTerminate, ModelObjects, "Aphid-grass model (Lotka-Volterra)",
 "GrassAphids", NoAbout);
 SetSimTime(0.0, 100.0);
 END ModelDefinitions;

BEGIN
 RunSimEnvironment(ModelDefinitions);
END GrassAphids

ModelWorks 2.2 - Appendix (Sample Models)

A 158

A.2 A DISCRETE TIM E MODEL (SQM) - I NSECT

Insect populations often reproduce in distinct steps, which is particularily conspicuous for
many univoltine insects. Should the growth of their population follow a logistic pattern, it
could be easily modeled as a discrete time analogon (SQM) of the logistic growth model
presented in part I Tutorial (s.a. above, Logistic). From the continuous time logistic growth
equation (1)

dx(t)/dt = c1x(t) - c2x(t)2 = c1[1 -
c2
c1

x(t)]x(t) = c1

c1
c2

 - x(t)

c1
c2

 x(t) = r
K - x(t)

K
 x(t) (1)

and the general relationship (2)

x(t+∆t) - x(t)
∆ t

 ≈ dx(t)/dt (2)

we can derive with ∆t = 1 and t = k the following nonlinear difference equation (3), which
describes a discrete time model for insect growth:

x(k+1) = x(k) + r
K - x(k)

K
 x(k) = { 1 + r [1 -

x(k)
K

] } x(k) (3)

 where: State variable:
insect density or # per ha grassland: x(t)
Initial amount of insects/initial value: x(0) = 2.0 #/ha

Model parameters:
intrinsic growth rate (year-1): r = 0.7 year-1

carrying capacity (#/ha): K = 7000 #/ha

Fig. A1: Bifurcation plot drawn by the structured simulation (experiment) of the
sample model Insect . Model behavior is shown in function of growth parameter r.

ModelWorks 2.2 - Appendix (Sample Models)

A 159

The following listing shows the corresponding model definition program Insect. In general it is
very similar to the sample model Logistic (see above). However, instead of the derivative xDot
we declare xNew of type NewState. It represents x(k+1) whereas x(k) is represented by x.

MODULE Insect;

 (**

 MODEL: Insect af, 21/Dez/93, ETHZ
 Discrete time logistic growth, e.g. modeling the growth
 of an insect population with non-overlapping generations

 Remark: The installed experiment draws a bifurcation plot

 **)

 FROM DMWindIO IMPORT Write, WriteString, WriteLn;
 FROM DMMessages IMPORT Ask;

 FROM SimBase IMPORT
 Model, StateVar, NewState, Parameter, AuxVar, Derivative,
 IntegrationMethod, DeclM, DeclSV, DeclP, RTCType, StashFiling,
 Tabulation, Graphing, DeclMV, SetSimTime,
 NoInitialize, NoInput, NoOutput, NoTerminate, NoAbout,
 PDeclared, SetMV, GetMV, SetP, SetRedrawGraphAlwaysMode,
 SetCurveAttrForMV, GetCurveAttrForMV, Stain, LineStyle;

 FROM SimMaster IMPORT RunSimEnvironment, InstallExperiment,
 SimRun, CurrentStep, ExperimentAborted, ExperimentRunning;

 VAR
 m : Model;
 x : StateVar; xNew: NewState; r,K : Parameter;
 rMin, rMax, rDeltaBig, rDelta: Parameter;

 PROCEDURE Dynamic;
 BEGIN
 xNew:= (1.0 + r*(1.0 - x/K))*x;
 END Dynamic;

 PROCEDURE About;
 BEGIN
 WriteString("Difference equation form (SQM) of logistic population growth:"); WriteLn;
 WriteLn;
 WriteString(" x(k+1) = [1 + r * 1 - x(k)/K] * x(k)"); WriteLn;
 WriteLn;
 WriteString(" where"); WriteLn;
 WriteString(" x - population density (# of insects per m^2)"); WriteLn;
 WriteString(" r - per capita growth rate"); WriteLn;
 WriteString(" K - carrying capacity (max. population density)"); WriteLn;
 WriteString(" k - discrete time k");
 END About;

 PROCEDURE Objects;
 BEGIN
 DeclSV(x, xNew,1.0, 0.0, 100.0, "Insect population density", "x", "#/m^2");

 DeclP(r, 0.3, 0.0, 10.0, rtc, "Growth rate of insect population", "r", "year^-1");
 DeclP(K, 70.0, 0.0, 100.0, rtc, "Carrying capacity", "K", "#/m^2");

 DeclMV(x, 0.0, 100.0, "Insect population density", "x", "#/m^2",
 notOnFile, writeInTable, isY);
 END Objects;

ModelWorks 2.2 - Appendix (Sample Models)

A 160

 PROCEDURE Output;
 BEGIN
 IF ExperimentRunning() AND (CurrentStep()=70) THEN (* no more transient behavior *)
 SetCurveAttrForMV(m,x, sapphire, invisible, "+")
 END;
 END Output;

 PROCEDURE DrawBifurcationPlot;
 CONST yes = 1;
 VAR i,answer: INTEGER; curScaleMin, curScaleMax: REAL;
 curSF: StashFiling; curT,tbT: Tabulation; curG: Graphing;
 curStain: Stain; curLStyle: LineStyle; curSym, tbSym: CHAR;
 BEGIN
 (* Add some model objects to support zooming into bifurcation plot *)
 IF NOT PDeclared(m,rDelta) THEN
 DeclMV(r, 0.0, 3.0, "Intrinsic growth rate of insects", "r", "year^-1",
 notOnFile, notInTable, notInGraph);
 DeclP(rMin, 0.3, 0.0, 3.0, rtc,
 "Begin of range of r to plot bifurcations", "rMin", "year^-1");
 DeclP(rMax, 3.0, 0.0, 3.0, rtc,
 "End of range of r to plot bifurcations", "rMax", "year^-1");
 DeclP(rDeltaBig, 0.1, 0.0, 10.0, rtc,
 "Increment (big) of r (before 1st bifurcation)", "rDeltaBig", "year^-1");
 DeclP(rDelta, 0.025, 0.0, 10.0, rtc,
 "Increment (small) of r (after 1st bifurcation)", "rDelta", "year^-1");
 END(*IF*);
 (* Prepare monitoring for bifurcation plot *)
 GetMV(m,r, curScaleMin, curScaleMax, curSF, curT, curG);
 SetMV(m,r, rMin, rMax, curSF, curT, isX);
 GetMV(m,x, curScaleMin, curScaleMax, curSF, curT, curG);
 GetCurveAttrForMV(m,x, curStain, curLStyle, curSym);
 Ask("Draw also transient behaviour?","Yes|No",8,answer);
 IF answer=yes THEN tbSym:= "."; tbT:= curT ELSE tbSym:= 0C; tbT:= notInTable END;
 SetMV(m,x, curScaleMin, curScaleMax, curSF, tbT, isY);
 r := rMin;
 WHILE (r<rMax) AND NOT ExperimentAborted() DO
 SetCurveAttrForMV(m,x, emerald,invisible,tbSym);
 SimRun;
 IF r<(2.0-rDeltaBig) THEN (* before very first bifurcation *)
 SetP(m,r, r + rDeltaBig)
 ELSE
 SetP(m,r, r + rDelta)
 END;
 END(*WHILE*);
 (* Restore previous monitoring settings but avoid immediate
 clearing of bifurcation plot: *)
 SetRedrawGraphAlwaysMode(FALSE); (* defers implicit clearing *)
 SetMV(m,x, curScaleMin, curScaleMax, curSF, curT, curG);
 GetMV(m,r, curScaleMin, curScaleMax, curSF, curT, curG);
 SetMV(m,r, curScaleMin, curScaleMax, curSF, curT, notInGraph);
 SetCurveAttrForMV(m,x, curStain,curLStyle,curSym);
 SetRedrawGraphAlwaysMode(TRUE);
 END DrawBifurcationPlot;

 PROCEDURE ModelDefinitions;
 BEGIN
 DeclM(m, discreteTime, NoInitialize, NoInput, Output, Dynamic,
 NoTerminate, Objects, "Logistic insect population dynamics",
 "LogGrowth", About);
 SetSimTime(0.0,100.0);
 InstallExperiment(DrawBifurcationPlot);
 END ModelDefinitions;

BEGIN

ModelWorks 2.2 - Appendix (Sample Models)

A 161

 RunSimEnvironment(ModelDefinitions);
END Insect.

Note, in contrast to the continuous time logistic equation, this model exhibits an astonishingly
wide array of behaviors, which depend on the value of parameter r: The equilibrium x(k) = K
is asymptotically stable if r < 2, in particular the equilibrium is reached without any oscillations
if r ≤ 1 and damped oscillations result if 1 < r < 2; neutrally stable oscillations are produced if r
= 2; if r > 2 oscillations result, their amplitude increases with r and they eventually give way to
deterministic chaotic behavior: In the range of 2 ≤ r ≤ 2.449 results a stable two-point cycle,
between 2.449 ≤ r ≤ 2.544 a stable four-point cycle etc. till chaos (r > 2.57). For instance
observe the behaviour for r = 0.7, 1.99 (tend = 1'000), 2.0 (tend = 5'000), and 3.0 (tend = 100)
or execute the installed experiment (Fig. A1). For more details on this topic you may wish to
read MAY (1974, 1975, 1976, 1981), for the mathematical background MAY & OSTER (1976),
or on the relevance of chaotic models for ecological systems BERRYMAN & MILLSTEIN (1989).

ModelWorks 2.2 - Appendix (Sample Models)

A 162

A.3 A DISCRETE EVENT MODEL (DEVS) - DIVERSITY

Assume we have an island which has been hit by a vulcano eruption and all life has been wiped
out. But there still exist n species on the contintent. After how many years will the same
diversity be reestablished on the island as on the continent?

To keep things as simple as possible let us assume that the island is very big, i.e. in our model
we can ignore any subsequent reextinction. Given these assumptions, the distance of the island
to the continent, and assuming per year a constant mean proability λ that an individual arrives
on the island, we can model the dynamics of the number of species as the result of a Poisson
process, which describes the arrival of individuals on the island.

For each species j we need to know whether it is present on the island or not. Thus the state
vector of this model consists of elements which denote the number of individuals xj which live
on the island and belongs to species j. Since only arrivals can change the state, it follows the
following instantaneous state transition function:

xj(t) = { xj(t
-)+1

xj(t
-)

an individual of species j invades the island

no individuals arriving on the island ∀j
(5)

where

xj Number of individuals of species j living on the island [#]

t- Continuous left-hand side of time before and up to the discrete event arrival

It models any changes which may occur in the state vector x. In order to characterize the
reestablishment of species on the island we use an eveness index E (6) based on the Shannon-
Weaver diversity index (7a):

E = H / Hmax (6)

where

H = ∑
j=1

n
 dj ⋅ ld dj (7a)

and if diversity maximal (even distribution, dj = 1/n)

Hmax = ∑
j=1

n
 1/n ⋅ ld 1/n = ld n (7b)

where

ld logarithmus dualis
n maximum number of species
dj relative density of species j

In order to compute E we need for all species their relative densities dj = xj/∑xj. Finally, since
we are interested in the time t* required to restore the maximal diversity, i.e. when the diversity

ModelWorks 2.2 - Appendix (Sample Models)

A 163

index H according to equation (7a) comes close to Hmax as given by equation (7b), we have to
know whenever the output variable E approaches approximately 1; this is the case if the
following condition holds

1 - E ≤ ε (7)

where

ε a small number

when t* is set equal to the current time t. The goal of the simulation is to determine t* in
function of λ and n.

Fig. A2: Result of a stochastic simulation experiment made with the DEVS
(Discrete event system specification) sample model Diversity. This model
simulates the fate of the diversity on an island after it has been hit by a catastrophic
vulcano eruption. Initially all species from the island have been wiped out. The
reinvasion of individuals from the intact continent is simulated as a Poisson process
with the probability λ of arrival of an individual of species j per time unit (with
n=20 species and a sample size of 10 simulation runs the average number of years
needed to restore maximal diversity (ε = 0.1) has been estimated as t*̂ = 34.49
years).

MODULE Diversity;

 (**

 MODEL: Diversity Restoration of diversity on an island
 after a vulcano eruption (a DEVS)

 af, 21.Dec.93, ETHZ

ModelWorks 2.2 - Appendix (Sample Models)

A 164

 **)

 FROM DMConversions IMPORT IntToString, RealToString, RealFormat;
 FROM DMStrings IMPORT Concatenate, Append;

 FROM SimBase IMPORT
 Model, StateVar, NewState, Parameter, AuxVar, Derivative,
 IntegrationMethod, DeclM, DeclSV, DeclP, RTCType, StashFiling,
 Tabulation, Graphing, DeclMV, SetSimTime, NoInitialize,
 NoInput, NoOutput, NoTerminate, NoAbout, RemoveSV,
 notDeclaredModel, MDeclared, ClearTable, Message;
 FROM SimMaster IMPORT RunSimEnvironment, SimRun,
 InstallExperiment, CurrentTime, StopRun, ExperimentAborted;
 FROM SimEvents IMPORT nilTransaction, Transaction, StateTransition,
 ScheduleEvent, DeclDEVM;

 FROM RandGen IMPORT U, Randomize;
 FROM RandGen0 IMPORT InstallU0, SetJPar, J, SetNegExpPar, NegExp;
 FROM MathLib IMPORT Ln;

 CONST
 arrival = 1; (* EventClass *)
 nMax = 100; (* max. possible nr of species *)
 maxPopSize = 1000.0;

 VAR
 m: Model;
 n: INTEGER; (* actual number of species on continent *)
 nPar: Parameter; (* used to determine n interactively via IO-window *)
 x : ARRAY [1..nMax] OF StateVar; (* population sizes *)
 lambda: Parameter;
 eps: Parameter;
 sampleSize: Parameter;
 H: AuxVar;
 Hmax: AuxVar;
 tStar: AuxVar;

 PROCEDURE Initialize;
 VAR j: INTEGER; dummyNewState: NewState; descr: ARRAY [0..63] OF CHAR;
 ident,jStr: ARRAY [0..15] OF CHAR;
 BEGIN
 n := TRUNC(nPar);
 FOR j:= 1 TO n DO
 IntToString(j,jStr,0);
 Concatenate("Size of population of species ",jStr,descr);
 Concatenate("x[",jStr,ident); Append(ident,"]");
 DeclSV(x[j], dummyNewState, 0.0, 0.0, maxPopSize/nPar, descr, ident, "#");
 END(*FOR*);
 Hmax := Ln(nPar);
 SetJPar(1,n);
 SetNegExpPar(lambda);
 ScheduleEvent(arrival,NegExp(),nilTransaction);
 END Initialize;

 PROCEDURE Arrival(ta: Transaction);
 VAR j: INTEGER;
 BEGIN
 j:= J(); x[j] := x[j] + 1.0;
 ScheduleEvent(arrival,NegExp(),nilTransaction);
 END Arrival;

 PROCEDURE Output;
 VAR sumX, dj: REAL; j: INTEGER;
 BEGIN
 sumX:= 0.0; FOR j:= 1 TO n DO sumX:= sumX + x[j] END;
 H := 0.0;

ModelWorks 2.2 - Appendix (Sample Models)

A 165

 FOR j:= 1 TO n DO IF x[j]>0.0 THEN dj := x[j]/sumX; H := H + Ln(dj)*dj END END(*FOR*);
 H := -H;
 IF (1.0-H/Hmax)<=eps THEN StopRun END(*IF*);
 END Output;

 PROCEDURE Terminate;
 VAR j: INTEGER;
 BEGIN
 tStar := CurrentTime();
 n := TRUNC(nPar);
 FOR j:= 1 TO n DO RemoveSV(m,x[j]) END(*FOR*);
 END Terminate;

 PROCEDURE EstimateTStarHat;
 VAR tStarHat,tStarSum: REAL; k: INTEGER;
 PROCEDURE Report(m: ARRAY OF CHAR; x: REAL);
 VAR rStr: ARRAY [0..15] OF CHAR; msg: ARRAY [0..127] OF CHAR;
 BEGIN (*Report*)
 RealToString(x,rStr,0,2,FixedFormat);
 Concatenate(m, rStr, msg);
 Message(msg);
 END Report;
 BEGIN (*EstimateTStarHat*)
 k := 0; tStarSum := 0.0;
 WHILE NOT ExperimentAborted() AND (FLOAT(k)<sampleSize) DO
 SimRun;
 IF NOT ExperimentAborted() THEN tStarSum := tStarSum + tStar; INC(k) END;
 END(*WHILE*);
 IF k>0 THEN
 tStarHat := tStarSum/FLOAT(k);
 ClearTable;
 Report("t* ≈ ", tStarHat);
 Report("sampleSize = ", FLOAT(k));
 END(*IF*);
 END EstimateTStarHat;

 PROCEDURE ModelObjects;
 BEGIN (*ModelObjects*)
 DeclMV(H, 0.0, 5.0, "Shannon-Weaver diversity index", "H", "",
 notOnFile, notInTable, isY);

 DeclP(nPar, 20.0, 0.0, FLOAT(nMax), noRtc,
 "# of species on continent", "nPar", "# spec.");
 (* actual state vector declaration deferred to Initialize *)

 DeclP(lambda, 1.0, 0.0, 10000.0, noRtc,
 "Mean # individuals arriving on island per ∆t", "lambda", "#/year");
 DeclP(eps, 0.1, 0.0, 1.0, rtc,
 "Relative tolerance between H and Hmax", "eps", "%");
 DeclP(sampleSize, 10.0, 0.0, 10000.0, noRtc,
 "# of runs in experiment", "sampleSize", "#");
 END ModelObjects;

 PROCEDURE ModelDefinitions;
 VAR stf: ARRAY [arrival..arrival] OF StateTransition;
 BEGIN
 stf[arrival].ec := arrival; stf[arrival].fct := Arrival;
 DeclDEVM(m, Initialize, NoInput, Output, stf, Terminate, ModelObjects,
 "Restoration of diversity after vulcano eruption", "Diversity", NoAbout);
 SetSimTime(0.0,50.0);
 InstallExperiment(EstimateTStarHat);
 END ModelDefinitions;

BEGIN
 InstallU0(U);

ModelWorks 2.2 - Appendix (Sample Models)

A 166

 RunSimEnvironment(ModelDefinitions);
END Diversity.

The instantanous state transition function (5) is implemented in form of a separate procedure
Arrival, which is passed as actual argument instead of procedure dynamic while declaring the
DEVS model (DeclDEVM). This procedure is called by ModelWorks whenever an event of
type arrival, i.e. the arrival of an individual on the island, is encountered.

Such events are best scheduled by the procedure Arrival, since the time interval to be elapsed
between two events, can be determined according to following reasons: From theory follows
that the distribution of the time intervals τ between the elementary events follows a negative
exponential model, i.e. the probability that λ events occur in a time interval of length τ follows
the cumulative distribution function F(τ) = 1 - e−λτ. Variates from such a distribution can be
produced by using the random number generator NegExp from module RandGen. Hence, in
order to simulate a series of events of type arrival is produced by calling procedure
ScheduleEvent(arrival, tau, nilTransaction) after having executed the instantanous state
transition function (5). Note that by definition instantanous state transition functions may
update the state vector immediately. To get the sequence of event scheduling started, procedure
Initialize calls ScheduleEvent at least once. To set the parameter λ, the SetNegExpPar is called
at the begin of each run (in procedure Initialize) and consequently λ is a parameter which may
not be changed while a simulation is running (noRtc). As soon as t* can be determined, any
further simulation would be useless; in this situation the current run can be stopped, e.g. by
calling StopRun from SimMaster.

Since t* is actually the result of a stochastic process, many simulation runs should be executed
before t*̂ is determined (Fig. A2). Therefore the experiment procedure EstimateTStarHat is
installed as an experiment and performs several simulation runs before the mean t*̂ is computed
at the end of the experiment EstimateTStarHat (s.a. below section Stochastic Simulations) and
Message from SimBase is used to display the result (Fig. A2).

The dimension of the state vector is variable, since it depends on the parameter nPar. The latter
is implemented like any other model paramter, i.e. it can be changed via the IO-window Model
Parameters. As a consequence, the state variables are not declared within procedure
ModelObjects. Instead procedure Initialize declares the state vector at the begin of a simulation
run and procedure Terminate discards it immediately after completion of a run. Therefore, the
state vector should not be changed during simulations, hence nPar is of type noRtc.

ModelWorks 2.2 - Appendix (Sample Models)

A 167

A.4 TYPICAL APPL ICATIONS

A.4.1 Batch Phase Portrait of Lotka-Volterra - LVPhasePlot

Fig. A3: Phase portrait produced by the installed experiment procedure
PhasePortrait. During this structure simulation were executed k=5 simulation runs,
each produced a closed trajectory. I addition to the trajectory were also drawn
short pieces of the tangential slopes.

The following model definition program allows to simulate the famous Lotka-Volterra predator-
prey model and to produce a phase portrait in the state space (Fig. A3) by means of a
preprogrammed experiment, i.e. procedure PhasePortrait.

MODULE LVPhasePlot; (* af 15/01/88, dg 06/03/93, dg 25/04/96 *)

 (**************************************)
 (* Lotka-Volterra prey-predator model *)
 (**************************************)

 FROM DMWindIO IMPORT
 SetPos, WriteString, SetPen, LineTo, SetColor, cyan,
 SetClipping, RemoveClipping;

 FROM DMWindows IMPORT RectArea;

 FROM SimBase IMPORT
 DeclM, IntegrationMethod, DeclSV, StashFiling, Tabulation,
 Graphing, DeclMV, DeclP, RTCType, Model, SetSimTime,
 InstallClientMonitoring, TileWindows, DoNothing, SetSV,
 SetDefltWindowArrangement, MWWindowArrangement, GetMV, NoInput,
 NoOutput, NoTerminate, StateVar, Derivative, Parameter;

 FROM SimMaster IMPORT
 RunSimEnvironment, SimRun, InstallExperiment, CurrentTime;

ModelWorks 2.2 - Appendix (Sample Models)

A 168

 FROM SimGraphUtils IMPORT
 SelectForOutputGraph, GraphToWindowPoint, WindowToGraphPoint;

 VAR
 m: Model;
 x, y: StateVar;
 xDot, yDot: Derivative;
 c1,c2,c3,c4,c5: Parameter;
 runNo: INTEGER; withVectors: Parameter;
 monIntCount: INTEGER; phaseSpaceGraph: BOOLEAN;
 curSMinx, curSMaxx, curSMiny, curSMaxy: REAL;
 panelr: RectArea; vectorInt: Parameter;

 PROCEDURE ShowEqus;
 CONST lm = 3;
 BEGIN
 SetPos(3,lm); WriteString("Lotka-Volterra prey (x) - ");
 WriteString("predator (y) model");
 SetPos(5,lm); WriteString(" dx/dt = c1*x - c2*x*x - c3*x*y");
 SetPos(6,lm); WriteString(" dy/dt = c3*c4*x*y - c5*y");
 END ShowEqus;

 PROCEDURE Initialize;
 BEGIN
 CASE runNo OF
 1: SetSV(m,x,4.0E3); SetSV(m,y,250.0);
 | 2: SetSV(m,x,5.0E3); SetSV(m,y,300.0);
 | 3: SetSV(m,x,6.0E3); SetSV(m,y,350.0);
 | 4: SetSV(m,x,7.0E3); SetSV(m,y,400.0);
 | 5: SetSV(m,x,8.0E3); SetSV(m,y,450.0);
 | 6: SetSV(m,x,8.0E3); SetSV(m,y,475.0);
 ELSE
 END(*CASE*);
 END Initialize;

 PROCEDURE PhasePortrait;
 BEGIN
 FOR runNo:= 1 TO 5 DO SimRun END(*FOR*); runNo:= 0;
 END PhasePortrait;

 PROCEDURE Dynamic;
 BEGIN
 xDot:= c1*x - c2*x*x - c3*x*y;
 yDot:= c3*c4*x*y - c5*y;
 END Dynamic;

 PROCEDURE InitClientMonit;
 VAR curSF: StashFiling; curT: Tabulation; curGx,curGy: Graphing;
 BEGIN
 GetMV(m,x, curSMinx,curSMaxx, curSF, curT, curGx);
 GetMV(m,y, curSMiny,curSMaxy, curSF, curT, curGy);
 phaseSpaceGraph := ((curGx = isX) AND (curGy = isY));
 IF phaseSpaceGraph THEN
 WITH panelr DO
 GraphToWindowPoint(curSMinx,0.0,x,y);
 GraphToWindowPoint(curSMaxx,0.0,w,y); w := w-x;
 GraphToWindowPoint(curSMinx,1.0,x,h); h := h-y;
 INC(x); INC(y); DEC(w,2); DEC(h,2);
 END(*WITH*);
 monIntCount := 0;
 END(*IF*);
 END InitClientMonit;

ModelWorks 2.2 - Appendix (Sample Models)

A 169

 PROCEDURE DrawVectors;
 CONST vele = 10;
 VAR xx,yy: INTEGER; dx,dy, slope, x1,x2,y1,y2: REAL; clipr: RectArea;

 PROCEDURE Min(x,y: INTEGER): INTEGER;
 BEGIN
 IF x<y THEN RETURN x ELSE RETURN y END;
 END Min;

 PROCEDURE Max(x,y: INTEGER): INTEGER;
 BEGIN
 IF x>y THEN RETURN x ELSE RETURN y END;
 END Max;

 BEGIN (*. DrawVectors .*)
 IF phaseSpaceGraph AND (withVectors>0.0)
 AND ((monIntCount MOD TRUNC(vectorInt)) = 0)
 THEN
 SelectForOutputGraph; SetColor(cyan);
 slope := yDot/xDot;
 GraphToWindowPoint(x,(y-curSMiny)/(curSMaxy-curSMiny),xx,yy);
 WITH clipr DO
 x := Max(xx-vele,panelr.x); y := Max(yy-vele,panelr.y);
 w := Min(xx+vele,panelr.x+panelr.w); w := w - x;
 h := Min(yy+vele,panelr.y+panelr.h); h := h - y;
 END(*WITH*);
 WindowToGraphPoint(xx-vele,yy,x1,y1); dx := x1-x; y1 := y+slope*dx;
 WindowToGraphPoint(xx+vele,yy,x2,y2); dx := x2-x; y2 := y+slope*dx;
 GraphToWindowPoint(x1,(y1-curSMiny)/(curSMaxy-curSMiny),xx,yy);
 SetPen(xx,yy);
 GraphToWindowPoint(x2,(y2-curSMiny)/(curSMaxy-curSMiny),xx,yy);
 SetClipping(clipr);
 LineTo(xx,yy);
 RemoveClipping;
 END(*IF*);
 INC(monIntCount);
 END DrawVectors;

 PROCEDURE ModelObjects;
 BEGIN
 DeclSV(x, xDot,4.0E3, 0.0, 1.0E5,
 "Prey population (density)", "x", "#");
 DeclSV(y, yDot,250.0, 0.0, 1.0E4,
 "Predator population (density)", "y", "#");

 DeclMV(x, 0.0,50000.0, "Prey population (density)", "x",
 "#", notOnFile, writeInTable, isX);
 DeclMV(y, 0.0, 1000.0,"Predator population (density)",
 "y", "#", notOnFile, writeInTable, isY);

 DeclP(c1, 1.0, 0.0, 100.0, rtc,
 "c1 (birth rate of x)", "c1", "/time");
 DeclP(c2, 0.0, 0.0, 1.0, rtc,
 "c2 (self inhibition coefficient of x)", "c2", "/#/time");
 DeclP(c3, 2.0E-3, 0.0, 1.0, rtc,
 "c3 (coupling parameter)", "c3", "/#/time");
 DeclP(c4, 0.5E-2, 0.0, 10.0, rtc,
 "c4 (ratio of x net use by y)", "c4", "---");
 DeclP(c5, 0.08, 0.0, 10.0, rtc,
 "c5 (death rate of y)", "c5", "/time");
 DeclP(vectorInt, 3.0, 1.0, 1000.0, rtc,
 "# monitoring intervals when to draw vectors", "vectorInt",
 "monitoring intervals");
 DeclP(withVectors, 1.0, 0.0, 1.0, rtc,
 "Draw vectors (0-no/1-yes)", "withVectors", "");
 runNo:= 0;

ModelWorks 2.2 - Appendix (Sample Models)

A 170

 END ModelObjects;

 PROCEDURE ModelDeclaration;
 BEGIN
 DeclM(m, Heun, Initialize, NoInput, NoOutput, Dynamic, NoTerminate,
 ModelObjects,
 "Lotka-Volterra prey-predator model", "LV-model", ShowEqus);
 SetSimTime(0.0,30.0);
 InstallExperiment(PhasePortrait);
 InstallClientMonitoring(InitClientMonit,DrawVectors,DoNothing);
 TileWindows; SetDefltWindowArrangement(current);
 END ModelDeclaration;

BEGIN
 RunSimEnvironment(ModelDeclaration);
END LVPhasePlot.

ModelWorks 2.2 - Appendix (Sample Models)

A 171

A.4.2 Interactive Phase Portrait of the Van-der-Pol Oscillator - VDPol

The following model definition program allows to simulate the famous Van-der-Pol oscillator
and to determine interactively, i.e. by a mouse-click, the starting point of trajectories in the state
space.

The Van-der-Pol oscillator is given by this autonomous, non-linear, second order differential
equation

z·· – µ (1 - z2) z· + z = 0

This equation can be brought into canonical form by introducing the state varibles x and y
defined as follows:

x = z

y = z· => y· = z·· = µ (1 - z2) z· – z

and we obtain a second order system of ordinary, first order differential equations (canconical
form):

x· = y

y· = µ (1 - x2) y – x

This system has an unstable singularity in the origin of the state space and an asymptotically
stable limit cycle (Fig. A4).

Fig. A4: Phase portrait of the Van-der-Pol oscillator, a second order, autonomous
non-linear system of ordinary differential equations. This sample model definition
program demonstrates the use of the "Dialog Machine" in conjunction with the
auxiliary library module SimGraphUtils. It allows the simulationist to set interacti-
vely the new initial conditions in the state space shown in the window Graph
(mouse was clicked at points marked with o). Once a new initial state vector has
been defined, the next run will produce a trajectory starting at the clicked point.

ModelWorks 2.2 - Appendix (Sample Models)

A 172

This implementation demonstrates the use of the "Dialog Machine" and SimGraphUtils to set
interactively the initial values of the state vector of a second order model system. Given the si-
mulationist has set the monitoring currently such, that the window Graph displays the state
space, a mouse click into the graph window's content first halts any eventually still running si-
mulation, then interprets the point where the mouse has been clicked as the new initial values of
the state vector, and marks this point with the character 'o'. As soon as the simulationist now
starts another simulation run by choosing the menu command Solve/Start run (for instance with
the keyboard equivalent � R) the next trajectory drawn starts at the clicked point. This behavior
allows to construct interactively a phase portrait as depicted in Fig. A4.

This program behavior is achieved by installing for the window Graph a handler, i.e. procedure
GetAndSetNewInits. To install GetAndSetNewInits use procedure InstallGraphClickHandler
from module SimGraphUtils from the optional client interface of ModelWorks. ModelWorks
installs then the handler into the "Dialog Machine", which calls GetAndSetNewInits each time
the user clicks into the content of the window Graph.

ModelWorks' client monitoring mechanism ist used to draw an extra horizontal line through the
origin, normally not shown by ModelWorks. DrawAbscissa is installed as the client
monitoring initialization routine, i.e. as actual argument for formal parameter initClientMon of
procedure InstallClientMonitoring from module SimBase. Remember that the ordinate is
always scaled to interval [0..1] only, because the graph must be able to display more than just
one curve.

These implementations of GetAndSetNewInits as well as DrawAbscissa function for both state
space representations, i.e. for the graph x vs. y as well as y vs. x; the procedures
IsMVOnOrdinate respectively IsMVOnAbscissa allow to determine which monitorable variable,
i.e. x or y, is currently displayed as the ordinate resp. abscissa. All algorithms will then adjust
accordingly, regardless which way the simulationist happens to have specified the state space
representation.

MODULE VDPol;

 (***

 Model: VDPol

 Copyright (c) 1989 by Andreas Fischlin and Harald Bugmann
 & Swiss Federal Institute of Technology Zurich ETHZ
 Systems Ecology Group
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Purpose:

 Simulation of the Van-der-Pol oscillator with an unstable
 singularity in the origin of the state space and a
 assymptotically stable limit cycle. This implementation, a
 ModelWorks model definition program, allows to determine
 interactively the initial conditions by clicking with the
 mouse into the window Graph, given it displays currently the
 state space.

 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 af 29/07/87 First implementation
 af 26/01/93 Clicking into state space to

ModelWorks 2.2 - Appendix (Sample Models)

A 173

 set new initial condition added
 dg 04/03/93 Import lists cleaned up
 af 18/03/93 New support by SimGraphUtils used
 dg 25/04/96 Cleaned up for PC compatibility

 ***)

 FROM DMWindIO IMPORT
 SetColor, black, SetPen, LineTo, GetLastMouseClick, ClickKind,
 DrawSym, Color;
 FROM SimGraphUtils IMPORT
 Abscissa, CurrentAbscissa, SelectForOutputGraph, PointToMVVal,
 MVValToPoint, InstallGraphClickHandler, StainToColor;
 FROM SimBase IMPORT
 StateVar, Derivative, Parameter, DeclM, IntegrationMethod,
 DeclSV, GetMV, GetDefltSV, StashFiling, Tabulation, Graphing,
 DeclMV, DeclP, RTCType, Model, SetSimTime, SetMonInterval,
 SetIntegrationStep, SetDefltCurveAttrForMV, Stain, LineStyle,
 GetCurveAttrForMV, autoDefSym, SetSV, InstallClientMonitoring,
 NoInitialize, NoInput, NoOutput, NoTerminate, NoAbout,
 DoNothing;
 FROM SimMaster IMPORT RunSimEnvironment, StopRun;

 (***)

 VAR
 m: Model;
 x, y: StateVar;
 xDot, yDot: Derivative;
 mu: Parameter;

 PROCEDURE GetAndSetNewInits;
 VAR xr,yr: REAL; curG: Graphing; curStain: Stain; curCol: Color;
 curLineStyle: LineStyle; curSym: CHAR; xi,yi: INTEGER; click: ClickKind;
 BEGIN
 GetLastMouseClick(xi,yi,click);
 xr := PointToMVVal(xi,yi,m,x,curG);
 IF (curG=isX) OR (curG=isY) THEN SetSV(m,x,xr) END;
 IF (curG=isY) THEN GetCurveAttrForMV(m,x,curStain, curLineStyle, curSym) END;
 yr := PointToMVVal(xi,yi,m,y,curG);
 IF (curG=isX) OR (curG=isY) THEN SetSV(m,y,yr) END;
 IF (curG=isY) THEN GetCurveAttrForMV(m,y,curStain, curLineStyle, curSym) END;
 SelectForOutputGraph;
 StainToColor(curStain,curCol); SetColor(curCol);
 SetPen(xi,yi); DrawSym('o');
 StopRun;
 END GetAndSetNewInits;

 PROCEDURE DrawAbscissa; (* is initClientMon procedure *)
 VAR xx,yy: INTEGER; curX: Abscissa; curGx,curGy: Graphing;
 BEGIN
 SelectForOutputGraph; SetColor(black);
 CurrentAbscissa(curX);
 xx := MVValToPoint(0.0,m,x,curGx);
 yy := MVValToPoint(0.0,m,y,curGy);
 IF (curGx=isX) AND (curGy=isY) THEN
 SetPen(MVValToPoint(curX.xMin,m,x,curGx),yy);
 LineTo(MVValToPoint(curX.xMax,m,x,curGx),yy);
 ELSIF (curGy=isX) AND (curGx=isY) THEN
 SetPen(MVValToPoint(curX.xMin,m,y,curGy),xx);
 LineTo(MVValToPoint(curX.xMax,m,y,curGy),xx);
 END(*IF*);
 END DrawAbscissa;

 PROCEDURE Dynamic;

ModelWorks 2.2 - Appendix (Sample Models)

A 174

 BEGIN
 xDot:=y;
 yDot:= mu*(1.0-x*x)*y-x;
 END Dynamic;

 PROCEDURE ModelObjects;
 BEGIN
 DeclSV(x, xDot,1.0, -5.0, +5.0, "x (xDot := y)", "x", "");
 DeclSV(y, yDot,1.0, -5.0, +5.0, "y (yDot := µ(1-x^2)y-x)", "y", "");

 DeclMV(x,-5.0,5.0,"x (abscissa)","x","",notOnFile,notInTable,isX);
 SetDefltCurveAttrForMV(m,x,ruby,unbroken,0C);
 DeclMV(y,-5.0,5.0,"y (ordinate)","y","",notOnFile,notInTable,isY);
 SetDefltCurveAttrForMV(m,y,emerald,unbroken,0C);

 DeclP(mu, 1.0, -10.0, 10.0, rtc, "µ (oscillator parameter)", "µ", "");
 END ModelObjects;

 PROCEDURE ModelDefinitions;
 BEGIN
 DeclM(m, Euler, NoInitialize, NoInput, NoOutput, Dynamic, NoTerminate, ModelObjects,
 "Van der Pol Oscillator", "VDPol", NoAbout);
 SetSimTime(0.0,20.0); SetMonInterval(0.2); SetIntegrationStep(0.05);
 InstallClientMonitoring(DrawAbscissa,DoNothing,DoNothing);
 InstallGraphClickHandler(GetAndSetNewInits);
 END ModelDefinitions;

BEGIN
 ModelDefinitions;
 RunSimEnvironment(DoNothing);
END VDPol.

ModelWorks 2.2 - Appendix (Sample Models)

A 175

A.4.3 Animation of the Age Pyramid of the Swiss - SwissPop

The following sample model simulates the Swiss human population starting from the demo-
graphic state and properties in the year 1988. The model considers only the age structure (n =
100 age classes) differentiated for sex but neither immigration nor emigration. Hence the model
has been formulated as an autonomous, linear, discrete time1 Leslie matrix model with the fol-
lowing equations:

x(k+1) = L x(k)

where

f0 f1 f2 ... fa-3 fa-2 fa-1
s01 0 0 ... 0 0 0
0 s12 0 ... 0 0 0

 L = 0 0 s23 ... 0 0 0
...
0 0 0 ... sn-3n-2 0 0
0 0 0 ... 0 sn-2n-1 0

All demographic parameters such as fecundity fi and survival sij are assumed to remain constant
and were derived from official statistics valid for the year ko = 1988. This sample model defi-
nition program also demonstrates the reading of data, i.e. the initial state vector, from a file by
means of the auxiliary library module ReadData.

ReadInitialStateVectorFromFile tries first to open the data file SwissPop88.DAT automatically
by calling procedure OpenDataFile from ReadData. If OpenDataFile can't open the data file, it
will display first a message informing the simulationist about the problem and then ask her to
locate the data file via the standard file opening dialog (GetExistingFile from DMFiles).

ReadInitialStateVectorFromFile is installed in the simulation environment via procedure Install-
DefSimEnv from SimMaster. Therefore ReadInitialStateVectorFromFile will be called auto-
matically during the initialization of the simulation environment (see part II Theory, section Ini-
tialization of the simulation environment), but can be called again as many times the si-mu-la-
tio-nist wishes, e.g. to use another file or after having edited the file.SwissPop88.DAT. There-
fore, if stateVectorInitialized is true ReadInitialStateVectorFromFile uses OpenADataFile,
which will always open the data file via the standard file opening dialog.

The following excerpt from the data file SwissPop88.DAT shows what data the procedure
ReadInitialStateVectorFromFile expects:

age class size
0 79700
1 75700
2 74900
3 74000
...
...
97 1484
98 1115
99 746
100 377

1This example represents the special case where the discrete time κ is restricted to integer numbers k only.

ModelWorks 2.2 - Appendix (Sample Models)

A 176

The data are read free-format, however ReadInitialStateVectorFromFile expects first a header
line, which it will skip, and then exactly 101 data pairs, each consisting of the index and the
size of the age class. ReadData will test for each expected number its syntax and the plausibility
of the read value by comparing it with an interval (see GetInt or GetReal from ReadData).
Whenever ReadData detects an error condition, it will inform the user about the cause and loca-
tion at which the error was detected and asks the user whether she wishes to debug, continue or
abort the reading process.

Fig. A5: Client monitoring of the age structure of a Leslie matrix model of the hu-
man population of Switzerland. On the left the age structure of the Swiss in 1988,
on the right at the end of the simulation in year 2188, i.e. when the population has
reached approximately a steady-state age structure.

Note that simulations are not possible if the data file containing the initial state vector could not
be successfully opened or processed, since procedure a StateVectorInitialized, which is
installed via InstallStartConsistency into the simulation envi ronment, will return FALSE if the
reading of the data from the file should have failed for whichever reason (file could not be
found, opened, contains data different from the needed respectively expected ones etc.).

Moreover this sample model demonstrates the use of table functions to interpolate for every age
class the fecundity and the survival (auxiliary library module TabFunc) and a typical client mo-
nitoring of the age structure by using auxiliary library module DrawAgePyramid (Fig. A5).
The latter allows to watch the evolving age structure continuously and to detect when the shape
of the age pyramid does no longer change, i.e. the stationary age structure has been reached.

MODULE SwissPop;

ModelWorks 2.2 - Appendix (Sample Models)

A 177

 (***

 Model: SwissPop

 Copyright (c) 1989 by Harald Bugmann, Andreas Fischlin
 & Swiss Federal Institute of Technology Zurich ETHZ
 Systems Ecology Group
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Purpose:

 Population dynamics of Switzerland with an age structure (100
 age classes) Leslie model with sex differentiation. The
 initial state vector for the year 1988 is read from a data
 file (SwissPop88.DAT), which reads the size for every age
 class into the state vector. Age and sex specific fecundity and
 survival are formulated by interpolating within table functions
 for age specific mortality function (one for both sexes) and
 an age specific fecundity function for the women.

 References:

 Statistisches Jahrbuch der Schweiz - 1989. Verlag Neue
 Zürcher Zeitung und Bundesamt für Statistik.
 ISBN 3 85823 250 5.

 p.24 Table 1.4 (Population)
 p.36 and 39 (Fecundity, mortality).

 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 hb 18.06.90 First implementation (DM 2.0,
 MacMETH 2.6+, ModelWorks 2.0)
 hb 22.06.90 Minor improvements & bug fixes
 af 25/01/93 Fixing bugs in state vector initialization
 and complete overhaul to include this module
 as a sample model in the ModelWorks Manual
 Appendix; uses now ReadData
 dg 06/03/93 Import lists cleaned up

 ***)

 FROM DMConversions IMPORT IntToString;

 FROM DMStrings IMPORT Append;

 FROM DMMessages IMPORT Warn;

 FROM SimBase IMPORT
 Model, DeclM, IntegrationMethod,
 StateVar, NewState, DeclSV, SetSV, Parameter, DeclP, RTCType,
 StashFiling, Tabulation, Graphing, DeclMV, AuxVar,
 SetSimTime, NoInitialize, NoInput,
 NoOutput, NoTerminate, NoAbout, DoNothing,
 InstallClientMonitoring, SetMonInterval;

 FROM SimMaster IMPORT
 InstallStartConsistency, InstallDefSimEnv,
 RunSimEnvironment;

ModelWorks 2.2 - Appendix (Sample Models)

A 178

 FROM TabFunc IMPORT TabFUNC, DeclTabF, Yie, Yi, SetTabF;

 FROM ReadData IMPORT
 OpenADataFile, OpenDataFile, CloseDataFile, GetReal, GetInt, TestEOF,
 SkipHeaderLine, readingAborted;

 FROM DrawAgePyram IMPORT
 SetPyramidParameters, GetPyramidParameters, MakePyramid,
 ShowPyramidWindow, DiscardPyramid, DrawPyramid, AgePyramid,
 ResetPyramid, HidePyramidWindow;

 (***)

 CONST
 maxAge = 100;
 defltBirthSexRatio = 0.48;
 sexRatio = 0.52;

 TYPE
 StateVector = ARRAY [0..maxAge] OF StateVar;
 NewStateVector = ARRAY [0..maxAge] OF NewState;

 VAR
 m : Model;
 men, women : ARRAY [0..maxAge] OF StateVar;
 menNew, womenNew : NewStateVector;
 ageClass, mortWomen, mortMen : ARRAY [0..11] OF Parameter;
 ageClassFec, fecundity : ARRAY [0..8] OF Parameter;
 offspring, birthSexRatio,
 totalWomen, totalMen, totalPopulation : AuxVar;
 agePyramid: AgePyramid;
 mortMenT, mortWomenT, fecT : TabFUNC;
 stateVectorInitialized: BOOLEAN;

 PROCEDURE ReadInitialStateVectorFromFile;
 CONST maxTolerated = 1.0E+8/FLOAT(maxAge);
 VAR fn: ARRAY [0..127] OF CHAR; VAR opened: BOOLEAN;
 k,ageClass: INTEGER; ageClassSize: AuxVar;
 BEGIN
 fn := "SwissPop88.DAT";
 IF stateVectorInitialized THEN
 OpenADataFile(fn,opened);
 ELSE
 OpenDataFile(fn,opened);
 END(*IF*);
 IF opened THEN
 SkipHeaderLine;
 FOR k:= 0 TO maxAge DO
 TestEOF; GetInt("age class",k, ageClass, k,k); (* ageClass = k expected *)
 TestEOF; GetReal("size of age class",k, ageClassSize, 0.0,maxTolerated);
 IF NOT readingAborted THEN
 women[ageClass] := sexRatio * ageClassSize;
 men[ageClass] := ageClassSize - women[ageClass];
 SetSV(m,women[ageClass],women[ageClass]);
 SetSV(m,men[ageClass],men[ageClass]);
 stateVectorInitialized := TRUE;
 ELSE
 stateVectorInitialized := FALSE; (* only partially assigned *)
 RETURN
 END(*IF*);
 END(*FOR*);
 CloseDataFile;
 END(*IF*);
 END ReadInitialStateVectorFromFile;

 PROCEDURE StateVectorInitialized(): BOOLEAN;
 BEGIN

ModelWorks 2.2 - Appendix (Sample Models)

A 179

 RETURN stateVectorInitialized
 END StateVectorInitialized;

 PROCEDURE Dynamic;
 VAR i : INTEGER;
 BEGIN
 (* calculate surviving people in each age class *)
 FOR i := 1 TO maxAge DO
 womenNew[i] := (1.0 - Yie(mortWomenT, FLOAT(i-1))) * women[i-1];
 menNew[i] := (1.0 - Yie(mortMenT, FLOAT(i-1))) * men[i-1];
 END; (* FOR *)

 (* sum all offspring for the age classes 15 to 49 *)
 offspring := 0.0;
 FOR i:= 15 TO 49 DO
 offspring := offspring + Yi(fecT, FLOAT(i))*women[i];
 END; (* FOR *)

 (* calculate babies born *)
 womenNew[0] := birthSexRatio * offspring;
 menNew[0] := (1.0 - birthSexRatio) * offspring;
 END Dynamic;

 PROCEDURE Output;
 VAR i: INTEGER;
 BEGIN
 totalWomen := 0.0;
 totalMen := 0.0;
 FOR i:= 0 TO maxAge DO
 totalWomen := totalWomen + women[i];
 totalMen := totalMen + men[i];
 END; (* FOR *)
 totalPopulation := totalMen + totalWomen;
 END Output;

 PROCEDURE PyramidMonitoring;
 BEGIN
 ShowPyramidWindow(agePyramid);
 DrawPyramid (agePyramid, women, men);
 END PyramidMonitoring;

 PROCEDURE ModelObjects;
 VAR i : INTEGER;
 string : ARRAY [1..3] OF CHAR;
 womenDescr, womenIdent, menDescr, menIdent : ARRAY [0..30] OF CHAR;
 BEGIN
 DeclMV(totalWomen, 0.0, 7.0E6, "Total women", " ∑ women",
 "#", notOnFile, writeInTable, isY);
 DeclMV(totalMen, 0.0, 7.0E6, "Total men", " ∑ men",
 "#", notOnFile, writeInTable, isY);
 DeclMV(totalPopulation, 0.0, 7.0E6, "Total population", " ∑ pop",
 "#", notOnFile, writeInTable, isY);

 FOR i:= 0 TO maxAge DO
 IntToString(i, string, 3);
 womenDescr := "Women of age "; Append(womenDescr, string);
 womenIdent := "f "; Append(womenIdent, string);
 DeclSV(women[i], womenNew[i], 0.0, 0.0, 1.0E6,
 womenDescr, womenIdent, "#");
 DeclMV(women[i], 0.0, 150000.0, womenDescr, womenIdent,
 "#", notOnFile, notInTable, notInGraph);
 END(*FOR*);

 FOR i:= 0 TO maxAge DO
 IntToString(i, string, 3);

ModelWorks 2.2 - Appendix (Sample Models)

A 180

 menDescr := "men of age "; Append(menDescr, string);
 menIdent := "m "; Append(menIdent, string);
 DeclSV(men[i], menNew[i], 0.0, 0.0, 1.0E6,
 menDescr, menIdent, "#");
 DeclMV(men[i], 0.0, 150000.0, menDescr, menIdent,
 "#", notOnFile, notInTable, notInGraph);
 END(*FOR*);

 MakePyramid(agePyramid);

 DeclP(birthSexRatio, defltBirthSexRatio, 0.0, 1.0, rtc,
 "Percentage of female babies", "% fem. babies", "%");

 ageClass[0] := 0.0; mortMen[0] := 0.0077;
 ageClass[1] := 5.5; mortMen[1] := 0.0003;
 ageClass[2] := 15.0; mortMen[2] := 0.0006;
 ageClass[3] := 25.0; mortMen[3] := 0.0015;
 ageClass[4] := 35.0; mortMen[4] := 0.0015;
 ageClass[5] := 45.0; mortMen[5] := 0.0027;
 ageClass[6] := 55.0; mortMen[6] := 0.0076;
 ageClass[7] := 62.5; mortMen[7] := 0.0156;
 ageClass[8] := 67.5; mortMen[8] := 0.0254;
 ageClass[9] := 75.0; mortMen[9] := 0.0520;
 ageClass[10]:= 85.0; mortMen[10]:= 0.1139;
 ageClass[11]:= 95.0; mortMen[11]:= 0.7482;
 DeclTabF(mortMenT, ageClass, mortMen, 12, TRUE,
 "Mortality of men",
 "age", "mortality", "years", "/year",
 0.0, 100.0, 0.0, 1.0);

 ageClass[0] := 0.0; mortWomen[0] := 0.0059;
 ageClass[1] := 5.5; mortWomen[1] := 0.0003;
 ageClass[2] := 15.0; mortWomen[2] := 0.0003;
 ageClass[3] := 25.0; mortWomen[3] := 0.0005;
 ageClass[4] := 35.0; mortWomen[4] := 0.0007;
 ageClass[5] := 45.0; mortWomen[5] := 0.0016;
 ageClass[6] := 55.0; mortWomen[6] := 0.0036;
 ageClass[7] := 62.5; mortWomen[7] := 0.0067;
 ageClass[8] := 67.5; mortWomen[8] := 0.0114;
 ageClass[9] := 75.0; mortWomen[9] := 0.0270;
 ageClass[10]:= 85.0; mortWomen[10]:= 0.0923;
 ageClass[11]:= 95.0; mortWomen[11]:= 0.7703;
 DeclTabF(mortWomenT, ageClass, mortWomen, 12, TRUE,
 "Mortality of women",
 "age", "mortality", "years", "/year",
 0.0, 100.0, 0.0, 1.0);

 ageClassFec[0] := 15.0; fecundity[0] := 0.0;
 ageClassFec[1] := 17.0; fecundity[1] := 0.0045;
 ageClassFec[2] := 22.0; fecundity[2] := 0.0512;
 ageClassFec[3] := 27.0; fecundity[3] := 0.1283;
 ageClassFec[4] := 32.0; fecundity[4] := 0.0946;
 ageClassFec[5] := 37.0; fecundity[5] := 0.0305;
 ageClassFec[6] := 42.0; fecundity[6] := 0.0043;
 ageClassFec[7] := 47.0; fecundity[7] := 0.0003;
 ageClassFec[8] := 50.0; fecundity[8] := 0.0000;
 DeclTabF(fecT, ageClassFec, fecundity, 9, TRUE,
 "Fecundity",
 "age", "Fecundity", "years", "ch/fem/yr",
 0.0, 100.0, 0.0, 1.0);

 END ModelObjects;

 PROCEDURE ModelDefinition;
 BEGIN
 DeclM(m, discreteTime, NoInitialize, NoInput, Output, Dynamic,
 NoTerminate, ModelObjects, "Population model for Switzerland (CH)", "CH Pop",
NoAbout);

ModelWorks 2.2 - Appendix (Sample Models)

A 181

 SetSimTime(1988.0, 2188.0);
 SetMonInterval(5.0);
 InstallClientMonitoring(DoNothing, PyramidMonitoring, DoNothing);
 InstallStartConsistency(StateVectorInitialized);
 stateVectorInitialized := FALSE;
 InstallDefSimEnv(ReadInitialStateVectorFromFile);
 END ModelDefinition;

BEGIN
 RunSimEnvironment(ModelDefinition);
END SwissPop.

ModelWorks 2.2 - Appendix (Sample Models)

A 182

A.4.4 Sensitivity Analysis - Sensi tivi ty

To perform a sensitivity analysis we use a structured simulation experiment: Given a set of n
model parameters and for each parameter a triple of values, such as the lower boundary of a
confidence interval, the mean, and the upper boundary of the confidence interval (e.g. α =
5%), we are interested in the sensitivity of the model behavior in respect to the changes in the
parameters as given by these triplets. Thus it is necessary to execute a simulation run for every
combination of parameter values.

First the parameter values can be stored on a text file similar to a format like this one:

min p1 mean p1 max p1 descriptor of p1 p1 unit p1
min p2 mean p2 max p2 descriptor of p2 p2 unit p2
...
...
...
min pn mean pn max pn descriptor of pn pn unit pn

For instance this parameter file might contain these data:

0.109 0.234 0.472 Growth rate 1 r day^-1
35.6 42.3 49.8 Half-saturation c. Ks µg/l
1.0E5 2.5E5 5.0E5 Initial algal dens. x0 cells/ml

A full sensitivity analysis can then be realized in form of the following program code:
CONST n = 3;
TYPE PVal = (cur, min, mean, max);
 PType = RECORD
 v: ARRAY [cur..max] OF REAL;
 descr,ident,unit: ARRAY [0..64] OF CHAR;
 END;
VAR p: ARRAY [1..n] OF PType;

PROCEDURE DeclModelObjects;
 VAR i: [1..n]; j: [min..max]; parFile: TextFile 2;
BEGIN
 GetExistingFile(parFile, "Open parameter file");
 FOR i:= 1 TO n DO
 FOR j:= min TO max DO GetReal(parFile,p[i].v[j]) END;
 SkipGap(parFile); ReadChars(parFile,p[i].descr);
 SkipGap(parFile); ReadChars(parFile,p[i].ident);
 SkipGap(parFile); ReadChars(parFile,p[i].unit);
 END;
 Close(parFile);
 FOR i:= 1 TO n DO WITH p[i] DO
 DeclP(v[cur],v[mean],0.0,MAX(REAL),noRtc,descr,ident,unit)
 END END;

 DeclSV(...
 ...
END DeclModelObjects;

PROCEDURE MyExperiment;
 VAR i,j,k: [min..max];
BEGIN
 FOR i:= min TO max DO
 FOR j:= min TO max DO
 FOR k:= min TO max DO
 SetP(m,p[1].v[cur], p[1].v[i]);
 SetP(m,p[2].v[cur], p[2].v[j]);
 SetP(m,p[3].v[cur], p[3].v[k]);
 SimRun
 END
 END
 END;
END MyExperiment;

1In order to be able to use blanks in the middle of a descriptor and still be able to write the data onto the text
file in a free format use so-called hard spaces (on the Macintosh Option^space-bar) or underline within a
descriptor.
2The objects TextFile, GetExistingFile, GetReal, SkipGap, ReadChars, and Close are to be imported from the
"Dialog Machine" module DMFiles.

ModelWorks 2.2 - Appendix (Sample Models)

A 183

or alternatively the procedure MyExperiment may be programmed in the general recursive vari-
ant, which works for any n:

PROCEDURE MyExperiment;
 PROCEDURE Sensitivity(i: CARDINAL);
 VAR j: [min..max];
 BEGIN (*Sensitivity*)
 FOR j:= min TO max DO SetP(m,p[i].v[cur], p[i].v[j]);
 IF i<n THEN Sensitivity(i+1) ELSE SimRun END;
 END(*FOR*);
 END Sensitivity;
BEGIN (*MyExperiment*)
 Sensitivity(1);
END MyExperiment;

Note however, such an experiment may quickly grow to an enormous task! Given n model pa-
rameters, each with k values and each combination to be tested, the number of simulation runs
becomes kn. Above simple example with n = 3 parameters, each with k = 3 values (min, mean,
max), requires for a full sensitivity analysis already 33 = 27 simulation runs.

MODULE Sensitivity;

 (***

 ModelWorks model: Sensitivity

 Copyright ©1989 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zurich ETHZ
 Department of Environmental Sciences
 Systems Ecology Group
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Version written for:
 'Dialog Machine' V1.0 (User interface)
 MacMETH V2.6 (1-Pass Modula-2 implementation)
 ModelWorks V1.2 (Modelling & Simulation)

 Purpose Demonstrates a model parameter sensitivity using
 ModelWorks

 Remarks Illustrates a manual example (Theory programming
 structured simulations)

 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 af 05/06/89 First implementation (DM 1.0,
 MacMETH 2.6, ModelWorks 1.2)
 dg 25/04/96 Cleaned up for PC compatibility

 ***)

 FROM DMFiles IMPORT
 GetExistingFile, TextFile, GetReal, SkipGap, ReadChars, Close,
 Response;

 FROM DMWindows IMPORT
 RectArea, Window, WindowKind, ScrollBars, CloseAttr, ZoomAttr,
 WFFixPoint, WindowFrame, CreateWindow, AutoRestoreProc,
 WindowExists, PutOnTop;

 FROM DMWindIO IMPORT
 SelectForOutput, EraseContent, SetPos, Write, WriteLn,
 WriteString, WriteReal, WriteInt, SetWindowFont, WindowFont,

ModelWorks 2.2 - Appendix (Sample Models)

A 184

 FontStyle;

 FROM SimBase IMPORT
 Model, IntegrationMethod, DeclM, StateVar, Derivative, DeclSV,
 AuxVar, Parameter, RTCType, DeclP, SetP, SetDefltP,
 ResetAllParameters, StashFiling, Tabulation, Graphing, DeclMV,
 SetSimTime, SetMonInterval, SetIntegrationStep, NoInput,
 NoOutput, NoTerminate, NoAbout, CloseWindow, MWWindow,
 GetWindowPlace;

 FROM SimMaster IMPORT RunSimEnvironment, SimRun, InstallExperiment,
 CurrentSimNr, InstallDefSimEnv;

 CONST n = 3;
 TYPE PVal = (cur, min, mean, max); SensiRange = [min..max];
 PType = RECORD
 v: ARRAY [cur..max] OF Parameter;
 descr,ident,unit: ARRAY [0..64] OF CHAR;
 END;
 VAR p: ARRAY [1..n] OF PType;
 m: Model;
 x: StateVar; xDot: Derivative;
 s: StateVar; sDot: Derivative;
 mu: AuxVar;
 Y: Parameter;

 parSetW: Window;

 PROCEDURE Initialize;
 BEGIN (*Initialize*)
 SelectForOutput(parSetW);
 WriteString('Run Nr. = '); WriteInt(CurrentSimNr(),2);
 x:= p[3].v[cur];
 END Initialize;

 PROCEDURE Dynamic;
 BEGIN
 mu:= p[1].v[cur]*s/(p[2].v[cur]+s);
 xDot:= mu*x;
 sDot:= - mu/Y;
 END Dynamic;

 PROCEDURE DeclModelObjects;
 BEGIN
 DeclSV(x, xDot,1.0E5, 0.0, 1.0E8,
 'Algal density', 'x', 'cells/ml');
 DeclSV(s, sDot,100.0, 0.0, MAX(REAL),
 'Orthophosphate PO4-P', 's', 'µg/l');

 DeclMV(x,0.0,1.0E7,
 'Algal density', 'x', 'cells/ml',
 notOnFile,notInTable,isY);
 DeclMV(s,0.0,110.0,
 'Orthophosphate PO4-P', 's', 'µg/l',
 notOnFile,notInTable,isY);
 DeclMV(mu,0.0,110.0,
 'Relative growth rate of algae', 'µ', 'day^-1',
 notOnFile,notInTable,notInGraph);
 DeclMV(xDot,0.0,110.0,
 'Growth rate of algae', 'dx/dt', 'cells/ml/day',
 notOnFile,notInTable,notInGraph);
 DeclMV(sDot,-10.0,0.0,
 'Consumption rate of PO2-P by algae', 'ds/dt', 'µg/l/day',
 notOnFile,notInTable,notInGraph);

ModelWorks 2.2 - Appendix (Sample Models)

A 185

 DeclP(p[1].v[cur],0.0,0.0,MAX(REAL),noRtc,"parameter 1","p1","u1");
 DeclP(p[2].v[cur],0.0,0.0,MAX(REAL),noRtc,"parameter 2","p2","u2");
 DeclP(p[3].v[cur],0.0,0.0,MAX(REAL),noRtc,"parameter 3","p3","u3");
 DeclP(Y,0.04,0.0,MAX(REAL),noRtc,'Yield','Y','cells/ml/µg/l');

 END DeclModelObjects;

 PROCEDURE ReadAndSetParameters;
 VAR i: [1..n]; j: SensiRange; parFile: TextFile ;
 PROCEDURE ShowOrOpenParameterSpace;
 VAR parSetWf: WindowFrame; isOpen: BOOLEAN;
 BEGIN
 WITH parSetWf DO GetWindowPlace(TableW,x,y,w,h,isOpen) END;
 IF isOpen THEN CloseWindow(TableW) END(*IF*);
 IF WindowExists(parSetW) THEN
 PutOnTop(parSetW);
 ELSE
 CreateWindow(parSetW,GrowOrShrinkOrDrag,WithoutScrollBars,
 WithCloseBox,WithZoomBox,bottomLeft, parSetWf,
 'Parameter Sets', AutoRestoreProc);
 SetWindowFont(Monaco,9,FontStyle);
 END(*IF*);
 SetPos(1,1);
 END ShowOrOpenParameterSpace;
 BEGIN
 GetExistingFile(parFile, 'Open parameter file "Sensitivity.DAT"');
 IF parFile.res=done THEN
 FOR i:= 1 TO n DO
 FOR j:= min TO max DO GetReal(parFile,p[i].v[j]) END;
 SkipGap(parFile); ReadChars(parFile,p[i].descr);
 SkipGap(parFile); ReadChars(parFile,p[i].ident);
 SkipGap(parFile); ReadChars(parFile,p[i].unit);
 END;
 Close(parFile);
 FOR i:= 1 TO n DO WITH p[i] DO
 SetDefltP(m,v[cur],v[mean],0.0,MAX(REAL),noRtc,descr,ident,unit);
 ResetAllParameters;
 END END;
 ShowOrOpenParameterSpace;
 END(*IF*);
 END ReadAndSetParameters;

 PROCEDURE RecordParSet(i: INTEGER; j,k: SensiRange);
 VAR l: INTEGER;
 BEGIN (*RecordParSet*)
 SelectForOutput(parSetW);
 SetPos(CurrentSimNr(),1);
 WriteInt(i,2); Write(' '); WriteInt(ORD(j),2); Write(' '); WriteInt(ORD(k),2);
 WriteString(': ');
 FOR l:= 1 TO n DO
 WriteString(p[l].ident); WriteString(' =');
 WriteReal(p[l].v[cur],8,3); WriteString(', ');
 END(*FOR*);
 END RecordParSet;

 (*.
 PROCEDURE MyExperiment;
 VAR i,j,k: SensiRange;
 BEGIN
 FOR i:= min TO max DO
 FOR j:= min TO max DO
 FOR k:= min TO max DO
 SetP(m,p[1].v[cur], p[1].v[i]);
 SetP(m,p[2].v[cur], p[2].v[j]);
 SetP(m,p[3].v[cur], p[3].v[k]);
 SimRun
 END
 END
 END;

ModelWorks 2.2 - Appendix (Sample Models)

A 186

 END MyExperiment;
 .*)

 PROCEDURE MyExperiment;
 PROCEDURE Sensitivity(i: INTEGER; k: SensiRange);
 VAR j: SensiRange;
 BEGIN
 FOR j:= min TO max DO
 SetP(m,p[i].v[cur], p[i].v[j]);
 IF i<n THEN Sensitivity(i+1,j) ELSE
 RecordParSet(i,j,k); SimRun;
 END;
 END(*FOR*);
 END Sensitivity;
 BEGIN
 CloseWindow(TableW);
 SelectForOutput(parSetW); EraseContent; SetPos(1,1);
 Sensitivity(1,min);
 END MyExperiment;

 PROCEDURE ModelDefinitions;
 BEGIN
 DeclM(m, Euler, Initialize, NoInput, NoOutput, Dynamic, NoTerminate, DeclModelObjects,
 'Sensitivity of Michaelis-Menthen algal growth', 'm', NoAbout);
 SetSimTime(0.0,8.0); SetMonInterval(0.5); SetIntegrationStep(0.1);
 InstallExperiment(MyExperiment);
 InstallDefSimEnv(ReadAndSetParameters);
 END ModelDefinitions;

BEGIN
 RunSimEnvironment(ModelDefinitions);
END Sensitivity.

ModelWorks 2.2 - Appendix (Sample Models)

A 187

A.4.5 Parameter Identification - GauseIdenti f

GAUSE (1934) has pursued the question whether classical population dynamics models such as
the Verhulst (logistic) or the Lotka-Volterra equations actually represent true population
processes. He reared several populations of microorganisms such as the ciliate Paramecium
caudatum in the laboratory. In one experiment he tried to fit the observed population densities

Day t x(t) Day t x(t) Day t x(t) Day t x(t)

0 2 4 39 8 50 12 57

1 5 5 52 9 76 13 70

2 22 6 54 10 69 14 55

3 16 7 47 11 51 15 59

with the logistic equation

dx(t)/dt = r
K - x(t)

K
 x(t)

where
x(t) the density of ciliates in number of animals per 0.5 ml
K carrying capacity ≈ maximum density of ciliates
r per capita growth rate

The following program module GauseIdentif demonstrates the use of a ModelWorks structured
simulation (routine Identify installed as an experiment via DeclExperiment from SimMaster) to
identify the unknown model parameters K and r by means of the optimization module
IdentifyPars. The minimization routines of IdentifyPars require that GauseIdentif computes a
performance index which expresses the goodness of fit between the simulated and observed
population densities. If the model equations would be analytically unsolvable, which is often
the case, the performance index can only be computed by a full simulation run, given some
estimates for the unknown parameters exist. The identification algorithm will then try to adjust
the parameters such, that the perfomance index improves, i.e. is minimized. Although the
logistic equation can be solved analytically, the following program code follows an architecture
which is applicable to any ModelWorks model.

MODULE GauseIdentif; (* af 23/01/93, dg 06/03/93, dg 25/04/96 *)

 (**

 MODEL: GauseIdentif - Identifies model parameters
 for logistic growth equation
 applied to the experiment by
 Gause (1934) rearing the ciliate
 Paramaecium caudatum.

 Reference: Gause, G.F., 1934. The struggle for existence.
 Baltimore: Williams and Wilkins. 163pp.

 A. Fischlin, 23/Jan/93, Systems Ecology ETHZ

 **)

 FROM DMSystem IMPORT SuperScreen, MainScreen, TitleBarHeight;
 FROM DMStrings IMPORT Concatenate, Append, AppendCh;
 FROM DMConversions IMPORT RealToString, RealFormat, IntToString;
 FROM DMMessages IMPORT Warn;

ModelWorks 2.2 - Appendix (Sample Models)

A 188

 FROM DMWindIO IMPORT
 DisplayPredefinedPicture, BackgroundWidth, BackgroundHeight,
 ScaleUC, UCFrame, EraseContent, SetUCPen, UCLineTo, DrawSym,
 SelectForOutput, Area, pat, GreyContent, SetPen, WriteString,
 WriteReal, CellHeight, CellWidth, StringWidth, SetWindowFont,
 WindowFont, FontStyle;
 FROM DMWindows IMPORT
 RectArea, Window, WindowKind, ScrollBars, CloseAttr, ZoomAttr,
 WFFixPoint, WindowFrame, CreateWindow, AutoRestoreProc,
 GetWindowFrame, PutOnTop, WindowExists, RemoveWindow,
 AddWindowHandler, WindowHandlers;

 FROM SimBase IMPORT
 Model, StateVar, NewState, Parameter, AuxVar,
 Derivative, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
 StashFiling, GetP, SetP, GetMV, SetMV, Message,
 SetDefltCurveAttrForMV, Stain, LineStyle, MWWindow,
 GetDefltWindowPlace, GetWindowPlace, SetDefltWindowPlace,
 SetWindowPlace, MWWindowArrangement, SetDefltWindowArrangement,
 Tabulation, Graphing, DeclMV, SetSimTime, NoInitialize, NoInput,
 NoOutput, NoTerminate, NoAbout, GetDefltP, SetDefltP;

 FROM SimMaster IMPORT
 RunSimEnvironment, InstallStartConsistency, InstallExperiment,
 SimRun, CurrentSimNr, CurrentTime;

 FROM SimGraphUtils IMPORT
 DeclDispData, timeIsIndep, DisplayTime;

 FROM SimDeltaCalc IMPORT
 DeltaVar, InitDeltaStat, AccuDelta, GetDeltaStat,
 WriteDeltaStatMsg;

 FROM IdentifyPars IMPORT
 MinimizeAfterDialog, UnmarkAllParsForIdentification,
 MarkParForIdentification;

 CONST
 fstDay = 0; lastDay = 16;
 KMin = 0.0; KMax = 100.0; (* Plausible range for K *)
 rMin = 0.0; rMax = 3.0; (* Plausible range for r *)

 VAR
 m: Model;
 x: StateVar;
 xDot: Derivative;
 K,r: Parameter;
 parSpace: RECORD
 w: Window;
 wf: WindowFrame;
 oldK, oldr: Parameter;
 END;
 gauseExp: RECORD
 day,ciliateCount,dummy: ARRAY [fstDay..lastDay] OF REAL;
 xMeasured: REAL; (* monitoring variable for ciliate counts *)
 delta: DeltaVar; (* ∆ = x - xMeasured *)
 END;

 PROCEDURE GausesMeasurements; (* Gause, 1934, p. 145, Table 4 *)
 BEGIN
 gauseExp.day[0]:= 0.; gauseExp.ciliateCount[0]:= 2.;
 gauseExp.day[1]:= 1.; gauseExp.ciliateCount[1]:= 5.;
 gauseExp.day[2]:= 2.; gauseExp.ciliateCount[2]:=22.;
 gauseExp.day[3]:= 3.; gauseExp.ciliateCount[3]:=16.;
 gauseExp.day[4]:= 4.; gauseExp.ciliateCount[4]:=39.;

ModelWorks 2.2 - Appendix (Sample Models)

A 189

 gauseExp.day[5]:= 5.; gauseExp.ciliateCount[5]:=52.;
 gauseExp.day[6]:= 6.; gauseExp.ciliateCount[6]:=54.;
 gauseExp.day[7]:= 7.; gauseExp.ciliateCount[7]:=47.;
 gauseExp.day[8]:= 8.; gauseExp.ciliateCount[8]:=50.;
 gauseExp.day[9]:= 9.; gauseExp.ciliateCount[9]:=76.;
 gauseExp.day[10]:= 10.; gauseExp.ciliateCount[10]:=69.;
 gauseExp.day[11]:= 11.; gauseExp.ciliateCount[11]:=51.;
 gauseExp.day[12]:= 12.; gauseExp.ciliateCount[12]:=57.;
 gauseExp.day[13]:= 13.; gauseExp.ciliateCount[13]:=70.;
 gauseExp.day[14]:= 14.; gauseExp.ciliateCount[14]:=53.;
 gauseExp.day[15]:= 15.; gauseExp.ciliateCount[15]:=59.;
 gauseExp.day[16]:= 16.; gauseExp.ciliateCount[16]:=57.;
 END GausesMeasurements;

 PROCEDURE Initialize;
 BEGIN
 InitDeltaStat(gauseExp.xMeasured,CurrentTime(),x,gauseExp.delta);
 END Initialize;

 PROCEDURE Output;
 BEGIN
 AccuDelta(gauseExp.delta,CurrentTime(),x);
 END Output;

 PROCEDURE Dynamic;
 BEGIN
 xDot:= r*((K-x)/K)*x;
 END Dynamic;

 PROCEDURE ParametersPlausible(): BOOLEAN;
 VAR plausible: BOOLEAN; str1,str2,rStr: ARRAY [0..31] OF CHAR;
 BEGIN
 plausible := (K>KMin) AND (K<=KMax) AND (r>rMin) AND (r<=rMax);
 IF NOT plausible THEN
 RealToString(KMin,str1,0,1,FixedFormat); Append(str1," < K <= ");
 RealToString(KMax,rStr,0,1,FixedFormat); Append(str1,rStr);
 RealToString(rMin,str2,0,1,FixedFormat); Append(str2," < r <= ");
 RealToString(rMax,rStr,0,1,FixedFormat); Append(str2,rStr);
 Warn("The parameters have become inplausible! Valid ranges are:",str1,str2);
 END(*IF*);
 RETURN plausible
 END ParametersPlausible;

 PROCEDURE ShowNewParameters;
 VAR bottom: RectArea; (*. debugging .*)
 BEGIN
 SelectForOutput(parSpace.w);
 SetUCPen(parSpace.oldK,parSpace.oldr); UCLineTo(K,r); DrawSym("•");
 parSpace.oldK := K; parSpace.oldr := r;
 END ShowNewParameters;

 PROCEDURE ShowPerformance(perfIndex: REAL);
 VAR bottom: RectArea;
 BEGIN
 SelectForOutput(parSpace.w);
 bottom.x := 0; bottom.y := 0;
 bottom.h := 20+CellHeight(); bottom.w := 100*CellWidth();
 Area(bottom,pat[light]);
 SetPen(20,20); WriteString("Performance index (∑ ∆^2) = ");
 WriteReal(perfIndex,0,3);
 WriteString(" with K,r = ");
 WriteReal(K,0,3); WriteString(", "); WriteReal(r,0,3);
 END ShowPerformance;

ModelWorks 2.2 - Appendix (Sample Models)

A 190

 PROCEDURE RedrawParameterSpace(u: Window);
 CONST fw = 6; dec = 3;
 VAR curMinr,curMaxr,curMinK,curMaxK: REAL;
 curSF: StashFiling; curT: Tabulation; curG: Graphing;
 rstr: ARRAY [0..31] OF CHAR; label: ARRAY [0..127] OF CHAR;
 BEGIN
 SelectForOutput(parSpace.w);
 GetWindowFrame(u,parSpace.wf);
 GetMV(m,K,curMinK,curMaxK,curSF,curT,curG);
 GetMV(m,r,curMinr,curMaxr,curSF,curT,curG);
 parSpace.wf.x := 20; parSpace.wf.y := 50;
 parSpace.wf.w := parSpace.wf.w - 2*parSpace.wf.x;
 parSpace.wf.h := parSpace.wf.h - parSpace.wf.x - parSpace.wf.y;
 ScaleUC(parSpace.wf,curMinK,curMaxK,curMinr,curMaxr);
 EraseContent; UCFrame;
 label := "K - carrying capacity (Min = ";
 RealToString(curMinK,rstr,fw,dec,FixedFormat);
 Append(label,rstr); Append(label," / Max = ");
 RealToString(curMaxK,rstr,fw,dec,FixedFormat);
 Append(label,rstr); AppendCh(label,")");
 SetPen(parSpace.wf.x+parSpace.wf.w-StringWidth(label),parSpace.wf.y-CellHeight());
 WriteString(label);
 SetPen(parSpace.wf.x,parSpace.wf.y+parSpace.wf.h+CellHeight() DIV 2);
 WriteString("r - per capita growth rate");
 WriteString(" (Min = "); WriteReal(curMinr,fw,dec);
 WriteString(" / Max = "); WriteReal(curMaxr,fw,dec);
 WriteString(") ");
 SetUCPen(K,r); parSpace.oldK := K; parSpace.oldr := r; DrawSym("•");
 END RedrawParameterSpace;

 PROCEDURE ShowOrOpenParameterSpace;
 BEGIN
 IF WindowExists(parSpace.w) THEN
 PutOnTop(parSpace.w);
 ELSE
 CreateWindow(parSpace.w,GrowOrShrinkOrDrag,WithoutScrollBars,
 WithCloseBox,WithZoomBox,bottomLeft, parSpace.wf,
 'Parameter space', AutoRestoreProc);
 SetWindowFont(Geneva,9,FontStyle);
 AddWindowHandler(parSpace.w,redefined,RedrawParameterSpace,0);
 END(*IF*);
 RedrawParameterSpace(parSpace.w);
 END ShowOrOpenParameterSpace;

 PROCEDURE PutGraphOnTop;
 VAR x,y,w,h: INTEGER; isOpen: BOOLEAN;
 BEGIN
 GetWindowPlace(GraphW,x,y,w,h,isOpen);
 SetWindowPlace(GraphW,x,y,w,h);
 END PutGraphOnTop;

 PROCEDURE PerformanceIndex(): REAL;
 VAR sumY, sumY2, sumAbsY: REAL; count: INTEGER;
 BEGIN
 IF CurrentSimNr()=1 THEN ShowOrOpenParameterSpace END(*IF*);
 ShowNewParameters;
 SimRun;
 GetDeltaStat(gauseExp.xMeasured,sumY, sumY2, sumAbsY,count);
 WriteDeltaStatMsg(gauseExp.xMeasured);
 ShowPerformance(sumY2);
 RETURN sumY2
 END PerformanceIndex;

 PROCEDURE Identify;

ModelWorks 2.2 - Appendix (Sample Models)

A 191

 VAR oldPerfInd,newPerfInd: REAL; str: ARRAY [0..127] OF CHAR;
 neededRuns: INTEGER;
 oldK,oldr, newK,newr: Parameter;
 oldMinK,oldMaxK,oldMinr,oldMaxr,
 oldDfltK, oldDfltr, newDfltK, newDfltr,
 newMinK,newMaxK,newMinr,newMaxr: Parameter;
 descrK,identK,unitK,descrr,identr,unitr: ARRAY [0..127] OF CHAR;
 runTimeChangeK, runTimeChanger: RTCType;

 PROCEDURE SaveOldParVals;
 BEGIN (* SaveOldParVals *)
 GetP(m,K,oldK); GetP(m,r,oldr);
 GetDefltP(m,K,oldDfltK,oldMinK,oldMaxK,runTimeChangeK,
 descrK, identK, unitK);
 GetDefltP(m,r,oldDfltr,oldMinr,oldMaxr,runTimeChanger,
 descrr, identr, unitr);
 END SaveOldParVals;

 PROCEDURE SaveNewParVals;
 BEGIN (* SaveNewParVals *)
 GetP(m,K,newK); GetP(m,r,newr);
 GetDefltP(m,K,newDfltK,newMinK,newMaxK,runTimeChangeK,
 descrK, identK, unitK);
 GetDefltP(m,r,newDfltr,newMinr,newMaxr,runTimeChanger,
 descrr, identr, unitr);
 END SaveNewParVals;

 PROCEDURE RestoreOldParVals;
 BEGIN (* RestoreOldParVals *)
 SetDefltP(m,K,oldDfltK,oldMinK,oldMaxK,runTimeChangeK,
 descrK, identK, unitK);
 SetDefltP(m,r,oldDfltr,oldMinr,oldMaxr,runTimeChanger,
 descrr, identr, unitr);
 SetP(m,K,oldK); SetP(m,r,oldr);
 END RestoreOldParVals;

 PROCEDURE RestoreNewParVals;
 BEGIN (* RestoreNewParVals *)
 SetDefltP(m,K,newDfltK,newMinK,newMaxK,runTimeChangeK,
 descrK, identK, unitK);
 SetDefltP(m,r,newDfltr,newMinr,newMaxr,runTimeChanger,
 descrr, identr, unitr);
 SetP(m,K,newK); SetP(m,r,newr);
 END RestoreNewParVals;

 BEGIN (*Identify*)
 SaveOldParVals;
 UnmarkAllParsForIdentification;
 MarkParForIdentification(K); MarkParForIdentification(r);
 ShowOrOpenParameterSpace;
 oldPerfInd := PerformanceIndex();

 MinimizeAfterDialog(PerformanceIndex);
 PutGraphOnTop;
 neededRuns := CurrentSimNr()-1 (*determination of oldPerfInd does not count*);

 (* Since graph window has been closed, redraw initial simulation run *)
 SaveNewParVals; RestoreOldParVals;
 SimRun;

 (* Calculate new performance index and display results *)
 RestoreNewParVals;
 newPerfInd := PerformanceIndex();
 RealToString(oldPerfInd,str,0,5,ScientificNotation);
 Concatenate("Before ∑ ∆^2 = ",str,str);
 Message(str);
 RealToString(newPerfInd,str,0,5,ScientificNotation);
 Concatenate("After ∑ ∆^2 = ",str,str);
 Message(str);

ModelWorks 2.2 - Appendix (Sample Models)

A 192

 IntToString(neededRuns,str,0);
 Concatenate("Optimization required ",str,str);
 Append(str," runs");
 Message(str);
 END Identify;

 PROCEDURE ModelObjects;
 BEGIN
 DeclSV(x, xDot,2.0, 0.0, 100.0,
 "Population density Paramaecium caudatum", "x", "#/0.5ml");

 DeclMV(x, 0.0,KMax, "Ciliate density (Paramaecium caudatum)", "x", "#/0.5ml",
 notOnFile, writeInTable, isY);
 SetDefltCurveAttrForMV(m,x,ruby,unbroken,0C);
 DeclMV(xDot, 0.0,5.0, "Density derivative", "dx/dt", "#/0.5ml/day",
 notOnFile, notInTable, notInGraph);
 DeclMV(gauseExp.xMeasured, 0.0,100.0, "Meausered ciliate density", "xMeasured",
"#/0.5ml/day",
 notOnFile, notInTable, isY);
 SetDefltCurveAttrForMV(m,gauseExp.xMeasured,ruby,invisible,"*");
 DeclMV(K, KMin, KMax, "Carrying capacity", "K", "#/0.5ml",
 notOnFile, notInTable, notInGraph);
 DeclMV(r, rMin, rMax, "Per capita growth rate", "r", "/day",
 notOnFile, notInTable, notInGraph);

 DeclP(K, 10.0, KMin, KMax, rtc,
 "K (carrying capacity of x)", "K", "#/0.5ml");
 DeclP(r, 1.0, rMin, rMax, rtc,
 "r (growth rate of x)", "r", "/day");
 END ModelObjects;

 PROCEDURE About;
 VAR pictRect: RectArea;
 BEGIN
 WITH pictRect DO x:=2; y:=-290; w:=498; h:=290 END(*WITH*);
 DisplayPredefinedPicture("GauseIdentif.R",23011,pictRect);
 END About;

 PROCEDURE ModelDefinitions;
 VAR supScr,x,y,w,h,nc: INTEGER; enabled: BOOLEAN;
 BEGIN
 DeclM(m, Euler, Initialize, NoInput, Output, Dynamic,
 NoTerminate, ModelObjects, "Gause experiment & logistic growth model",
 "Gause", About);
 SetSimTime(0.0,16.0);
 InstallStartConsistency(ParametersPlausible);
 SetDefltWindowArrangement(tiled);

GetWindowPlace(GraphW,parSpace.wf.x,parSpace.wf.y,parSpace.wf.w,parSpace.wf.h,enabled);
 SuperScreen(supScr,x,y,w,h,nc,TRUE(*color priority*));
 IF supScr<>MainScreen() THEN
 SetDefltWindowPlace(GraphW,x+2,y+3,w-6,h-TitleBarHeight()-5);
 END(*IF*);
 w:=506; h:=297;
 x := (BackgroundWidth()-w) DIV 2; y := (BackgroundHeight()-h) DIV 2;
 SetDefltWindowPlace(AboutMW,x,y,506,297);
 DeclDispData(m,gauseExp.xMeasured,m,timeIsIndep,gauseExp.day,gauseExp.ciliateCount,
 gauseExp.dummy,gauseExp.dummy,17, FALSE(*withErrBars*),showAtInit);
 InstallExperiment(Identify);
 END ModelDefinitions;

BEGIN
 GausesMeasurements;
 RunSimEnvironment(ModelDefinitions);
END GauseIdentif.

ModelWorks 2.2 - Appendix (Sample Models)

A 193

The module IdentifyPars allows to determine interactively which parameters are to be identified,
to select a minimization algorithm, and to launch the minimization (procedure
MinimizeAfterDialog). To this purpose IdentifyPars uses the ModelWorks modules SimBase
and SimObjects. Then procedure DeclDispData from SimGraphUtils is used to enter and
display the measurements obtained by Gause. The actual measurements are assigned initially
by procedure GausesMeasurements. See procedure PerformanceIndex which computes the
performance index by calling SimRun and then returns the accumulated sum of squares. Note
that procedure Initialize, which is called at the begin of every simulation run, sets first the sum
of squares to 0 by a call to routine InitDeltaStat from SimDeltaCalc. The routines AccuDelta,
called in procedure Output during every integration step, and GetDeltaStat from SimDeltaCalc,
called after SimRun, are used to actually compute the sum of squares of the differences between
the discrete-time observations and the simulated continous-time population densities, only
whenever measurements are available.

Fig. A6: Result of a parameter identification: The experiment by GAUSE (1934)
rearing the ciliate Paramecium caudatum (* observed denisities) was fitted with the
logistic equation (— simulated densities). Before the optimization r = 1.0, K =
10.0 (lower curve in the window Graph), after the optimization r = 0.974, K =
59.7 (upper curve in the window Graph). The optimized performance index was
the sum of squares of the differences between simulated and observed population
densities at the points where measurements were available. The optimization
algorithm was Amoeba, which required 56 simulation runs to achieve this result.

GauseIdentif allows also to observe the progress of the identification in the parameter space r
vs. K (Fig. A6 lower right window). The routine ShowOrOpenParameterSpace is called at the
begin of the experiment Identify, which creates an additional window Parameter space, using
procedure CreateWindow from DMWindows. ShowOrOpenParameterSpace hereby calls
procedure RedrawParameterSpace. RedrawParameterSpace uses DMWindowIO's user
coordinate plotting mechanism to draw the graph's panel and to show the initial parameter
combination. RedrawParameterSpace is also called, each time the simulationist resizes the
window, so that the graph r vs. K adjusts automatically to the window's current size. Then

ModelWorks 2.2 - Appendix (Sample Models)

A 194

after each simulation run the new parameter combination is drawn by means of procedure
ShowNewParameters called again from within PerformanceIndex and displayed in the
parameter IO-window by calling for each parameter the routine SetP from SimBase.

Finally the experiment Identify documents the results by executing two additional simulation
runs, first with the original parameters (lower curve in Fig. A6 lower left window Graph) and
then with the newly identified parameter values (upper curve in Fig. A6 lower left window
Graph). Both runs together with the measurements (shown as scattergraph with symbols '*' in
Fig. A6 lower left window Graph) are displayed and procedure Message from SimBase is
used to display the over-all improvement of the performance index (Fig. A6, upper right
window Table). Note that some optimization algorithms are often not robust; hence, the
procedure ParametersPlausible is installed by means of procedure InstallStartConsistency from
SimBase to test the plausibility of the current parameter values before actually starting any
simulation. In case r or K should be out of the ranges [rMin.. rMax] respectively
[KMin..KMax] the simulationist is warned and the identification can even be aborted.

Fig. A6 shows the results of the parameter identification starting with the way-off parameter
estimates r = 1.0 and K = 10.0. With these parameters the logistic equation produces the lower
curve as shown in the window Graph (Fig. A6, lower left corner). After the optimization with
the parameter identification algorithm Amoeba the parameters were r = 0.974 and K = 59.7
which results in the upper curve in the window Graph. The performance index was improved
from 2.746⋅ 104 to 971.752 hereby requiring 56 simulation runs, each run shown as a point on
the curve in the window Paramter space (Fig. A6 lower right corner).

ModelWorks 2.2 - Appendix (Sample Models)

A 195

A.4.6 Stochastic Simulations

Stochastic simulations require usually to run elaborate simulations, i.e. a structured simulation
run or experiment, followed by a statistical analysis of the results. The random nature of the
individual runs is produced by means of so-called pseudo random number generators (see e.g.
library modules RandGen, RandGen0, and RandNormal).

A.4.6.1 Third Order Finite Markov Chain - Markov

The following model definition program Markov demonstrates the typical use of the pseudo
random number generator U for sampling uniformly distributed variates in the auxiliary library
module RandGen and serves as an example for stochastic simulations. The program simulates
a discrete time finite, 3rd-order Markov chain process. By default it models a population where
each individual can be in one of the following states: healthy, ill, and dead; but this model can
be adapted interactively to any other 3rd-order Markov chain process. Moreover, the program
has been written such, that it can be easily adapted to simulate Markov chain processes of a
different order.

The program accesses frequently the "Dialog Machine"; for instance it extends the standard user
interface by installing the menu Markov with the command Define…. This menu command
allows the simulationist to alter the meaning of the 3 states (procedure AssignStatesNames) and
to set the coefficients of the Markov matrix (procedure DefineMarkov) in a more convenient
way than this is possible with the IO-window Model Parameters.

The model does not compute the temporal evolution of probability vectors, but rather simulates
the fate of a vector of individuals x (x: ARRAY [firstIndiv..lastIndiv] OF State). The initial
state of these individuals is sampled according to the initial state probabilities initp within
procedure Initialize. Depending on the parameter randomize the random number generator is
either randomized (randomize = 1) to get for each run a different result or reset (randomize = 0)
to allow to repeat the simulation, hereby using exactly the same pseudo random number series.
Procedure Initialize also initializes several auxiliary and statistical variables pacc, fs, c, n, F to
allow for the computation of frequencies. pacc holds the accumulated transition probabilites
from the Markov matrix P; thus allowing for a more efficient calculation of transitions during
the stochastic simulation. The vector fs contains the accumulated state frequencies as the main
monitorable variables, computed from the current states of the individuals (s.a. procedure
Dynamic). The matrix F contains the frequencies of all transitions occured since the begin of
the simulation run, hereby using the counts c and n; the matrix c, contains the counts of all
transitions, and vector n, the counts of the transitions starting from a particular state regardless
of the destination state.

The coefficients of any probability vector such as initp or of a row of the Markov matrix P must
add up to the sum 1. The Markov matrix P can not only be edited by means of the additional
menu command Define…, but also via the IO-window Model Parameters. Moreover, the latter
is also true for the initial state probabilities initp. Hence, the simulationist may easily specify
illegal parameters violating any of the aforementioned conditions, leading to meaningless
simulation results. ModelWorks allows to suppress any such illegal simulations by providing a
mechanism for the installation of a consistency testing function procedure. The listed program
installs the function procedure TestConsistency by calling procedure InstallStartConsistency
from SimBase. TestConsistency is called at the very begin of each simulation run or after a
pause and returns only TRUE if none of the aforementioned conditions are violated. If it
should return FALSE the simulation will be aborted and the simulationist will be informed
about this fact.

Each element of the vector of individuals x is of the finite enumeration type State, not of type
StateVar. Since the mapping during every access of the real constants 1.0, 2.0, and 3.0 to the
constants one, two, and three of the enumeration type State via a type conversion would be

ModelWorks 2.2 - Appendix (Sample Models)

A 196

quite inefficient, this model definition program does not declare any state variables in the simu-
lation environment. Instead procedure Dynamic maintains the state vector x by first computing
the new state xDash and then assigning xDash to x, similar to the way ModelWorks updates the
state of discrete time models.

This program also demonstrates the use of state events. Since the default process contains an
absorbing state, further computations beyond the state "all dead", i.e. probability vector
[healthy,ill,dead] becomes [0,0,1], are superfluous. The terminate condition testing mecha-
nism of ModelWorks (see function procedure AllDead installed via InstallTerminateCondition)
will stop a running simulation anytime this state event is encountered.

As it holds in general for stochastic models, structured simulations are particularly important,
for instance to estimate means or distributions. The procedure TheExperiment allows to assess
statistics such as the expected mean E[f[j,k]] of the frequencies f[j,k] of all transitions for the
time interval [κo,κf]. It first asks the simulationist for the experiment's sample size maxRuns,
i.e. how many runs the experiment shall encompass, by calling the function procedure
NrRunsGiven. If the simulationist has actually entered maxRuns, the experiment continues by
suppressing all stash filing, since the transient behavior is of no interest for the final state
distribution. Then the experiment forces the parameter randomize to 1.0, thus ensuring that
true samples can be collected, and asks by a call to procedure CreateNewFile from DMFiles the
simulationist to specify the file recordF (default name Markov.DAT) onto which the simulation
results shall be recorded.

If the file recordF has been created successfully, a header line is written and the actual
experiment starts. Note that the simulationist can abort the experiment any time by a call to
menu command Solve/Stop (Kill) run, which will have the effect that the function procedure
ExperimentAborted from SimMaster returns TRUE. At the end of every run the elements of the
sampled matrix fi are written onto the file recordF. The content of this file might look similar to
the following excerpt:

Run F[1,1] F[1,2] F[1,3] F[2,1] ... F[3,2] F[3,3] n
1 0.7510 0.1980 0.0510 0.5718 ... 0.0000 1.0000 77
2 0.7459 0.1987 0.0555 0.5965 ... 0.0000 1.0000 90
3 0.7435 0.2082 0.0483 0.6110 ... 0.0000 1.0000 101
4 0.7575 0.1914 0.0511 0.5802 ... 0.0000 1.0000 91
5 0.7549 0.1859 0.0592 0.5928 ... 0.0000 1.0000 66

Legend:
 Run - Number of simulation run within experiment
 F[i,j] - Relative frequency of transition from state i to state j
 n - Number of transitions used to estimate F[i,j]
Experiment started on 01/Feb/1993 at 09:52:37
Experiment ended on 01/Feb/1993 at 09:53:09

The mean µ[j,k] = 1/n∑ fi[j,k] (n<=maxRuns) is a reestimate of the coefficients of the Markov
matrix p[j,k] . To actually compute µ[j,k] , variances or other statistics use a statistical data
analysis application such as StatView1 to analyze the file recordF. StatView could be used suc-
cessfully to read the simulation results directly by choosing the menu command Import...and
selecting file Markov.DAT plus to compute and analyze the estimates such as µ[j,k] .

MODULE Markov;

 (***

 ModelWorks model: Markov

1StatView 512+™ is an interactive statistics & graphics package from Abacus Concepts, Inc., published by
Brainpower, Inc., 24009 Ventura Blvd., Suite 250, Calabasas, CA 91302

ModelWorks 2.2 - Appendix (Sample Models)

A 197

 Copyright 1989 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zurich ETHZ
 Department of Environmental Sciences
 Systems Ecology Group
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Version written for:
 ModelWorks V2.0 (Modelling & Simulation)

 Purpose Simulates a stochastic process defined by a given
 Markov matrix in order to estimate the matrix
 from the statistics collected during the simulations.

 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 af 18/10/89 First implementation (DM 2.0,
 MacMETH 2.6+, ModelWorks 1.3)
 af 21/10/89 Extended to interactive renaming of states
 af 03/05/90 Refining of experiment for direct import
 by StatView 512+ statistics program
 af 25/11/90 Adaption for DM 2.02, i.e. uses DMClock.Now
 and DMClock.Today instead of
 DateAndTime.GetDateAndTime
 ft 29/11/90 Adaption for MW 2.031, i.e. uses Types
 Parameter and AuxVar
 dg 06/03/93 Import lists cleaned up
 af 23/03/92 Adaptation to new MW 2.2
 dg 25/04/96 Cleaned up for PC compatibility

 ***)

 FROM DMSystem IMPORT
 SuperScreen, MainScreen, MenuBarHeight, TitleBarHeight;
 FROM DMStrings IMPORT
 Append, AppendCh, AssignString;
 FROM DMConversions IMPORT
 IntToString;
 FROM DMWindIO IMPORT
 BackgroundHeight, BackgroundWidth;
 FROM DMMenus IMPORT
 Menu, Command, AccessStatus, Marking, InstallMenu,
 InstallCommand, InstallAliasChar;
 FROM DMFiles IMPORT
 TextFile, CreateNewFile, Close, WriteEOL, PutReal, Response,
 WriteChar, WriteChars, PutInteger;
 FROM DMEntryForms IMPORT
 FormFrame, WriteLabel, DefltUse, CharField, StringField,
 CardField, IntField, RealField, PushButton, RadioButtonID,
 DefineRadioButtonSet, RadioButton, CheckBox, UseEntryForm;
 FROM DMClock IMPORT
 Today, Now;

 FROM RandGen IMPORT
 U, ResetSeeds, Randomize;
 FROM WriteDatTim IMPORT
 DateAndTimeRec, DateFormat, TimeFormat, WriteDate, WriteTime;

 FROM SimBase IMPORT
 Model, IntegrationMethod, DeclM, RTCType, DeclP, StashFiling,
 Tabulation, Graphing, DeclMV, SetMonInterval,
 SetIntegrationStep, SetMV, GetMV, SetP, SetDefltP, SetDefltMV,
 GetDefltMV, LineStyle, GetCurveAttrForMV, SetCurveAttrForMV,

ModelWorks 2.2 - Appendix (Sample Models)

A 198

 ClearGraph, GetDefltCurveAttrForMV, SetDefltCurveAttrForMV,
 Stain, MWWindowArrangement, SetDefltWindowArrangement,
 MWWindow, GetDefltWindowPlace, SetDefltWindowPlace, NoInput,
 NoOutput, NoTerminate, NoAbout, Parameter, AuxVar;

 FROM SimMaster IMPORT
 RunSimEnvironment, SimRun, InstallDefSimEnv,
 InstallStartConsistency, InstallTerminateCondition,
 ExperimentAborted, InstallExperiment, CurrentStep;

 CONST
 firstIndiv = 1; lastIndiv = 100;
 TYPE
 Individuals = [firstIndiv..lastIndiv];

 TYPE
 State = (one, two, three);
 CONST
 firstState = MIN(State); lastState = MAX(State);

 VAR
 m: Model;
 x,xDash: ARRAY [firstIndiv..lastIndiv] OF State;
 (* pseudo state vars, i.e. not declared to ModelWorks *)
 P: ARRAY [firstState..lastState],[firstState..lastState] OF Parameter;
 (*Markov matrix*)
 Pacc: ARRAY [firstState..lastState],[firstState..lastState] OF REAL;
 (*Matrix containing accumulated transition probabilities*)
 initp: ARRAY [firstState..lastState] OF Parameter;
 (*Probabilities used to compute initial states*)
 fs: ARRAY [firstState..lastState] OF AuxVar;
 (*frequencies of states*)
 F: ARRAY [firstState..lastState],[firstState..lastState] OF AuxVar;
 (*frequencies of transitions*)
 C: ARRAY [firstState..lastState],[firstState..lastState] OF INTEGER;
 (*counting of transitions*)
 n: ARRAY [firstState..lastState] OF INTEGER;
 (*number of transitions starting from a state*)
 randomize: Parameter; (* controls seed randomization *)

 PROCEDURE PRED(s: State): State;
 BEGIN
 DEC(s); RETURN s;
 END PRED;

 PROCEDURE SUCC(s: State): State;
 BEGIN
 INC(s); RETURN s;
 END SUCC;

 PROCEDURE Initialize;
 VAR l: Individuals; is,js: State; u : REAL;
 BEGIN (*Initialize*)
 IF randomize>0.0 THEN Randomize ELSE ResetSeeds END;
 FOR is:= firstState TO lastState DO fs[is] := 0.0 END(*FOR*);
 FOR l:= firstIndiv TO lastIndiv DO
 u := U();
 IF u<=initp[one] THEN
 x[l] := one
 ELSIF u<=(initp[one]+initp[two]) THEN
 x[l] := two
 ELSE
 x[l] := three

ModelWorks 2.2 - Appendix (Sample Models)

A 199

 END(*IF*);
 fs[x[l]] := fs[x[l]] + 1.0;
 END(*FOR*);
 FOR is:= firstState TO lastState DO
 FOR js:= firstState TO lastState DO
 C[is,js] := 0;
 F[is,js] := 0.0;
 END(*FOR*);
 n[is] := 0;
 END(*FOR*);
 FOR is:= firstState TO lastState DO
 Pacc[is, firstState] := P[is,firstState];
 FOR js:= SUCC(firstState) TO lastState DO
 Pacc[is,js] := Pacc[is,PRED(js)] + P[is,js];
 END(*FOR*);
 END(*FOR*);
 fs[firstState] := fs[firstState]/FLOAT(lastIndiv-firstIndiv+1);
 FOR is:= SUCC(firstState) TO lastState DO
 fs[is] := fs[PRED(is)] + fs[is]/FLOAT(lastIndiv-firstIndiv+1);
 END(*FOR*);
 END Initialize;

 PROCEDURE InitSimSess;
 VAR is,js: State; curMin, curMax: REAL;
 curStain: Stain; curStyle: LineStyle; curSym: CHAR;
 curFiling: StashFiling; curTabul: Tabulation; curGraphing: Graphing;
 BEGIN
 FOR is:= firstState TO lastState DO
 FOR js:= firstState TO lastState DO
 IF is<>three THEN
 GetCurveAttrForMV(m, F[is,js], curStain, curStyle, curSym);
 SetCurveAttrForMV(m, F[is,js], gold, spotted, 0C);
 ELSE
 GetMV(m, F[is,js], curMin, curMax,
 curFiling, curTabul, curGraphing);
 SetMV(m, F[is,js], curMin, curMax,
 curFiling, curTabul, notInGraph);
 END(*IF*);
 END(*FOR*);
 END(*FOR*);
 ClearGraph;
 END InitSimSess;

 PROCEDURE Dynamic;
 VAR l: Individuals; is,js: State;
 PROCEDURE Transition(oldS: State; VAR newS: State);
 VAR u: REAL;
 BEGIN (*Transition*)
 u := U();
 IF u<=Pacc[oldS,one] THEN
 newS := one
 ELSIF u<=Pacc[oldS,two] THEN
 newS := two
 ELSE
 newS := three
 END(*IF*);
 END Transition;
 BEGIN (*Dynamic*)
 (* init state frequencies *)
 FOR is:= firstState TO lastState DO fs[is] := 0.0 END;
 (* compute new state vars & compute statistics *)
 FOR l:= firstIndiv TO lastIndiv DO
 Transition(x[l],xDash[l]);
 INC(C[x[l],xDash[l]]); INC(n[x[l]]); fs[x[l]] := fs[x[l]] + 1.0;
 END(*FOR*);

ModelWorks 2.2 - Appendix (Sample Models)

A 200

 (* update pseudo state vars *)
 FOR l:= firstIndiv TO lastIndiv DO
 x[l] := xDash[l];
 END(*FOR*);
 FOR is:= firstState TO lastState DO
 FOR js:= firstState TO lastState DO
 IF n[is]<>0 THEN
 F[is,js] := FLOAT(C[is,js])/FLOAT(n[is]);
 ELSE
 F[is,js] := 0.0;
 END(*IF*);
 END(*FOR*);
 END(*FOR*);
 fs[firstState] := fs[firstState]/FLOAT(lastIndiv-firstIndiv+1);
 FOR is:= SUCC(firstState) TO lastState DO
 fs[is] := fs[PRED(is)] + fs[is]/FLOAT(lastIndiv-firstIndiv+1);
 END(*FOR*);
 END Dynamic;

 PROCEDURE CircaEqual(x,y,eps: REAL): BOOLEAN;
 BEGIN (*CircaEqual*)
 RETURN ((x-eps)<=y) AND (y<=(x+eps))
 END CircaEqual;

 PROCEDURE TestConsistency(): BOOLEAN;
 VAR is,js: State; sum: REAL; sofarOk: BOOLEAN;
 BEGIN (*TestConsistency*)
 sum := 0.0;
 FOR is:= firstState TO lastState DO
 sum := sum + initp[is];
 END(*FOR*);
 sofarOk := CircaEqual(sum,1.0,1.0E-3);
 FOR is:= firstState TO lastState DO
 sum := 0.0;
 FOR js:= firstState TO lastState DO
 sum := sum + P[is,js];
 END(*FOR*);
 sofarOk := sofarOk AND CircaEqual(sum,1.0,1.0E-3);
 END(*FOR*);
 RETURN sofarOk
 END TestConsistency;

 PROCEDURE AllDead(): BOOLEAN;
 BEGIN
 RETURN CircaEqual(fs[one],0.0,1.0E-3)
 AND CircaEqual(fs[two]-fs[one],0.0,1.0E-3);
 END AllDead;

 VAR
 myMenu: Menu; defMarkovCmd: Command;
 nameStateOne, nameStateTwo, nameStateThree: ARRAY [0..40] OF CHAR;

 PROCEDURE AssignStatesNames(n1,n2,n3: ARRAY OF CHAR);
 VAR l: Individuals; is,js: State;
 istr, descr,ident: ARRAY [0..40] OF CHAR;

 PROCEDURE StateToString (s: State; VAR str: ARRAY OF CHAR);
 BEGIN (*StateToString*)
 CASE s OF
 one : AssignString(nameStateOne,str);
 | two : AssignString(nameStateTwo,str);
 | three : AssignString(nameStateThree,str);
 END(*CASE*);
 END StateToString;

ModelWorks 2.2 - Appendix (Sample Models)

A 201

 BEGIN (*. AssignStatesNames .*)
 AssignString(n1,nameStateOne);
 AssignString(n2,nameStateTwo);
 AssignString(n3,nameStateThree);
 FOR is:= firstState TO lastState DO
 AssignString("Initial prob. of state ",descr);
 StateToString(is,istr); Append(descr,istr);
 ident := "initp[";
 IntToString(ORD(is)+1,istr,0); Append(ident,istr);
 AppendCh(ident,"]");
 SetDefltP(m,initp[is],initp[is],0.0,1.0,
 rtc,descr,ident,"");
 END(*FOR*);
 FOR is:= firstState TO lastState DO
 FOR js:= firstState TO lastState DO
 AssignString("Prob. Transition ",descr);
 StateToString(is,istr); Append(descr,istr);
 Append(descr,"—>");
 StateToString(js,istr); Append(descr,istr);
 ident := "P[";
 IntToString(ORD(is)+1,istr,0); Append(ident,istr);
 AppendCh(ident,",");
 IntToString(ORD(js)+1,istr,0); Append(ident,istr);
 AppendCh(ident,"]");
 SetDefltP(m,P[is,js],P[is,js],0.0,1.0, rtc, descr,ident,"");
 END(*FOR*);
 END(*FOR*);
 (* declaration of monitorable variables *)
 FOR is:= firstState TO lastState DO
 AssignString("State freq. ",descr);
 StateToString(is,istr); Append(descr,istr);
 ident := "fs[";
 IntToString(ORD(is)+1,istr,0); Append(ident,istr);
 AppendCh(ident,"]");
 SetDefltMV(m,fs[is],0.0,1.0, descr,ident,"",
 notOnFile,notInTable,isY);
 END(*FOR*);
 FOR is:= firstState TO lastState DO
 FOR js:= firstState TO lastState DO
 AssignString("Freq. transition ",descr);
 StateToString(is,istr); Append(descr,istr);
 Append(descr,"—>");
 StateToString(js,istr); Append(descr,istr);
 ident := "F[";
 IntToString(ORD(is)+1,istr,0); Append(ident,istr);
 AppendCh(ident,",");
 IntToString(ORD(js)+1,istr,0); Append(ident,istr);
 AppendCh(ident,"]");
 SetDefltMV(m,F[is,js],0.0,1.0, descr,ident,"",
 writeOnFile,writeInTable,isY);
 END(*FOR*);
 END(*FOR*);
 END AssignStatesNames;

 PROCEDURE DefineMarkov;
 CONST lem = 3; tab1 = 25; tab2 = 35; tab3 = 45;
 VAR ef: FormFrame; ok: BOOLEAN; cl: INTEGER;
 BEGIN
 cl := 2;
 WriteLabel(cl,lem,"Define Markov Process:"); INC(cl);
 WriteLabel(cl,lem,"State");
 WriteLabel(cl,tab1,"Transition probabilities"); INC(cl);
 StringField(cl,lem,15,nameStateOne,useAsDeflt);
 RealField(cl,tab1,7,P[one,one],useAsDeflt,0.0,1.0);
 RealField(cl,tab2,7,P[one,two],useAsDeflt,0.0,1.0);
 RealField(cl,tab3,7,P[one,three],useAsDeflt,0.0,1.0);
 INC(cl);
 StringField(cl,lem,15,nameStateTwo,useAsDeflt);

ModelWorks 2.2 - Appendix (Sample Models)

A 202

 RealField(cl,tab1,7,P[two,one],useAsDeflt,0.0,1.0);
 RealField(cl,tab2,7,P[two,two],useAsDeflt,0.0,1.0);
 RealField(cl,tab3,7,P[two,three],useAsDeflt,0.0,1.0);
 INC(cl);
 StringField(cl,lem,15,nameStateThree,useAsDeflt);
 RealField(cl,tab1,7,P[three,one],useAsDeflt,0.0,1.0);
 RealField(cl,tab2,7,P[three,two],useAsDeflt,0.0,1.0);
 RealField(cl,tab3,7,P[three,three],useAsDeflt,0.0,1.0);
 INC(cl);
 ef.x:= 0; ef.y:= -1 (*display entry form in middle of screen*);
 ef.lines:= cl+1; ef.columns:= 55;
 UseEntryForm(ef,ok);
 IF ok THEN AssignStatesNames(nameStateOne,nameStateTwo,nameStateThree) END;
 END DefineMarkov;

 PROCEDURE ModelObjects;
 VAR l: Individuals; is,js: State;
 istr, descr,ident: ARRAY [0..40] OF CHAR;
 BEGIN (*Objects*)
 (* declaration of parameters *)
 FOR is:= firstState TO lastState DO
 DeclP(initp[is],1.0/FLOAT(ORD(lastState)+1),0.0,1.0,
 rtc,"","","");
 END(*FOR*);
 DeclP(randomize,0.0,0.0,1.0,
 rtc,"Randomize option (= 0 don't, = 1 do randomize)",
 "randomize","[0..1]");
 P[one,two] := 0.2;
 P[one,three] := 0.05;
 P[one,one] := 1.0 - P[one,two] - P[one,three];
 P[two,two] := 0.3;
 P[two,three] := 0.1;
 P[two,one] := 1.0 - P[two,two] - P[two,three];
 P[three,two] := 0.0;
 P[three,one] := 0.0;
 P[three,three] := 1.0;
 FOR is:= firstState TO lastState DO
 FOR js:= firstState TO lastState DO
 DeclP(P[is,js],P[is,js],0.0,1.0, rtc, "","","");
 END(*FOR*);
 END(*FOR*);

 (* compute initial states *)
 Initialize;

 (* declaration of monitorable variables *)
 FOR is:= firstState TO lastState DO
 DeclMV(fs[is],0.0,1.0, "","","",
 notOnFile,notInTable,isY);
 END(*FOR*);
 SetDefltCurveAttrForMV(m, fs[one], emerald, unbroken, "•");
 SetDefltCurveAttrForMV(m, fs[two], ruby, unbroken, "o");
 SetDefltCurveAttrForMV(m, fs[three], coal, unbroken, "+");
 FOR is:= firstState TO lastState DO
 FOR js:= firstState TO lastState DO
 DeclMV(F[is,js],0.0,1.0, "","","",
 writeOnFile,writeInTable,isY);
 SetDefltCurveAttrForMV(m, F[is,js], autoDefCol, autoDefStyle, 0C);
 END(*FOR*);
 END(*FOR*);
 AssignStatesNames("healthy","ill","dead");
 END ModelObjects;

 VAR
 recordF: TextFile;

 PROCEDURE WriteOnFile(ch: CHAR); (* Needed by RecordDateTime *)

ModelWorks 2.2 - Appendix (Sample Models)

A 203

 BEGIN
 WriteChar(recordF,ch);
 END WriteOnFile;

 PROCEDURE TheExperiment;
 CONST TAB = 11C;
 VAR is,js: State;
 dt: DateAndTimeRec; curMin, curMax: REAL;
 curFiling: StashFiling; curTabul: Tabulation; curGraphing: Graphing;
 dummyStr, ident: ARRAY [0..63] OF CHAR;i, maxRuns: CARDINAL;

 PROCEDURE NrRunsGiven(): BOOLEAN;
 CONST lem = 5; tab = 35; VAR ef: FormFrame; ok: BOOLEAN; cl: INTEGER;
 BEGIN (*NrRunsGiven*)
 cl := 2;
 WriteLabel(cl,lem,"How many runs:");
 CardField(cl,tab,7,maxRuns,useAsDeflt,1,MAX(CARDINAL)); INC(cl);
 ef.x:= 0; ef.y:= -1 (* display entry form in middle of screen *);
 ef.lines:= cl+1; ef.columns:= 55;
 UseEntryForm(ef,ok);
 RETURN ok
 END NrRunsGiven;

 PROCEDURE GetDateAndTime(VAR dt: DateAndTimeRec);
 BEGIN
 Today (dt.year,dt.month,dt.day, dt.dayOfWeek);
 Now (dt.hour,dt.minute, dt.second);
 END GetDateAndTime;

 PROCEDURE RecordDateTime(s: ARRAY OF CHAR; dt: DateAndTimeRec);
 BEGIN
 WriteChars(recordF,s);
 WriteDate(dt,WriteOnFile,letMonth); WriteChars(recordF," at ");
 WriteTime(dt,WriteOnFile,brief24hSecs); WriteEOL(recordF);
 END RecordDateTime;

 BEGIN (*TheExperiment*)
 maxRuns := 100;
 IF NrRunsGiven() THEN
 FOR is:= firstState TO lastState DO
 FOR js:= firstState TO lastState DO
 GetMV(m, F[is,js], curMin, curMax,
 curFiling, curTabul, curGraphing);
 SetMV(m, F[is,js], curMin, curMax,
 notOnFile, curTabul, curGraphing);
 END(*FOR*);
 GetMV(m, fs[is], curMin, curMax,
 curFiling, curTabul, curGraphing);
 SetMV(m, fs[is], curMin, curMax,
 notOnFile, curTabul, curGraphing);
 SetP(m, initp[is], 0.0);
 END(*FOR*);
 SetP(m,initp[one], 1.0);
 SetP(m,randomize,1.0);
 CreateNewFile(recordF,"Record results on file","Markov.DAT");
 IF recordF.res=done THEN
 GetDateAndTime(dt);
 WriteChars(recordF,"Run"); WriteChar (recordF,TAB);
 FOR is:= firstState TO lastState DO
 FOR js:= firstState TO lastState DO
 GetDefltMV(m,F[is,js],curMin, curMax,
 dummyStr,ident,dummyStr,
 curFiling, curTabul, curGraphing);
 WriteChars(recordF,ident); WriteChar (recordF,TAB);
 END(*FOR*);
 END(*FOR*);
 WriteChars(recordF,"n");
 WriteEOL(recordF);

ModelWorks 2.2 - Appendix (Sample Models)

A 204

 i := 1;
 WHILE (i <= maxRuns) AND NOT ExperimentAborted() DO
 SimRun;
 PutInteger(recordF,i,0); WriteChar (recordF,TAB);
 FOR is:= firstState TO lastState DO
 FOR js:= firstState TO lastState DO
 PutReal(recordF,F[is,js],8,4); WriteChar (recordF,TAB);
 END(*FOR*);
 END(*FOR*);
 PutInteger(recordF,CurrentStep(),0);
 WriteEOL(recordF);
 INC(i);
 END(*WHILE*);
 WriteChars(recordF, "Legend:"); WriteEOL(recordF);
 WriteChars(recordF, " Run - Number of simulation run within experiment");
 WriteEOL(recordF);
 Wr i t eChars(recordF, " F[i , j] - Rel at i ve f requency of t ransi t i on f rom st at e i t o st at e j ") ;
 WriteEOL(recordF);
 WriteChars(recordF, " n - Number of transitions used to estimate F[i,j]");
 WriteEOL(recordF);
 RecordDateTime("Experiment started on ",dt);
 GetDateAndTime(dt);
 RecordDateTime("Experiment ended on ",dt);
 Close(recordF);
 END(*IF*);
 END(*IF*);
 END TheExperiment;

 PROCEDURE Definitions;
 CONST marg = 2;
 VAR supScr,x,y,w,h,nc: INTEGER; enabl: BOOLEAN;
 BEGIN
 DeclM(m, discreteTime, Initialize, NoInput, NoOutput, Dynamic, NoTerminate,
 ModelObjects, 'Markov chain simulated', 'm', NoAbout);
 SetIntegrationStep(1.0);
 SetMonInterval(1.0);
 InstallDefSimEnv(InitSimSess);
 InstallStartConsistency(TestConsistency);
 InstallTerminateCondition(AllDead);
 InstallExperiment(TheExperiment);
 SetDefltWindowArrangement(tiled);
 SuperScreen(supScr,x,y,w,h,nc,TRUE(*color priority*));
 IF supScr<>MainScreen() THEN
 SetDefltWindowPlace(GraphW,x+2,y+3,w-6,h-TitleBarHeight()-5);
 GetDefltWindowPlace(TableW,x,y,w,h,enabl);
 SetDefltWindowPlace(TableW,x,y,BackgroundWidth(),h);
 ELSE
 SetDefltWindowPlace(GraphW,marg,
 TitleBarHeight()+marg+(BackgroundHeight()-2*marg) DIV 3,
 BackgroundWidth()-2*marg,
 (BackgroundHeight()-MenuBarHeight()-2*marg)*2 DIV 3);
 SetDefltWindowPlace(TableW,marg,
 marg,
 BackgroundWidth()-2*marg,
 (BackgroundHeight()-2*marg) DIV 3);
 END(*IF*);
 InstallMenu(myMenu,'Markov',enabled);
 InstallCommand(myMenu,defMarkovCmd,"Define...",
 DefineMarkov,enabled, unchecked);
 InstallAliasChar(myMenu,defMarkovCmd, "W");
 END Definitions;

BEGIN
 RunSimEnvironment(Definitions);
END Markov.

ModelWorks 2.2 - Appendix (Sample Models)

A 205

A.4.6.2 Statistical Analysis of Simulation Results - StochLogGrow
Repeating many individual simulation runs allows to estimate by means of the so-called Monte-
Carlo simulation technique the properties such as the means or the variances of the resulting
random variables which the model generates. Sample model StochLogGrow is based on a
continuous time logistic growth model (s.a. sample model Logistic) where the model
parameters vary stochastically during every integratio step. In order to analyze the stochastic
properties of the mean behavior of such a model, several runs are executed and iteratively
analyzed by means of the auxiliary module StochStat. This allows to estimate a confidence
interval of mean behavior as estimated by the Monte-Carlo technique.

MODULE StochLogGrow;

 (*
 Module StochLogGrow

 Purpose

 Demonstration of the simulation of a stochastic growth process
 and the statistical analysis of the simulation results.

 The model simulates a logistic growth of the biomass of a
 grass species. The growth parameters r and K are normally
 distributed random variables, which are sampled anew during
 each time step of the numerical integration. This procedure
 is to simulate the variability of the environment. A Monte
 Carlo experiment (procedure MonteCarloExperiment) allows to
 sample multiple realisations of this stochastic process in
 order to estimate the expected value of the state variable
 plus an interval of confidence by means of module StochStat.

 Revision history:
 =================

 Author Date Description
 ------ ---- -----------

 tn 24/04/90 First implementation demonstrating use of StochStat
 AF 14/12/93 Preparation as a sample model
 dg 25/04/96 Cleaned up for PC compatibility

 *)

 FROM DMWindIO IMPORT SetMode, PaintMode;
 FROM DMMessages IMPORT Inform;

 FROM RandGen IMPORT U, Randomize;
 FROM RandNormal IMPORT Np, InstallU;
 FROM StochStat IMPORT
 StatArray, Prob2Tail, DeclStatArray, RemoveStatArray,
 PutValue, DeclDispMV, DisplayArray;

 FROM SimBase IMPORT
 Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
 StashFiling, Tabulation, Graphing, DeclMV, SetSimTime,
 NoInitialize, NoInput, NoOutput, NoTerminate, NoAbout,
 DoNothing, StateVar, Derivative, AuxVar, Parameter,
 SetDefltCurveAttrForMV, Stain, LineStyle, GetCurveAttrForMV,
 SetCurveAttrForMV, GetGlobSimPars, ClearGraph,
 InstallClientMonitoring;

 FROM SimMaster IMPORT
 SimRun, RunSimEnvironment, CurrentTime, InstallExperiment,
 ExperimentRunning, ExperimentAborted;

 FROM SimGraphUtils IMPORT timeIsIndep;

ModelWorks 2.2 - Appendix (Sample Models)

A 206

 CONST
 grass0 = 1.0;
 grassMax = 10000.0;

 VAR
 m: Model;
 grass: StateVar;
 grassDot: Derivative;
 expectedGrass,
 r, K: AuxVar;
 mur, muK,
 sigmar, sigmaK: Parameter;

 maxRuns, nRun,
 clrAll,rand: REAL;
 statArray: StatArray;
 jt: INTEGER;

 PROCEDURE Dynamic;
 PROCEDURE AvoidOverflow(VAR grass: StateVar);
 BEGIN
 IF grass<grass0 THEN (*force grass=grass0*) grass:= grass0 END;
 END AvoidOverflow;
 BEGIN
 AvoidOverflow(grass);
 r := Np(mur, sigmar);
 K := Np(muK, sigmaK);
 grassDot:= r*((K-grass)/K)*grass;
 END Dynamic;

 PROCEDURE DoMonit;
 BEGIN
 IF ExperimentRunning() THEN
 INC(jt); PutValue(statArray, jt, CurrentTime(), grass);
 END(*IF*);
 END DoMonit;

 PROCEDURE ModelObjects;
 BEGIN
 DeclSV(grass, grassDot,grass0, 0.0, grassMax,
 "Grass", "G", "g dry weight/m^2");

 DeclMV(grass, 0.0, 1000.0, "Grass", "G", "g dry weight/m^2",
 notOnFile, notInTable, isY);
 SetDefltCurveAttrForMV(m, grass, emerald, unbroken, 0C);
 DeclMV(expectedGrass, 0.0, 1000.0, "Expect ed val ue of grass", "E[G] ", "g dry wei ght / m̂2",
 notOnFile, notInTable, isY);
 SetDefltCurveAttrForMV(m, expectedGrass, turquoise, unbroken, 0C);

 DeclP(mur, 0.7, 0.0, 10.0, rtc,
 "Mean of r (=growth rate of grass)", "µ(r)", "day^-1");
 DeclP(muK, mur/0.001, 0.0, grassMax, rtc,
 "Mean of K (=carrying capacity)", "µ(K)", "m^2/g dw/day");
 DeclP(sigmar, 0.5, 0.0, 10.0, rtc,
 "Standard deviation of r (=growth rate of grass)", "s(r)", "day^-1");
 DeclP(sigmaK, muK*0.3, 0.0, grassMax, rtc,
 "Standard deviation of K (=carrying capacity)", "s(K)", "m^2/g dw/day");

 DeclP(maxRuns, 20.0, 0.0, 100.0, rtc,
 "Number of runs in experiment", "# runs", "#");
 DeclP(nRun, maxRuns/5.0, 0.0, 100.0, rtc,
 "Show statistics each nRun'th run", "nRun", "#");
 DeclP(clrAll, 0.0, 0.0, 1.0, rtc,

ModelWorks 2.2 - Appendix (Sample Models)

A 207

 "Clear graph regularily (1=yes/0=no)", "clrAll", "");
 DeclP(rand, 1.0, 0.0, 1.0, rtc,
 "Randomize experiment (1=yes/0=no)", "rand", "");
 END ModelObjects;

 PROCEDURE MonteCarloExperiment;
 VAR i : INTEGER;
 t0, tend, h, er, c, hm: REAL;
 curSt: Stain; curLS: LineStyle; curCh: CHAR;
 PROCEDURE ShowStatistics(stErrBar,stMue: Stain; mueCh: CHAR);
 BEGIN
 SetCurveAttrForMV(m, expectedGrass, stErrBar, unbroken, 0C);
 DisplayArray(statArray, TRUE, prob950);
 SetCurveAttrForMV(m, expectedGrass, stMue, unbroken, mueCh);
 DisplayArray(statArray, FALSE, prob950);
 END ShowStatistics;
 PROCEDURE ROUND(x: REAL): INTEGER;
 BEGIN
 RETURN TRUNC(x+0.5)
 END ROUND;
 BEGIN (*MonteCarloExperiment*)
 GetGlobSimPars(t0, tend, h, er, c, hm);
 DeclStatArray(statArray, ROUND((tend-t0)/hm + 1.0));
 DeclDispMV(statArray, m, expectedGrass, m, timeIsIndep);
 GetCurveAttrForMV(m, grass, curSt, curLS, curCh);
 IF ROUND(rand)=1 THEN Randomize END;
 i := 0;
 LOOP
 jt := 0; INC(i);
 SimRun;
 IF (i=ROUND(maxRuns)) OR ExperimentAborted() THEN EXIT END;
 IF (i MOD ROUND(nRun)) = 0 THEN (* show statistics *)
 IF ODD(i DIV ROUND(nRun)) THEN
 IF (ROUND(clrAll)=0) AND (i=ROUND(nRun)) THEN (* very first time *)
 (* hide from now on individual run results to keep graph simpler *)
 Inform("From now on individual run results will be hidden.",
 "But the converging statistics will be shown instead.",
 "");
 SetCurveAttrForMV(m, grass, curSt, invisible, 0C);
 ClearGraph;
 END(*IF*);
 ShowStatistics(turquoise,turquoise,0C);
 ELSE
 IF ROUND(clrAll)=1 THEN
 Inform("Attention: graph will now be cleared to avoid",
 "clutter! However, the statistics shown next",
 "summarizes the whole simulation history.");
 ClearGraph;
 END;
 ShowStatistics(sapphire,sapphire,0C);
 END(*IF*);
 END(*IF*);
 END(*LOOP*);
 IF i>0 THEN
 ShowStatistics(pink,ruby,"•");
 END(*IF*);
 RemoveStatArray(statArray);
 SetCurveAttrForMV(m, grass, curSt, curLS, curCh);
 END MonteCarloExperiment;

 PROCEDURE ModelDefinitions;
 BEGIN
 DeclM(m, Euler, NoInitialize, NoInput, NoOutput, Dynamic,
 NoTerminate, ModelObjects, "Stochastic logistic grass growth",
 "StochGrass", NoAbout);
 SetSimTime(0.0,30.0);
 InstallExperiment(MonteCarloExperiment);

ModelWorks 2.2 - Appendix (Sample Models)

A 208

 InstallClientMonitoring(DoNothing, DoMonit, DoNothing);
 InstallU(U);
 END ModelDefinitions;

BEGIN
 RunSimEnvironment(ModelDefinitions);
END StochLogGrow.

ModelWorks 2.2 - Appendix (Sample Models)

A 209

A.4.7 Modular Modeling - GreenHouse

There are two basic techniques of modular modeling: First, declaring several ModelWorks
models within the same model definition program; second, splitting a structured model system
into several submodels, where each module contains a single submodel (s.a. Theory chapter
Structured Model Definition Programs (Modular Modeling)).

The sample model GreenHouse demonstrates the second technique, i.e. the splitting of a
structured model system into several submodels implemented as independent modules. It
simulates the green-house effect based on a simplified version of the global carbon cycle
(Fig. A7) between atmosphere and terrestrial biosphere. The two compartments atmosphere
and biosphere are modeled separately, so that the behavior of each component can be studied
independently or in a combined way (Fig. A8).

Biota

Soils

Biosphere

Atmosphere

CO2°CO2T NPP D R

UH

Fig. A7: Main components and interactions modeled by the sample model
GreenHouse. Atmosphere and biosphere form a structured model system, which
can be modeled in a modular way where both spheres are represented as a
submodel. In the corresponding model definition program, each sphere is
implemented in form of a separate module.

It is intuitively appealing to separate the whole system into two components or submodels, i.e.
the atmosphere and the biosphere. The submodel atmosphere is defined by module
GHAtmosphere (GH stands for Green House), the biosphere including the soils by module
GHBiosphere. Since we need to make some overall observations on the global C-cycle, we
can add an additional module called GHObserver (Fig. A8). It can also be formulated as a
submodel, which is convenient, since it observes total carbon injected as an integral of annual
anthropogenical fluxes. Yet, note that such an observer, despite its internal dynamics, has no
influence on the dynamics of the global carbon cycle modelled by the two other submodels; it
only receives inputs which are output by these two other submodels. Finally we require a
program module to bind all parts together, i.e. module GHMaster (Fig. A8).

ModelWorks 2.2 - Appendix (Sample Models)

A 210

Since this structure offers much flexibility I recommd to implement structured models according
to this technique (see part II Theory chapter Formalisms). Moreover, since this structure is the
same for other systems (see e.g. research sample model LBM below), it can be supported by a
general auxiliary module, i.e. StructModAux. The latter allows to announce via a simple
interface the dynamic instantiation (declaration) of submodels independently from each other.
Thus, any master module is built similar to GHMaster and becomes very simple.
StructModAux offers the simulationist a mechanism to activate or deactivate submodels
dynamically via menu commands from within the simulation environment (see part II Theory,
chapter Functions, section User Interface Customization). If the modeller wishes to prevent the
removal of a particular submodel during simulations, the procedures DeactivatexyzModel can
remove the submodel xyz only conditionally, i.e. after inspecting the current state of the
simulation environment by a call to procedure GetMWState from module SimMaster.

GHMaster

GHBio-
sphere

GHAtmo
sphere

ModelWorks
& DMMathLib

GHOb-
server

Dialog Machine

Fig. A8: Module structure of the sample model GreenHouse.

All these modules form a so-called RAMSES1 project. A list of all the files which hold the
involved modules is contained in a project description file, here called GHMaster.PRJ:

GHAtmosphere.DEF
GHBiosphere.DEF
GHObserver.DEF
GHAtmosphere.MOD
GHBiosphere.MOD
GHObserver.MOD
GHMaster.MOD
GHMaster.R

1On the IBM PC use the "Make" facility of the used development environment to achieve a similar result.

ModelWorks 2.2 - Appendix (Sample Models)

A 211

The master module GHMaster imports from every submodel module and installs the submodel
activating routines in StructModAux's mechanism:

MODULE GHMaster;

 (*
 Module GHMaster (Master module of structured model Green-House)

 Purpose: Demonstration of modular modeling using RAMSES
 and ModelWorks software.

 The structured model simulates the global carbon cycle; in
 particular the interaction between the compartment atmosphere
 and terrestrial biosphere under an anthropogenetic
 green-house gas forcing. The model has been derived from data
 and some model equations described in the following references.

 References :

 Schneider, S.H., 1989. The greenhouse effect: science and
 policy. Science 243: 771-81.

 Kohlmaier,G.H., Janecek, A. & Kindermann, J., 1990. In: Bouwman,
 A.F. (ed.), Soils and the greenhouse effect. John Wiley &
 Sons: 415-422.

 Bolin, B., 1986. How much CO2 will remain in the atmopshere?. In:
 Bolin, B., Döös, B.R., Jäger, J. & Warrick, R.A. (eds.), The
 greenhouse effect, climatic change and ecosystems. Wiley,
 Chichester a.o. (SCOPE Vol. 29): 93-156.

 Revision history:
 =================

 Author Date Description
 ------ ---- -----------

 AF 3/11/93 First implementation

 *)

 FROM DMMenus IMPORT Command, InstallCommand, Separator, InstallSeparator,
 AccessStatus, Marking;

 (* Imports from ModelWorks (Sim) *)
 FROM SimBase IMPORT SetDefltGlobSimPars, MWWindowArrangement;
 FROM SimMaster IMPORT RunSimEnvironment;
 FROM SimGraphUtils IMPORT PlaceGraphOnSuperScreen;

 FROM StructModAux IMPORT InstallCustomMenu, SetSimEnv, AssignSubModel,
 InstallMyGlobPreferences, customM;
 FROM Help IMPORT ShowHelpWindow, SetHelpFileName, SetResourceFileName;

 (* Imports from modular model definitions (GH-modules) *)
 FROM GHAtmosphere IMPORT atmosModelDescr,
 ActivateAtmosModel, DeactivateAtmosModel, AtmosModelIsActive;

 FROM GHBiosphere IMPORT biosModelDescr,
 ActivateBiosModel, DeactivateBiosModel, BiosModelIsActive;

 FROM GHObserver IMPORT obsModelDescr,
 ActivateObsModel, DeactivateObsModel, ObsModelIsActive;

 VAR
 atmos, bios, bios2, obs: INTEGER;

ModelWorks 2.2 - Appendix (Sample Models)

A 212

 helpCmd: Command;

 PROCEDURE GiveHelp;
 BEGIN
 SetHelpFileName("GreenHouse Help");
 SetResourceFileName("GreenHouse Help");
 ShowHelpWindow;
 END GiveHelp;

 PROCEDURE InitSimEnv;
 BEGIN
 InstallCustomMenu("Models","Activation…","L");
 SetSimEnv(atmos,bios,obs);
 InstallSeparator(customM,line);
 InstallCommand(customM,helpCmd, "On the model...", GiveHelp, enabled,unchecked);
 END InitSimEnv;

 PROCEDURE SetMyGlobPreferences;
 BEGIN
 SetDefltGlobSimPars(1900.0, 2300.0, 0.5, 0.0001, 1.0, 10.0);
 PlaceGraphOnSuperScreen(tiled);
 END SetMyGlobPreferences;

BEGIN
 InstallMyGlobPreferences(SetMyGlobPreferences);
 AssignSubModel(atmos, atmosModelDescr,
 ActivateAtmosModel, DeactivateAtmosModel, AtmosModelIsActive);
 AssignSubModel(bios, biosModelDescr,
 ActivateBiosModel, DeactivateBiosModel, BiosModelIsActive);
 AssignSubModel(obs, obsModelDescr,
 ActivateObsModel, DeactivateObsModel, ObsModelIsActive);
 RunSimEnvironment(InitSimEnv);
END GHMaster.

Each submodel has to provide a similar interface: First, it has to export its output variables on
behalf of the modules which need the input (see also part II Theory, section Structured Model
Definition Programs (Modular Modeling) in particular Fig. T28). Second, it has to provide
procedures which allow GHMaster to announce the submodel to the auxiliary module
StructModAux. The following two definition modules for the submodels atmosphere and
biosphere illustrate this technique:

DEFINITION MODULE GHAtmosphere;

 (***

 Module GHAtmosphere (Version 1.0)

 Copyright (c) 1993 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Purpose Submodel modeling the C-dynamics of the atmosphere

 Remark This module is the submodel Atmosphere of the
 structured model Green-House (GH)

 Programming

 o Design and Implementation
 A. Fischlin 15/12/93

ModelWorks 2.2 - Appendix (Sample Models)

A 213

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 15/12/93 AF

 ***)

 FROM SimBase IMPORT AuxVar, Parameter, OutVar;

 (* exported for submodel Biosphere *)

 VAR
 CO2: OutVar; (* CO2-concentration in the atmosphere *)
 CO20: Parameter; (* Initial CO2-concentration in the atmosphere *)
 deltaT: OutVar; (* change in global annual mean near surface temperature,
 e.g. global warming caused by CO2-increase *)

 (* exported for submodel Observer only: *)

 cInAnthros: OutVar; (* Anthropogenic CO2 C-input-flux into atmosphere
 from fossil fuel burning *)
 cDeltaInAtmos: OutVar; (* Change of carbon stored in atmosphere *)
 fRemInA: Parameter; (* Fraction of the net C-input-flux into atmosphere
 which remains there, i.e. which is not absorbed
 by oceans *)

 (* exported for GHMaster only: *)

 CONST
 atmosModelDescr = "Atmosphere";

 PROCEDURE ActivateAtmosModel;
 PROCEDURE DeactivateAtmosModel;
 PROCEDURE AtmosModelIsActive(): BOOLEAN;

END GHAtmosphere.

DEFINITION MODULE GHBiosphere;

 (***

 Module GHBiosphere (Version 1.0)

 Copyright (c) 1993 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Purpose Submodel modeling the C-dynamics of the biosphere
 composed of the biota and soils

 Remark This module is the submodel Biosphere of the
 structured model Green-House (GH)

 Programming

 o Design and Implementation
 A. Fischlin 15/12/93

ModelWorks 2.2 - Appendix (Sample Models)

A 214

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 15/12/93 AF

 ***)

 FROM SimBase IMPORT AuxVar, Parameter, OutVar;

 (* exported for submodel Atmosphere: *)

 VAR
 prodBio: OutVar; (* productive world biota (NPP) *)
 Q10AB: Parameter; (* Q10-value for atmospere -> biosphere C-flux,
 i.e. C-fixation by photosynthesis *)
 decSOM: OutVar; (* C in Soil Organic Matter (SOM) exposed to
 oxidation *)
 Q10SA: Parameter; (* Q10-value for soils -> atmospere C-flux,
 i.e. soil respiration *)
 deforestation: OutVar; (* C flux biosphere -> atmospere due to
 land use changes, i.e. deforestation *)

 PROCEDURE TEffect(Q10ij: Parameter; deltaT: AuxVar): AuxVar;
 (* Change of the C-flux from compartment i to j, caused by a
 temperature change deltaT (assumes a change or Q10-value of Q10ij
 per 10° temperature change) *)

 PROCEDURE CO2Fertilization(CO2conc: AuxVar): AuxVar;
 (* Increase of the atmospere -> biosphere C-flux caused by the
 photosynthesis, a fertilization effect due to an increased
 ambient CO2-concentration in the biosphere *)

 (* exported for submodel Observer only: *)

 VAR
 cDeltaInBios: OutVar; (* Total change of carbon stored in biosphere
 (biota and soils) *)
 cBiof: OutVar; (* Fraction (%) of biota from total carbon pools *)

 (* exported for GHMaster only: *)

 CONST
 biosModelDescr = "Terrestrial biosphere";

 PROCEDURE ActivateBiosModel;
 PROCEDURE DeactivateBiosModel;
 PROCEDURE BiosModelIsActive(): BOOLEAN;

END GHBiosphere.

The model equations of the two submodels are then provided by the implementation modules,
which resemble in their structure that of a simple, unstructured model definition program
(compare e.g. with sample model Logistic). The following two implementation modules for
the submodels atmosphere and biosphere illustrate this technique:

ModelWorks 2.2 - Appendix (Sample Models)

A 215

IMPLEMENTATION MODULE GHAtmosphere;

 (*
 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 AF 21/12/93 First implementation

 *)

 FROM DMMathLib IMPORT Ln;
 FROM SimBase IMPORT
 Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
 StashFiling, Tabulation, Graphing, DeclMV, SetSimTime,
 NoInitialize, NoInput, NoOutput, NoTerminate, NoAbout,
 StateVar, Derivative, Parameter, AuxVar, InVar,
 MDeclared, RemoveM, GetSV, notDeclaredModel;
 FROM SimMaster IMPORT CurrentTime;

 FROM GHBiosphere IMPORT prodBio, Q10SA, Q10AB, decSOM, deforestation,
 TEffect, CO2Fertilization;

 VAR
 atmosM: Model;
 cAtmo: StateVar; (* C content of atmosphere *)
 cAtmoDot: Derivative;
 ffB: StateVar; (* Annual fossil fuel burning *)
 ffBDot: Derivative;

 releaseBySoil: InVar; (* C-input-flux from soils into atmosphere *)
 uptakeByBiota: InVar; (* C-output-flux from atmosphere into biosphere,
 C-fixation by photosynthesis *)
 netGainBios: InVar; (* net gain of C from biosphere *)

 CONST
 cAtmo00 = 700.0; (* Default initial C content of atmosphere *)
 CO200 = 330.0; (* Default initial CO2-concentration in the atmosphere *)
 deltaT0 = 0.0; (* Initial temperature change *)
 fRemInA0 = 0.45; (* Default fraction of net C-input-flux remaining in
 the atmosphere, i.e. not *)
 deltaT2xCO20 = 3.7; (* default of parameter deltaT2xCO2,
 IPCC 1990, Tab.3.2, p.87 *)
 alpha0 = 2.13; (* default of parameter alpha *)
 ffB0 = 5.0; (* default of initial fossil fuel burning *)
 begffB0 = 2000.0; (* default first year of fossil fuel burning *)
 endffB0 = 2240.0; (* default last year of fossil fuel burning *)

 VAR
 cAtmo0: Parameter; (* Initial C content of atmosphere *)
 ffBGrR: Parameter; (* Growth rate of fossil fuel burning *)
 begffB: Parameter; (* First year of fossil fuel burning *)
 endffB: Parameter; (* Last year of fossil fuel burning *)
 deltaT2xCO2: Parameter; (* equilibrium temperature change for
 CO2-doubling (2 x CO2).*)
 alpha: Parameter; (* Factor by which global warming is increased
 if not only CO2 but all other green house
 gases are considered to have also an
 effect (hereby assuming a constant ratio
 between all greenhouse gases) *)
 sensT: Parameter; (* sensitivity of temperature to CO2-doubling *)

ModelWorks 2.2 - Appendix (Sample Models)

A 216

 PROCEDURE Initialize;
 BEGIN
 IF MDeclared(atmosM) THEN
 GetSV(atmosM,cAtmo,cAtmo0);
 END(*IF*);
 sensT := deltaT2xCO2/Ln(2.0);
 END Initialize;

 PROCEDURE Input;
 BEGIN
 releaseBySoil := TEffect(Q10SA,deltaT)*decSOM;
 uptakeByBiota := prodBio*TEffect(Q10AB,deltaT)*CO2Fertilization(CO2);
 netGainBios := releaseBySoil - uptakeByBiota + deforestation;
 END Input;

 PROCEDURE EffectOfFossilFuelBurning(t: REAL; x: AuxVar): Derivative;
 BEGIN
 IF (t>=begffB) AND (t<endffB) THEN RETURN x ELSE RETURN 0.0 END;
 END EffectOfFossilFuelBurning;

 PROCEDURE Dynamic;
 BEGIN
 ffBDot := EffectOfFossilFuelBurning(CurrentTime(), ffBGrR * ffB);
 cAtmoDot := (cInAnthros + netGainBios) * fRemInA;
 END Dynamic;

 PROCEDURE Output;
 BEGIN
 cInAnthros := EffectOfFossilFuelBurning(CurrentTime(), ffB);
 cDeltaInAtmos := cAtmo-cAtmo0;
 CO2 := cAtmo * CO20/cAtmo0;
 deltaT:= sensT*Ln(1.0+ (alpha*(CO2-CO20)/CO20));
 END Output;

 PROCEDURE ModelObjects;
 BEGIN
 (* state variables *)
 DeclSV(cAtmo, cAtmoDot, cAtmo0, 100.0, MAX(REAL),
 'C content of atmospere', 'cAtmo', 'Gt C');
 DeclSV(ffB, ffBDot, ffB0, 0.0, 20.0,
 'Fossil fuel burning', 'ffB', 'Gt C/a');

 DeclMV(cAtmo,650.0,20000.0,
 'C content of atmospere', 'cAtmo', 'Gt C',
 notOnFile, writeInTable, notInGraph);
 DeclMV(cAtmoDot,-100.0,100.0,
 'Change in C content of the atmospere', 'cAtmoDot', 'Gt C/a',
 notOnFile, notInTable, notInGraph);

 (* input variables *)
 DeclMV(releaseBySoil, 250.0, 1000.0,
 'C-flux from soils to atmosphere', 'releaseBySoil', 'Gt C/a',
 notOnFile, notInTable, notInGraph);
 DeclMV(uptakeByBiota, 250.0, 1000.0,
 'C-flux from atmosphere to biosphere', 'uptakeByBiota', 'Gt C/a',
 notOnFile, notInTable, notInGraph);

 (* internal auxiliary variables *)
 DeclMV(netGainBios, 250.0, 1000.0,
 'Net gain of C from biosphere', 'netGainBios', 'Gt C/a',
 notOnFile, notInTable, notInGraph);

 (* output variables *)
 DeclMV(CO2, 250.0, 10000.0,
 'CO2-concentration in atmosphere', 'CO2', 'ppm',
 notOnFile, writeInTable, isY);
 DeclMV(cDeltaInAtmos,0.0,15.0,

ModelWorks 2.2 - Appendix (Sample Models)

A 217

 'Change of carbon stored in atmosphere', ' ∆C', 'Gt C',
 notOnFile, notInTable, notInGraph);
 DeclMV(deltaT,-1.0,15.0,
 'Temperature change (global warming)', ' ∆T', '°C',
 notOnFile, writeInTable, isY);

 (* parameters also exported *)
 DeclP(CO20, CO200, 200.0, 400.0, rtc,
 'Initial CO2 conc. in atmosphere', 'CO20', 'ppm');

 (* internal parameters *)
 DeclP(begffB, begffB0, 1800.0, 2500.0, rtc,
 'First year of fossil fuel burning', 'begffB', 'a');
 DeclP(endffB, endffB0, 1800.0, 2500.0, rtc,
 'Last year of fossil fuel burning', 'endffB', 'a');
 DeclP(ffBGrR, 0.01, -0.5, 0.5, rtc,
 'Relative growth rate of fossil fuel burning', 'ffBGrR', '/a');
 DeclP(deltaT2xCO2, deltaT2xCO20, 0.0, 5.0, rtc,
 'Change in temperature by 2xCO2', ' ∆T2xCO2', '°C');
 DeclP(fRemInA, fRemInA0, 0.0, 1.0, rtc,
 'Fraction of CO2-input-flux remaining in atmosphere', 'fRemInA', '%');
 DeclP(alpha, alpha0, 0.0, 3.0, rtc,
 'Ratio from other GHG to CO2 on warming', 'alpha', '-');
 END ModelObjects;

 PROCEDURE AssignDefaultOutputs;
 BEGIN
 (* overwrite any eventual changes with defaults to parametrize
 submodel Atmosphere *)
 cAtmo0 := cAtmo00;
 cAtmo := cAtmo0;
 CO20 := CO200;
 ffB := ffB0;
 begffB := begffB0;
 endffB := endffB0;
 deltaT := deltaT0;
 fRemInA := fRemInA0;
 deltaT2xCO2 := deltaT2xCO20;
 alpha := alpha0;

 Initialize;
 Output;
 END AssignDefaultOutputs;

 PROCEDURE ActivateAtmosModel;
 BEGIN
 IF NOT MDeclared(atmosM) THEN
 DeclM(atmosM, Heun, Initialize,Input, Output, Dynamic, NoTerminate, ModelObjects,
 "Atmosphere submodel",
 "atmosM", NoAbout);
 END(*IF*);
 END ActivateAtmosModel;

 PROCEDURE DeactivateAtmosModel;
 BEGIN
 IF MDeclared(atmosM) THEN RemoveM(atmosM); AssignDefaultOutputs END(*IF*);
 END DeactivateAtmosModel;

 PROCEDURE AtmosModelIsActive(): BOOLEAN;
 BEGIN
 RETURN MDeclared(atmosM)
 END AtmosModelIsActive;

BEGIN
 atmosM := notDeclaredModel;
 AssignDefaultOutputs
END GHAtmosphere.

ModelWorks 2.2 - Appendix (Sample Models)

A 218

IMPLEMENTATION MODULE GHBiosphere;

 (*
 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 AF 21/12/93 First implementation

 *)

 FROM DMMathLib IMPORT Ln;
 FROM SimBase IMPORT
 Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
 StashFiling, Tabulation, Graphing, DeclMV, SetSimTime,
 NoInitialize, NoInput, NoOutput, NoTerminate, NoAbout,
 StateVar, Derivative, Parameter, AuxVar, InVar,
 MDeclared, RemoveM, GetSV, notDeclaredModel;

 FROM GHAtmosphere IMPORT CO2, CO20, deltaT;

 VAR
 biosM: Model;
 cBio: StateVar; (* C in biomass *)
 cBioDot: Derivative;
 cSOM: StateVar; (* C in Soil Organic Matter (SOM) *)
 cSOMDot: Derivative;

 CO2Amb: InVar; (* Ambient CO2-concentration in biosphere *)
 changeTAmb: InVar; (* Change of ambient temperature in biosphere *)

 litter: AuxVar; (* C-flux Biomass -> Soil *)
 soilResp: AuxVar; (* C-flux Soil -> Atmosphere *)
 NPP: AuxVar; (* C-flux Atmosphere -> Biosphere, i.e. net
 primary production *)

 CONST
 cBio00 = 700.0; (* Default initial C in biomass *)
 cSOM00 = 1320.0; (* Default initial C in soils (SOM) *)
 NPP00 = 117.5; (* Default initial net primary production *)
 Q10SA0 = 1.0; (* Default Q10-value for soil respiration,
 C-flux Soils -> Atmosphere *)
 Q10AB0 = 0.3; (* Default Q10-value for photosynthesis,
 C-flux Atmosphere -> Biosphere *)
 defR00 = 2.0; (* Default initial deforestation rate *)
 VAR
 cBio0: Parameter; (* Initial C in biomass *)
 cSOM0: Parameter; (* Initial C in soils (SOM) *)
 NPP0: Parameter; (* initial net primary production (NPP) of world
 biota *)
 beta: Parameter; (* CO2 fertilization-parameter *)
 defR: Parameter; (* relative deforestationation rate *)
 defR0: Parameter; (* Initial deforestationation rate *)

 PROCEDURE Initialize;
 BEGIN
 IF MDeclared(biosM) THEN
 GetSV(biosM,cBio,cBio0);

ModelWorks 2.2 - Appendix (Sample Models)

A 219

 GetSV(biosM,cSOM,cSOM0);
 END(*IF*);
 defR := defR0 / cBio0;
 END Initialize;

 PROCEDURE Input;
 BEGIN
 CO2Amb:= CO2;
 changeTAmb := deltaT;
 END Input;

 PROCEDURE TEffect(Q10ij: Parameter; changeTAmb: AuxVar): AuxVar;
 BEGIN
 IF MDeclared(biosM) THEN
 RETURN 1.0+(Q10ij/10.0)*changeTAmb
 ELSE
 RETURN 1.0
 END(*IF*);
 END TEffect;

 PROCEDURE CO2Fertilization(CO2conc: AuxVar): AuxVar;
 BEGIN
 IF MDeclared(biosM) THEN
 RETURN 1.0+beta*Ln(CO2conc/CO20)
 ELSE
 RETURN 1.0
 END(*IF*);
 END CO2Fertilization;

 PROCEDURE Dynamic;
 BEGIN
 NPP:= prodBio*TEffect(Q10AB,changeTAmb)*CO2Fertilization(CO2Amb);
 litter:= prodBio*(cBio/cBio0);
 soilResp:= TEffect(Q10SA,changeTAmb)*decSOM;
 cBioDot := NPP - litter - deforestation;
 cSOMDot := litter - soilResp;
 END Dynamic;

 PROCEDURE Output;
 BEGIN
 prodBio := NPP0*(cBio/cBio0);
 decSOM := NPP0*cSOM/cSOM0;
 deforestation := defR * cBio;
 cDeltaInBios := cBio-cBio0 + cSOM-cSOM0;
 cBiof := cBio/(cBio+cSOM);
 END Output;

 PROCEDURE ModelObjects;
 BEGIN
 (* state variables *)
 DeclSV(cBio, cBioDot, cBio0, 100.0, MAX(REAL),
 'C content of biota', 'cBio', 'Gt C');
 DeclSV(cSOM, cSOMDot, cSOM0, 200.0, MAX(REAL),
 'C content of soils (SOM = Soil Organic Matter)', 'cSOM', 'Gt C');

 DeclMV(cBio, 500.0, 2000.0,
 'C content of biota', 'cBio', 'Gt C',
 notOnFile, writeInTable, notInGraph);
 DeclMV(cBioDot, 0.0, 4.0,
 'Change in C content of biota', 'cBioDot', 'Gt C/a',
 notOnFile, notInTable, notInGraph);
 DeclMV(cSOM, 500.0, 2000.0,
 'C content of soils (SOM = Soil Organic Matter)', 'cSOM', 'Gt C',
 notOnFile, writeInTable, notInGraph);
 DeclMV(cSOMDot, -0.5, 0.5,
 'Change in C content of soils (SOM)', 'cSOMDot', 'Gt C/a',
 notOnFile, notInTable, notInGraph);

ModelWorks 2.2 - Appendix (Sample Models)

A 220

 (* input variables *)
 DeclMV(CO2Amb, 250.0, 1000.0,
 'Ambient CO2-conc. in biosphere', 'CO2Amb', 'ppm',
 notOnFile, notInTable, notInGraph);
 DeclMV(changeTAmb, 250.0, 1000.0,
 'Change of ambient T in biosphere', ' ∆TAmb', '°C',
 notOnFile, notInTable, notInGraph);

 (* internal auxiliary variables *)
 DeclMV(NPP, 110.0, 160.0,
 'Net Primary Production (net photosynthesis)', 'NPP', 'Gt C/a',
 notOnFile, notInTable, notInGraph);
 DeclMV(soilResp, 110.0, 160.0,
 'Soil respiration', 'soilResp', 'Gt C/a',
 notOnFile, notInTable, notInGraph);

 (* output variables *)
 DeclMV(decSOM, 110.0, 160.0,
 'Decaying Soil Organic Matter (SOM)', 'decSOM', 'Gt C',
 notOnFile, notInTable, notInGraph);

 (* parameters also exported *)
 DeclP(NPP0, NPP00, 0.0, 200.0, rtc,
 'Initial Net Primary Production', 'NPP0', 'Gt C/a');
 DeclP(Q10AB, Q10AB0, 0.0, 0.5, rtc,
 'Q10-value for photosynthesis', 'Q10AB', '/°C');
 DeclP(Q10SA, Q10SA0, 0.0, 5.0, rtc,
 'Q10-value for soil respiration', 'Q10SA', '/°C');

 (* internal parameters *)
 DeclP(beta, 0.3, 0.0, 2.0, rtc,
 'CO2-fertilization parameter', 'beta', '-');
 DeclP(defR0, defR00, 0.0, 100.0, rtc,
 'Initial deforestationation rate', 'defR0', 'Gt C/a');
 END ModelObjects;

 PROCEDURE AssignDefaultOutputs;
 BEGIN
 (* overwrite any eventual changes with defaults to parametrize
 submodel Biosphere *)
 cBio0 := cBio00;
 cSOM0 := cSOM00;
 NPP0 := NPP00;
 cBio := cBio0;
 cSOM := cSOM0;
 Q10SA := Q10SA0;
 Q10AB := Q10AB0;
 defR0 := defR00;
 Initialize;
 Output;
 END AssignDefaultOutputs;

 PROCEDURE ActivateBiosModel;
 BEGIN
 IF NOT MDeclared(biosM) THEN
 DeclM(biosM, Heun, Initialize, Input, Output, Dynamic, NoTerminate, ModelObjects,
 "Biosphere submodel", "biosM", NoAbout);
 END(*IF*);
 END ActivateBiosModel;

 PROCEDURE DeactivateBiosModel;
 BEGIN
 IF MDeclared(biosM) THEN RemoveM(biosM); AssignDefaultOutputs END(*IF*);
 END DeactivateBiosModel;

 PROCEDURE BiosModelIsActive(): BOOLEAN;

ModelWorks 2.2 - Appendix (Sample Models)

A 221

 BEGIN
 RETURN MDeclared(biosM)
 END BiosModelIsActive;

BEGIN
 biosM := notDeclaredModel;
 AssignDefaultOutputs
END GHBiosphere.

The interface of the submodel GHObserver resembles that of any other submodel except that it
does not export any outputs; it only has to export the procedures which allow GHMaster to
announce the submodel to the auxiliary module StructModAux.

DEFINITION MODULE GHObserver;

 (***

 Module GHObserver (Version 1.0)

 Copyright (c) 1993 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Purpose Observes overall system behavior of the structured
 model Green-House

 Remark This module is a submodel of the structured
 model Green-House (GH)

 Programming

 o Design and Implementation
 A. Fischlin 3/1/94

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 3/1/94 AF

 ***)

 (* exported for GHMaster only: *)

 CONST
 obsModelDescr = "Observer";

 PROCEDURE ActivateObsModel;
 PROCEDURE DeactivateObsModel;
 PROCEDURE ObsModelIsActive(): BOOLEAN;

END GHObserver.

The implementation of GHObserver is again similar to that of any other model definition
program, since it does not only collect data from the other submodels but does also integrate
some of these inputs to compute the total fossil fuels burnt.

ModelWorks 2.2 - Appendix (Sample Models)

A 222

IMPLEMENTATION MODULE GHObserver;

 (*
 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 AF 3/1/94 First implementation

 *)

 FROM DMConversions IMPORT RealToString, RealFormat;
 FROM DMStrings IMPORT Concatenate, Append;

 FROM SimBase IMPORT
 Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
 StashFiling, Tabulation, Graphing, DeclMV, SetSimTime,
 NoInitialize, NoInput, NoOutput, NoTerminate, NoAbout, NoDynamic,
 StateVar, Derivative, Parameter, AuxVar,
 MDeclared, RemoveM, GetSV, Message, notDeclaredModel;
 FROM SimMaster IMPORT RunSimEnvironment;

 FROM GHAtmosphere IMPORT deltaT, CO2, cInAnthros, cDeltaInAtmos, fRemInA;

 FROM GHBiosphere IMPORT cDeltaInBios, cBiof;

 VAR
 obsM: Model;
 cffBTot: StateVar; (* Total fossil fuel burnt *)
 cffBTotDot: Derivative;

 PROCEDURE Dynamic;
 BEGIN
 cffBTotDot := cInAnthros;
 END Dynamic;

 PROCEDURE Terminate;
 PROCEDURE MakeMsgForX(descr: ARRAY OF CHAR; x: REAL; unit: ARRAY OF CHAR);
 VAR msg: ARRAY [0..127] OF CHAR;
 BEGIN (*MakeMsgForX*)
 RealToString(x,msg,0,3,FixedFormat);
 Concatenate(descr,msg,msg); Append(msg,unit);
 Message(msg);
 END MakeMsgForX;
 BEGIN (*Terminate*)
 MakeMsgForX("Global warming = ",deltaT," [°C]");
 MakeMsgForX("CO2-concentration = ",CO2," [ppm]");
 MakeMsgForX(" ∑ fossil fuel burnt = ",cffBTot," [Gt]");
 MakeMsgForX(" ∆C in atmosphere = ",cDeltaInAtmos," [Gt]");
 MakeMsgForX(" ∆C in oceans = ",cDeltaInAtmos/fRemInA*(1.0-fRemInA)," [Gt]");
 MakeMsgForX(" ∆C in biosphere = ",cDeltaInBios," [Gt]");
 MakeMsgForX(" - hereof in biota = ",cDeltaInBios*cBiof," [Gt]");
 MakeMsgForX(" - hereof in soils = ",cDeltaInBios*(1.0-cBiof)," [Gt]");
 END Terminate;

 PROCEDURE ModelObjects;
 BEGIN
 DeclSV(cffBTot, cffBTotDot, 0.0, 0.0, 0.0,
 'Total fossil fuel burnt', 'cffBTot', 'Gt C');
 DeclMV(cffBTot,1000.0,2000.0,
 'Total fossil fuel burnt', 'cffBTot', 'Gt C',
 notOnFile, writeInTable, notInGraph);

ModelWorks 2.2 - Appendix (Sample Models)

A 223

 END ModelObjects;

 PROCEDURE ActivateObsModel;
 BEGIN
 IF NOT MDeclared(obsM) THEN
 DeclM(obsM, Heun, NoInitialize,NoInput, NoOutput, Dynamic, Terminate, ModelObjects,
 "Observer submodel", "obsM", NoAbout);
 END(*IF*);
 END ActivateObsModel;

 PROCEDURE DeactivateObsModel;
 BEGIN
 IF MDeclared(obsM) THEN RemoveM(obsM) END(*IF*);
 END DeactivateObsModel;

 PROCEDURE ObsModelIsActive(): BOOLEAN;
 BEGIN
 RETURN MDeclared(obsM)
 END ObsModelIsActive;

BEGIN
 obsM := notDeclaredModel;
END GHObserver.

This technique of module modeling offers many advantages, such as discarding or reactivation
of modules depending on the current needs, e.g. with or without the obsever submodel, as well
as to expand the submodels, e.g. by another sphere like the oceans.

In particular note that it is also possible even to deactivate a submodel which produces outputs
needed as input by another submodel. The removed submodel will then loose its dynamic cha-
racter, but still provide an output, since an output variable does not cease to exist only because
the submodel has been removed from ModelWorks's model base and may be freely used by
any other submodel still active. In order to avoid artefact outputs, submodels should be imple-
mented such, that they produce a constant output if the corresponding submodel is no longer
active. This behavior can then be physically interpreted as a parametrization of the submodels
dynamics. The sample model GreenHouse has exactly been implemented that way: The proce-
dures AssignDefaultOutputs in both submodels GHAtmsophere and GHBiosphere serve exact-
ly this purpose and define the parametrized submodel when it is not dynamically active.

ModelWorks 2.2 - Appendix (Sample Models)

A 224

A.5 M IXED TYPE STRUCTURED MODEL S

A.5.1 Mixing Continuous (DESS) and Discrete Time Models (SQM)

The following listing defines a model demonstrating the mixing of a continuous time submodel
with a discrete time submodel. Both models form together a structured model of mixed type
(see also in the manual part II Theory in the section Model formalisms especially the subsection
Structured models (Coupling of submodels):

MODULE Combined;

(**)
(*
 Structured model built from a continuous and discrete time submodel
 The continuous time submodel consists of a simple linear differential
 equation whereby its paramater depends on an input which has been
 coupled with the output from the discrete time submodel. The discrete
 time submodel contains a simple step function. Every submodel is
 modelled as a local module.

 af 29/Mai/1988
 *)
(**)

 IMPORT SimMaster;
 FROM SimBase IMPORT SetSimTime, SetMonInterval;
 IMPORT SimBase;
 FROM SimMaster IMPORT RunSimEnvironment;

 MODULE SubModDisc; (***)

 FROM SimBase IMPORT DeclM, IntegrationMethod, DeclSV, StashFiling,
 Tabulation, Graphing, DeclMV, DeclP, RTCType,
 Model, SetSimTime, SetMonInterval,
 NoInitialize, NoInput, NoTerminate, NoAbout,
 StateVar, NewState, Parameter, AuxVar;

 EXPORT DeclSubModDisc, y;

 VAR
 discM: Model;
 step: StateVar;
 newStep: NewState;
 a, flip: Parameter;
 y: AuxVar;

 PROCEDURE Dd;
 BEGIN
 newStep:= flip*step;
 END Dd;

 PROCEDURE Od;
 BEGIN
 y:= a*step;
 END Od;

 PROCEDURE ModelObjectsDisc;

ModelWorks 2.2 - Appendix (Sample Models)

A 225

 BEGIN
 DeclSV(step, newStep,1.0, -1.0E3, 1.0E3,
 "Step of discrete time submodel", "Step", "-");

 DeclMV(step, -5.0, 2.0,
 "Step of discrete time submodel",
 "Step", "-", notOnFile, writeInTable, isY);

 DeclP(a, 1.0, -100.0, 100.0, rtc,
 "Amplitude of step function", "a", "---");

 DeclP(flip, -1.0, -1.0, 1.0, rtc,
 "Factor to reverse sign of step function", "f", "---");
 END ModelObjectsDisc;

 PROCEDURE DeclSubModDisc;
 BEGIN
 DeclM(discM, discreteTime, NoInitialize, NoInput, Od, Dd,
 NoTerminate, ModelObjectsDisc,
 "Discrete time submodel",
 "DiscSubMod", NoAbout);
 END DeclSubModDisc;

 END SubModDisc; (**)

 MODULE SubModCont; (***)

 FROM SimBase IMPORT DeclM, IntegrationMethod,DeclSV, StashFiling,
 Tabulation, Graphing, DeclMV, DeclP, RTCType,
 Model, SetSimTime, SetMonInterval,
 NoInitialize, NoOutput, NoTerminate, NoAbout,
 StateVar, Derivative, Parameter, AuxVar;
 IMPORT y;
 EXPORT DeclSubModCont;

 VAR
 contM: Model;
 x: StateVar;
 xDot: Derivative;
 r: Parameter;
 u: AuxVar;

 PROCEDURE Ic;
 BEGIN
 u:= y;
 END Ic;

 PROCEDURE Dc;
 BEGIN
 xDot:= r*u*x;
 END Dc;

 PROCEDURE ModelObjectsCont;
 BEGIN
 DeclSV(x, xDot,1.0, -1.0E3, 1.0E3,
 "State variable of continuous time submodel", "x", "-");

 DeclMV(x, 0.0, 5.0,
 "State variable of continuous time submodel", "x", "-",
 notOnFile, writeInTable, isY);

 DeclP(r, 1.0, -100.0, 100.0, rtc,
 "Intrinsic rate of change for continous time submodel",

ModelWorks 2.2 - Appendix (Sample Models)

A 226

 "r", "time^-1");
 END ModelObjectsCont;

 PROCEDURE DeclSubModCont;
 BEGIN
 DeclM(contM, Euler, NoInitialize, Ic, NoOutput, Dc,
 NoTerminate, ModelObjectsCont,
 "Continuous time submodel",
 "ContSubMod", NoAbout);
 END DeclSubModCont;

 END SubModCont; (**)

 PROCEDURE StructuredModelDef;
 BEGIN
 DeclSubModCont; DeclSubModDisc;
 SetSimTime(0.0,10.0); SetMonInterval(0.25);
 END StructuredModelDef;

BEGIN
 RunSimEnvironment(StructuredModelDef);
END Combined

ModelWorks 2.2 - Appendix (Sample Models)

A 227

A.5.2 Mixing a Discrete Event System (DEVS) With a Continuous Time Model (DESS) -
CarPol lution

A.5.2.1 The Fiscrete Event System - Traf f ic (DEVS)

DEFINITION MODULE CPTraffic;

 (***

 Module CPTraffic (Version 1.0)

 Copyright (c) 1993 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Purpose Submodel modeling the dynamics of cars

 Remarks This module is used by the ModelWorks research
 sample model CarPollution (CP).

 Programming

 o Design and Implementation
 A. Fischlin 15/12/93

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 15/12/93 AF

 ***)

 PROCEDURE ActivateTrafficModel;
 PROCEDURE DeactivateTrafficModel;
 PROCEDURE TrafficModelIsActive(): BOOLEAN;

END CPTraffic.

IMPLEMENTATION MODULE CPTraffic;

 (*
 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 AF 15/12/93 First implementation (MacMETH_V3.2.1)
 dg 25/04/96 Cleaned up for PC compatibility

 *)

 FROM DMConversions IMPORT IntToString;

ModelWorks 2.2 - Appendix (Sample Models)

A 228

 FROM DMStrings IMPORT AssignString, Append;
 FROM DMMessages IMPORT Warn;

 FROM SimBase IMPORT
 Model, DeclP, RTCType, MDeclared, RemoveM, notDeclaredModel,
 StashFiling, Tabulation, Graphing, DeclMV, SetSimTime, NoInput,
 NoOutput, NoTerminate, NoAbout, Parameter, Message,
 DoNothing,ClearTable, InstallClientMonitoring;
 FROM SimEvents IMPORT
 nilTransaction, Transaction, StateTransition, ScheduleEvent,
 DeclDEVM;
 FROM SimMaster IMPORT
 CurrentTime;

 FROM RandGen IMPORT U, ResetSeeds, Randomize;
 FROM RandGen0 IMPORT InstallU0, NegExpP;
 FROM Queues IMPORT
 EmptyFIFOQueue, FileIntoFIFOQueue, FIFOQueueLength,
 Take1stFromFIFOQueue, FirstInFIFOQueue, IsFIFOQueueFull;

 FROM CPObjects IMPORT TrafficLight, crossRoad, VehicleKind,
 Vehicle, RecognizeVehicle, ForgetVehicle, traffic;
 FROM CPCrossRoad IMPORT EnableAnimation, DisableAnimation,
 ShowCrossRoad, ClearCrossRoad, AnimateTrafficLight,
 AnimateArrivingVehicle, AnimatePassingVehicle,
 AnimateLeavingVehicle, AnimateQueueAdvancement;

 CONST
 (* EventClasses: *)
 arrival = 1;
 leaving = 2;
 switchLight = 3;

 VAR
 trafficM: Model;
 randomize,
 animate,
 stepWise: Parameter;

 PROCEDURE ReportEvent(txt1: ARRAY OF CHAR; v: Vehicle; txt2: ARRAY OF CHAR;
 writeOnFile: BOOLEAN);
 VAR mssg: ARRAY [0..63] OF CHAR; istr: ARRAY [0..7] OF CHAR;
 BEGIN
 AssignString(txt1,mssg);
 IF v<>NIL THEN
 CASE v^.kind OF
 | truck : Append(mssg,"Truck ");
 | car : Append(mssg,"Car ");
 END(*CASE*);
 IntToString(v^.licensePlate,istr,0); Append(mssg,istr);
 END(*IF*);
 Append(mssg,txt2);
 Message(mssg);
 IF stepWise>0.0 THEN Warn("ReportEvent:",mssg,"") END(*IF*);
 END ReportEvent;

 PROCEDURE VehicleArrival(ta: Transaction);
 BEGIN
 ta := RecognizeVehicle();
 IF (crossRoad.trafficLight=red) THEN
 IF NOT IsFIFOQueueFull(crossRoad.fifoQ) THEN

ModelWorks 2.2 - Appendix (Sample Models)

A 229

 FileIntoFIFOQueue(crossRoad.fifoQ,ta);
 AnimateArrivingVehicle(ta);
 ReportEvent("Red: ",ta," stops to join queue", TRUE);
 ELSE
 ReportEvent("Red: ",ta," arrives, Queue overflow! cross road blocked", FALSE);
 END(*IF*);
 crossRoad.qLe := FLOAT(FIFOQueueLength(crossRoad.fifoQ));
 ELSIF (FIFOQueueLength(crossRoad.fifoQ)>0) THEN
 IF NOT IsFIFOQueueFull(crossRoad.fifoQ) THEN
 FileIntoFIFOQueue(crossRoad.fifoQ,ta);
 AnimateArrivingVehicle(ta);
 ReportEvent("Green: ",ta," arrives, but cross road blocked", TRUE);
 ELSE
 ReportEvent("Green: ",ta," arrives, Queue overflow! cross road blocked", FALSE);
 END(*IF*);
 crossRoad.qLe := FLOAT(FIFOQueueLength(crossRoad.fifoQ));
 ELSE
 AnimatePassingVehicle(ta);
 ReportEvent("Green: ",ta," passes cross road", FALSE);
 ForgetVehicle(ta);
 END(*IF*);
 ScheduleEvent(arrival,NegExpP(traffic.muNrVeh),nilTransaction);
 END VehicleArrival;

 PROCEDURE VehicleLeave(ta: Transaction);
 VAR v: Vehicle;
 BEGIN
 IF (FIFOQueueLength(crossRoad.fifoQ)>0) AND (crossRoad.trafficLight=green) THEN
 (* there is at least a vehicle waiting *)
 ta := Take1stFromFIFOQueue(crossRoad.fifoQ);
 ReportEvent("",ta," starts engine and leaves", TRUE);
 AnimateLeavingVehicle(ta);
 ForgetVehicle(ta);
 AnimateQueueAdvancement;
 IF FIFOQueueLength(crossRoad.fifoQ)>0 THEN
 (* there are some more vehicles waiting *)
 v := FirstInFIFOQueue(crossRoad.fifoQ);
 ScheduleEvent(leaving,NegExpP(1.0/traffic.TmuSE[v^.kind]),nilTransaction);
 END(*IF*);
 crossRoad.qLe := FLOAT(FIFOQueueLength(crossRoad.fifoQ));
 END(*IF*);
 END VehicleLeave;

 PROCEDURE SwitchTrafficLight(ta: Transaction);
 VAR v: Vehicle;
 BEGIN
 IF crossRoad.trafficLight=red THEN
 ReportEvent("Switching from red to green",nilTransaction,"", FALSE);
 AnimateTrafficLight(green);
 crossRoad.trafficLight := green;
 IF crossRoad.qLe>0.0 THEN
 IF FIFOQueueLength(crossRoad.fifoQ)<=0 THEN
 Warn("SwitchTrafficLight: Attempt to schedule nonexisting transaction","","");
 END(*IF*);
 ReportEvent("Post: ",nilTransaction," Scheduling VehicleLeave", FALSE);
 v := FirstInFIFOQueue(crossRoad.fifoQ);
 ScheduleEvent(leaving,NegExpP(1.0/traffic.TmuSE[v^.kind]),nilTransaction);
 crossRoad.qLe := FLOAT(FIFOQueueLength(crossRoad.fifoQ));
 END(*IF*);
 ELSIF crossRoad.trafficLight=green THEN
 ReportEvent("Switching from green to red",nilTransaction,"", FALSE);
 AnimateTrafficLight(red);
 crossRoad.trafficLight := red;
 END(*IF*);
 ScheduleEvent(switchLight,crossRoad.Tls,nilTransaction);
 END SwitchTrafficLight;

ModelWorks 2.2 - Appendix (Sample Models)

A 230

 PROCEDURE Initialize;
 BEGIN
 IF randomize<=0.0 THEN ResetSeeds END(*IF*);
 EmptyFIFOQueue(crossRoad.fifoQ);
 crossRoad.qLe := 0.0;
 traffic.vehicleNr := 0;
 crossRoad.trafficLight := red;
 ScheduleEvent(arrival,CurrentTime(),nilTransaction);
 ScheduleEvent(switchLight,CurrentTime(),nilTransaction);
 ClearTable;
 IF animate=0.0 THEN DisableAnimation ELSE EnableAnimation END;
 ClearCrossRoad;
 END Initialize;

 PROCEDURE Terminate;
 BEGIN
 IF randomize>0.0 THEN Randomize END(*IF*);
 END Terminate;

 PROCEDURE TrafficModelObjects;
 VAR v: VehicleKind;
 BEGIN
 DeclMV(crossRoad.qLe, 0.0,10.0,
 "Cars waiting in queue before red light", "qLe", "#",
 notOnFile, writeInTable, isY);

 DeclP(traffic.truckFrac, 0.2, 0.0, 1.0, rtc,
 "Fraction of trucks among all vehicles", "truckFrac", "%");

 DeclP(crossRoad.Tls, 0.5, 0.0, 10.0, rtc,
 "Traffic control light switch time", "Tls", "hour");
 FOR v:= fstVK TO lstVK DO
 IF v=truck THEN
 DeclP(traffic.TmuSE[v], 0.4, 0.0, 100.0/60.00, rtc,
 "Mean time needed to start truck engine", "TmuSEtruck", "hour");
 ELSE
 DeclP(traffic.TmuSE[v], 0.2, 0.0, 100.0/60.00, rtc,
 "Mean time needed to start non-truck engine", "TmuSE", "hour");
 END(*IF*);
 END(*FOR*);
 DeclP(traffic.muNrVeh, 2.0, 0.0, 10.0, rtc,
 "Mean # vehicles arriving per ∆t", "muNrVeh", "hour^-1");
 DeclP(traffic.rhPeak, 0.0, 0.0, 10.0, rtc,
 "Rush hour peak amplitude", "rhPeak", "");

 DeclP(randomize, 1.0, 0.0, 1.0, noRtc,
 "Randomize (TRUE=1.0/FALSE=0.0)", "randomize", "");
 DeclP(animate, 1.0, 0.0, 1.0, noRtc,
 "Animate (TRUE=1.0/FALSE=0.0)", "animate", "");
 DeclP(stepWise, 0.0, 0.0, 1.0, rtc,
 "Step through simulation (TRUE=1.0/FALSE=0.0)", "stepWise", "");

 END TrafficModelObjects;

 PROCEDURE ActivateTrafficModel;
 VAR stf: ARRAY [arrival..switchLight] OF StateTransition;
 BEGIN
 IF NOT MDeclared(trafficM) THEN
 stf[arrival].ec := arrival; stf[arrival].fct := VehicleArrival;
 stf[leaving].ec := leaving; stf[leaving].fct := VehicleLeave;
 stf[switchLight].ec := switchLight; stf[switchLight].fct := SwitchTrafficLight;
 DeclDEVM(trafficM, Initialize, NoInput, NoOutput, stf, Terminate,

ModelWorks 2.2 - Appendix (Sample Models)

A 231

 TrafficModelObjects, "Traffic at a crossroad", "trafficM", NoAbout);
 SetSimTime(0.0,30.0);
 InstallClientMonitoring(ShowCrossRoad, DoNothing, DoNothing);
 END(*IF*);
 END ActivateTrafficModel;

 PROCEDURE DeactivateTrafficModel;
 BEGIN
 IF MDeclared(trafficM) THEN Initialize; RemoveM(trafficM) END(*IF*);
 END DeactivateTrafficModel;

 PROCEDURE TrafficModelIsActive(): BOOLEAN;
 BEGIN
 RETURN MDeclared(trafficM)
 END TrafficModelIsActive;

BEGIN
 trafficM := notDeclaredModel;
 InstallU0(U);
END CPTraffic.

A.5.2.2 The Crossroad and the Traffic

DEFINITION MODULE CPCrossRoad;

 (***

 Module CPCrossRoad (Version 1.0)

 Copyright (c) 1992 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Purpose Algorithms used to simulate
 and animate traffic jams at a cross road.

 Remarks This module is used by the ModelWorks research
 sample model CarPollution (CP).

 Programming

 o Design
 A. Fischlin 17/Mar/93

 o Implementation
 A. Fischlin 17/Mar/93

 Swiss Federal Institute of Technology Zurich ETHZ
 CH-8092 Zurich
 Switzerland

 Last revision of definition: 16/Sep/93 AF

 ***)

 FROM CPObjects IMPORT TrafficLight, Vehicle;

 PROCEDURE EnableAnimation; (* default *)
 PROCEDURE DisableAnimation; (* after calling DisableAnimation, any call
 to one of the subsequent procedures will
 have no effect and it closes also the animation
 window *)

ModelWorks 2.2 - Appendix (Sample Models)

A 232

 PROCEDURE ShowCrossRoad;
 PROCEDURE ClearCrossRoad;

 PROCEDURE AnimateTrafficLight(newTL: TrafficLight);
 PROCEDURE AnimateArrivingVehicle(v: Vehicle);
 PROCEDURE AnimatePassingVehicle(v: Vehicle);
 PROCEDURE AnimateLeavingVehicle(v: Vehicle);
 PROCEDURE AnimateQueueAdvancement;

END CPCrossRoad.

DEFINITION MODULE CPObjects;

 (***

 Module CPObjects (Version 1.0)

 Copyright (c) 1992 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Version written for:
 MacMETH_V3.2 (1-Pass Modula-2 implementation)

 Purpose Data structures used to simulate the air pollution
 caused by traffic jams at a cross road.

 Remarks This module is used by the ModelWorks research
 sample model CarPollution (CP).

 Programming

 o Design
 A. Fischlin 17/Mar/93

 o Implementation
 A. Fischlin 17/Mar/93

 Swiss Federal Institute of Technology Zurich ETHZ
 CH-8092 Zurich
 Switzerland

 Last revision of definition: 13/Dec/93 AF

 ***)

 FROM SimBase IMPORT Parameter, AuxVar;
 FROM Queues IMPORT FIFOQueue;

 TYPE
 TrafficLight = (green, red);
 CrossRoad = RECORD
 trafficLight: TrafficLight;
 Tls: Parameter; (* Switching time of traffic light *)
 fifoQ: FIFOQueue; (* FIFO queue of waiting vehicles *)
 qLe: AuxVar; (* Current length of queue of waiting
 vehicles. *)
 END;

 VAR
 crossRoad: CrossRoad;

ModelWorks 2.2 - Appendix (Sample Models)

A 233

 TYPE
 VehicleKind = (car, truck);

 CONST
 fstVK = MIN(VehicleKind); lstVK = MAX(VehicleKind);

 TYPE
 Vehicle = POINTER TO VehicleDescr;
 VehicleDescr = RECORD
 licensePlate: INTEGER;
 kind: VehicleKind;
 END;

 PROCEDURE RecognizeVehicle(): Vehicle;
 PROCEDURE ForgetVehicle(v: Vehicle);

 TYPE
 Traffic = RECORD
 vehicleNr: INTEGER;
 truckFrac: Parameter; (* fraction of trucks among vehicles *)
 muNrVeh: Parameter; (* Mean number of vehicles arriving at
 cross road per unit of time *)
 rhPeak: Parameter; (* Amplitude of diurnal fluctuation of
 muNrVeh relative to annual mean. If this
parameter is
 0, vehicles arrives at the cross road evenly
 distributed, i.e. without any rush hours. *)
 TmuSE: ARRAY [fstVK..lstVK] OF Parameter;
 (* Mean time required by a vehicle
 to starts its engine and to leave
 the cross road. *)
 END;

 VAR
 traffic: Traffic;

END CPObjects.

IMPLEMENTATION MODULE CPCrossRoad;

 (*
 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 AF 17/03/93 First implementation (MacMETH_V3.2)
 af 15/12/93 pictIDexhaust added
 dg 25/04/96 Cleaned up for PC compatibility

 *)

 FROM DMSystem IMPORT
 SuperScreen, MainScreen;
 FROM DMWindIO IMPORT
 DisplayPredefinedPicture, GetPredefinedPictureFrame,
 BackgroundWidth, LineTo, BackgroundHeight, EraseContent,
 SelectForOutput, Area, pat, GreyContent, SetPen, WriteString,
 WriteInt, CellHeight, CellWidth, SetWindowFont, WindowFont,
 FontStyle, Color, SetColor, DrawAndFillPoly;

ModelWorks 2.2 - Appendix (Sample Models)

A 234

 IMPORT DMWindIO;
 FROM DMWindows IMPORT
 RectArea, notExistingWindow, Window, WindowKind, ScrollBars,
 CloseAttr, ZoomAttr, WFFixPoint, WindowFrame, CreateWindow,
 GetWindowFrame, PutOnTop, WindowExists, RemoveWindow,
 AddWindowHandler, WindowHandlers;
 FROM DMMaster IMPORT PlayPredefinedMusic;

 FROM SimEvents IMPORT Transaction;
 FROM SimBase IMPORT MWWindowArrangement, SetDefltWindowArrangement;

 FROM Queues IMPORT FIFOQueueLength,
 DoForAllInFIFOQueue;
 FROM CPObjects IMPORT
 TrafficLight, VehicleKind, Vehicle, crossRoad;

 TYPE
 CrossRoadW = RECORD
 w: Window;
 wf: WindowFrame;
 pictTrLght: INTEGER;
 pictID: ARRAY [fstVK..lstVK] OF INTEGER;
 pictIDexhaust: INTEGER;
 tlr,bmr, groundr: RectArea;
 vr: ARRAY [fstVK..lstVK] OF RectArea;
 exhcr: RectArea;
 stopLn, vehicleW, vehicleH: INTEGER;
 END;

 VAR
 crW: CrossRoadW;
 doAnimate: BOOLEAN;
 supScr,spcw,spch: INTEGER;

 PROCEDURE EnableAnimation;
 BEGIN
 doAnimate := TRUE;
 END EnableAnimation;

 PROCEDURE DisableAnimation;
 BEGIN
 IF doAnimate THEN RemoveWindow(crW.w) END;
 doAnimate := FALSE;
 END DisableAnimation;

 PROCEDURE NoAnimation(): BOOLEAN;
 BEGIN
 IF NOT WindowExists(crW.w) THEN RETURN TRUE END;
 IF doAnimate THEN SelectForOutput(crW.w) (*important side effect!*) END;
 RETURN NOT doAnimate
 END NoAnimation;

 PROCEDURE RedrawCrossRoad(u: Window);
 VAR yy: INTEGER;
 BEGIN
 SelectForOutput(crW.w); (* needed to handle also DM-event redefined *)
 GetWindowFrame(crW.w,crW.wf);
 crW.tlr.x := crW.wf.w-crW.tlr.w; crW.tlr.y := (9*crW.wf.h DIV 10) -crW.tlr.h;
 yy := crW.tlr.y+crW.tlr.h; SetPen(0,yy); LineTo(crW.wf.w,yy);
 crW.bmr.x := 0; crW.bmr.y := crW.wf.h DIV 2;
 crW.bmr.w := crW.tlr.x+112; crW.bmr.h := crW.tlr.y+crW.tlr.h-28-crW.bmr.y;
 DisplayPredefinedPicture('',crW.pictTrLght,crW.tlr);
 crW.stopLn := crW.bmr.x + crW.bmr.w - crW.wf.w DIV 10;
 crW.groundr := crW.wf; crW.groundr.x := 0; crW.groundr.y := 0;
 crW.groundr.h := crW.groundr.h DIV 10;

ModelWorks 2.2 - Appendix (Sample Models)

A 235

 Area(crW.groundr,pat[grey]);
 AnimateTrafficLight(crossRoad.trafficLight);
 END RedrawCrossRoad;

 PROCEDURE ClearCrossRoad;
 BEGIN
 IF NoAnimation() THEN RETURN END;
 EraseContent;
 RedrawCrossRoad(crW.w);
 END ClearCrossRoad;

 PROCEDURE ShowCrossRoad;
 BEGIN
 IF doAnimate THEN (* force window creation or front positioning *)
 IF WindowExists(crW.w) THEN
 PutOnTop(crW.w);
 ELSE
 CreateWindow(crW.w, GrowOrShrinkOrDrag, WithoutScrollBars,
 WithCloseBox,WithZoomBox, bottomLeft, crW.wf,
 'Cross road', RedrawCrossRoad);
 SetWindowFont(Geneva,9,FontStyle);
 AddWindowHandler(crW.w,redefined,RedrawCrossRoad,0);
 END(*IF*);
 END(*IF*);
 END ShowCrossRoad;

 PROCEDURE AnimateTrafficLight(newTL: TrafficLight);
 PROCEDURE DisplayBeam(x0,y0,w,h,n: INTEGER; r: REAL; c: Color; cl: ARRAY OF CHAR);
 VAR i,k: INTEGER; x,y: ARRAY [0..3] OF INTEGER;
 we: ARRAY [0..3] OF BOOLEAN; ec: ARRAY [0..3] OF Color;
 BEGIN (*DisplayBeam*)
 FOR k:= 0 TO 3 DO we[k]:= FALSE; ec[k]:= c END;
 i := n;
 REPEAT
 x[0] := x0; y[0] := y0;
 x[1] := x0-w; y[1] := y0;
 x[2] := x[1]; y[2] := y0-TRUNC(FLOAT(h)*r);
 x[3] := x0; y[3] := y0-h;
 DEC(c.saturation,10);
 DrawAndFillPoly(4,x,y,we,ec,TRUE(*isFilled*),c,pat[(*VAL*)GreyContent(i)]);
 h := y0-y[2]; DEC(x0,w); DEC(i);
 UNTIL i=0;
 SetColor(c); SetPen(x0+(w DIV 4),y0-13); WriteString(cl); SetColor(DMWindIO.black);
 END DisplayBeam;
 PROCEDURE EraseBeams;
 BEGIN
 Area(crW.bmr,pat[light]);
 END EraseBeams;
 BEGIN
 IF NoAnimation() THEN RETURN END;
 IF newTL<>crossRoad.trafficLight THEN
 EraseBeams
 END(*IF*);
 IF newTL=red THEN
 DisplayBeam(crW.bmr.x+crW.bmr.w,crW.bmr.y+crW.bmr.h,
 64, 5,4, 1.5, DMWindIO.red, "red");
 ELSIF newTL=green THEN
 DisplayBeam(crW.bmr.x+crW.bmr.w,crW.bmr.y+crW.bmr.h-16,
 64, 5,4, 1.5, DMWindIO.green, "green");
 END(*IF*);
 END AnimateTrafficLight;

 PROCEDURE DrawVehicle(v: Vehicle; inRect: RectArea);
 BEGIN
 IF ODD(v^.licensePlate) THEN
 DisplayPredefinedPicture('',crW.pictID[v^.kind],inRect);

ModelWorks 2.2 - Appendix (Sample Models)

A 236

 ELSE
 DisplayPredefinedPicture('',crW.pictID[v^.kind]+1,inRect);
 END(*IF*);
 END DrawVehicle;

 PROCEDURE CalcVehiclePlace(v: Vehicle; nrInQ: INTEGER; VAR plc: RectArea);
 BEGIN
 plc := crW.vr[v^.kind];
 plc.x := crW.stopLn - nrInQ*crW.vehicleW
 + (crW.vehicleW-plc.w) DIV 2;
 plc.y := crW.groundr.y+crW.groundr.h;
 END CalcVehiclePlace;

 PROCEDURE CalcExhaustionPlace(plc: RectArea; VAR exh: RectArea);
 BEGIN
 exh := crW.exhcr;
 exh.x := plc.x-crW.exhcr.w; exh.y := plc.y+3;
 END CalcExhaustionPlace;

 PROCEDURE DrawHaltingVehicle(v: Vehicle; atPos: INTEGER);
 VAR plc, exh: RectArea;
 BEGIN
 CalcVehiclePlace(v,atPos,plc);
 DrawVehicle(v,plc);
 CalcExhaustionPlace(plc,exh);
 DisplayPredefinedPicture('',crW.pictIDexhaust,exh);
 SetPen(plc.x+plc.w DIV 2-CellWidth(),crW.groundr.y+crW.groundr.h-CellHeight());
 WriteInt(v^.licensePlate,2);
 END DrawHaltingVehicle;

 PROCEDURE EraseVehicle(plc: RectArea);
 BEGIN
 plc.h := crW.vehicleH;
 DEC(plc.x,crW.exhcr.w); INC(plc.w,crW.exhcr.w);
 Area(plc,pat[light]);
 (*.
 SetMode(invert);
 DisplayPredefinedPicture('',crW.pictID[v^.kind],plc);
 SetMode(replace);
 .*)
 DEC(plc.y,3*CellHeight() DIV 2); plc.h := crW.groundr.h-plc.y;
 Area(plc,pat[grey]);
 END EraseVehicle;

 VAR
 carPlace: INTEGER;

 PROCEDURE Shift1PlaceForward(ta: Transaction);
 VAR plcNew, plcOld: RectArea;
 BEGIN
 CalcVehiclePlace(ta,carPlace,plcNew);
 EraseVehicle(plcNew);
 INC(carPlace);
 CalcVehiclePlace(ta,carPlace,plcOld);
 EraseVehicle(plcOld);
 DrawHaltingVehicle(ta,carPlace-1);
 END Shift1PlaceForward;

 PROCEDURE AnimateLeavingVehicle(v: Vehicle);
 VAR plc,plcOld: RectArea; b: INTEGER;
 BEGIN
 IF NoAnimation() THEN RETURN END;
 CalcVehiclePlace(v,1,plc);
 b := 1;
 plcOld := plc;
 WHILE plc.x<crW.wf.w DO
 INC(plc.x,20+b);
 DrawVehicle(v,plc);

ModelWorks 2.2 - Appendix (Sample Models)

A 237

 IF plc.x>=(plcOld.x+plcOld.w) THEN
 EraseVehicle(plcOld);
 INC(plcOld.x,plcOld.w);
 END(*IF*);
 b := b*2;
 END(*WHILE*);
 IF plcOld.x<crW.wf.w THEN
 EraseVehicle(plcOld);
 END(*IF*);
 END AnimateLeavingVehicle;

 PROCEDURE AnimateQueueAdvancement;
 BEGIN
 IF NoAnimation() THEN RETURN END;
 carPlace := 1;
 DoForAllInFIFOQueue(crossRoad.fifoQ,Shift1PlaceForward);
 END AnimateQueueAdvancement;

 PROCEDURE AnimateArrivingVehicle(v: Vehicle);
 BEGIN
 IF NoAnimation() THEN RETURN END;
 DrawHaltingVehicle(v,FIFOQueueLength(crossRoad.fifoQ));
 END AnimateArrivingVehicle;

 PROCEDURE AnimatePassingVehicle(v: Vehicle);
 VAR plc: RectArea;
 BEGIN
 IF NoAnimation() THEN RETURN END;
 CalcVehiclePlace(v,1,plc);
 plc.x := 0;
 WHILE plc.x<crW.wf.w DO
 DrawVehicle(v,plc);
 EraseVehicle(plc);
 INC(plc.x,20);
 END(*WHILE*);
 END AnimatePassingVehicle;

BEGIN
 crW.w := notExistingWindow;
 crW.pictTrLght := 3132;
 crW.pictID[truck] := 3130; crW.pictID[car] := 3128;
 crW.pictIDexhaust := 3133;
 GetPredefinedPictureFrame('',crW.pictTrLght,crW.tlr);
 GetPredefinedPictureFrame('',crW.pictID[truck],crW.vr[truck]);
 GetPredefinedPictureFrame('',crW.pictID[car],crW.vr[car]);
 crW.vr[car].x := 0; crW.vr[car].y := 0;
 crW.vr[car].w := 70; crW.vr[car].h := 19;
 IF crW.vr[truck].w>crW.vr[car].w THEN
 crW.vehicleW := crW.vr[truck].w
 ELSE
 crW.vehicleW := crW.vr[car].w
 END;
 INC(crW.vehicleW,15);
 IF crW.vr[truck].h>crW.vr[car].h THEN
 crW.vehicleH := crW.vr[truck].h
 ELSE
 crW.vehicleH := crW.vr[car].h
 END;
 INC(crW.vehicleH,10);
 GetPredefinedPictureFrame('',crW.pictIDexhaust,crW.exhcr);
 SetDefltWindowArrangement(tiled);
 SuperScreen(supScr,crW.wf.x,crW.wf.y,spcw,spch,
 crW.wf.h(*dummy*),TRUE(*color priority*));
 crW.wf.h := 200;
 IF supScr=MainScreen() THEN
 crW.wf.w := BackgroundWidth()-8;
 crW.wf.x := (BackgroundWidth()-crW.wf.w) DIV 2;

ModelWorks 2.2 - Appendix (Sample Models)

A 238

 crW.wf.y := (BackgroundHeight()-crW.wf.h) DIV 2;
 ELSE
 crW.wf.w := 4*spcw DIV 5;
 crW.wf.x := crW.wf.x + (spcw-crW.wf.w) DIV 2;
 crW.wf.y := crW.wf.y + (spch-crW.wf.h) DIV 2;
 END(*IF*);
END CPCrossRoad.

IMPLEMENTATION MODULE CPObjects;

 (*
 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 AF 3/17/93 First implementation (MacMETH_V3.2)

 *)

 FROM DMStorage IMPORT Allocate, Deallocate;
 FROM DMSystem IMPORT CurrentDMLevel, InstallTermProc;
 FROM DMMessages IMPORT Warn, Abort;

 FROM Queues IMPORT CreateFIFOQueue;
 FROM RandGen IMPORT U;

 TYPE
 VehiclePtr = POINTER TO VehicleItem;
 VehicleItem = RECORD v: Vehicle; next,prev: VehiclePtr END;

 VAR
 vroot: VehiclePtr;
 installed: BOOLEAN; loadLev: CARDINAL;

 PROCEDURE RecognizeVehicle(): Vehicle;
 VAR vi: VehiclePtr; ok: BOOLEAN;
 BEGIN
 ok := FALSE;
 Allocate(vi, SIZE(VehicleItem));
 IF vi<>NIL THEN
 vi^.v := NIL;
 Allocate(vi^.v, SIZE(Vehicle));
 IF vi^.v<>NIL THEN
 ok := TRUE;
 INC(traffic.vehicleNr);
 vi^.v^.licensePlate := traffic.vehicleNr;
 IF U() <= traffic.truckFrac THEN
 vi^.v^.kind := truck;
 ELSE
 vi^.v^.kind := car;
 END(*IF*);
 END(*IF*);
 (* insert at begin *)
 vi^.next := vroot;
 vi^.prev := NIL;
 IF vroot<>NIL THEN vroot^.prev := vi END;
 vroot := vi;
 END(*IF*);
 IF ok THEN
 RETURN vi^.v
 ELSE
 Abort("Can't instantiate more vehicles - insufficient memory","","")

ModelWorks 2.2 - Appendix (Sample Models)

A 239

 END(*IF*);
 END RecognizeVehicle;

 PROCEDURE Find(v: Vehicle): VehiclePtr;
 VAR p: VehiclePtr;
 BEGIN
 p := vroot;
 WHILE (p<>NIL) AND (p^.v<>v) DO
 p := p^.next
 END(*WHILE*);
 IF (p<>NIL) AND (p^.v=v) THEN RETURN p ELSE RETURN NIL END;
 END Find;

 PROCEDURE Discard(vi: VehiclePtr); (* assumes vi exists *)
 BEGIN
 IF vi=vroot THEN
 vroot := vi^.next;
 vi^.prev := NIL;
 ELSE
 IF vi^.prev<>NIL THEN vi^.prev^.next := vi^.next END;
 IF vi^.next<>NIL THEN vi^.next^.prev := vi^.prev END;
 END(*IF*);
 Deallocate(vi^.v);
 Deallocate(vi);
 END Discard;

 PROCEDURE ForgetVehicle(v: Vehicle);
 VAR vi: VehiclePtr;
 BEGIN
 vi := Find(v);
 IF vi<>NIL THEN Discard(vi) ELSE Warn("Can't forget unknown vehicle","","") END;
 END ForgetVehicle;

 PROCEDURE ForgetAllVehicles;
 BEGIN
 IF CurrentDMLevel()=loadLev THEN
 WHILE vroot<>NIL DO Discard(vroot) END(*WHILE*);
 END(*IF*);
 END ForgetAllVehicles;

BEGIN
 crossRoad.trafficLight := red;
 CreateFIFOQueue(crossRoad.fifoQ,10 (*maxLength*));
 traffic.vehicleNr := 0;
 vroot := NIL; loadLev := CurrentDMLevel();
 InstallTermProc(ForgetAllVehicles,installed);
END CPObjects.

A.5.2.3 Adding Traffic’s Air Pollution - Pol lutants (DESS)

DEFINITION MODULE CPPollutants;

 (***

 Module CPPollutants (Version 1.0)

 Copyright (c) 1993 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Purpose Submodel for the dynamics of air pollutants

 Remarks This module is used by the ModelWorks research

ModelWorks 2.2 - Appendix (Sample Models)

A 240

 sample model CarPollution (CP).

 Programming

 o Design and Implementation
 A. Fischlin 15/12/93

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 15/12/93 AF

 ***)

 PROCEDURE ActivatePollutantsModel;
 PROCEDURE DeactivatePollutantsModel;
 PROCEDURE PollutantsModelIsActive(): BOOLEAN;

END CPPollutants.

IMPLEMENTATION MODULE CPPollutants;

 (*
 Implementation and Revisions:
 ============================

 Author Date Description
 ------ ---- -----------

 AF 15/12/93 First implementation (MacMETH_V3.2.1)

 *)

 FROM SimBase IMPORT
 Model, DeclM, MDeclared, RemoveM, notDeclaredModel,
 IntegrationMethod, DeclSV, StashFiling, Tabulation, Graphing,
 DeclMV, DeclP, RTCType, NoInitialize, NoInput, NoOutput,
 NoTerminate, NoAbout, SetSimTime, StateVar, Derivative,
 Parameter;

 FROM CPObjects IMPORT crossRoad;

 VAR
 pollM: Model;
 pollutants: StateVar; pollutantsDot: Derivative;
 emissionRate, decayRate: Parameter;

 PROCEDURE DiffEquations;
 BEGIN
 pollutantsDot := emissionRate*crossRoad.qLe - decayRate*pollutants;
 END DiffEquations;

 PROCEDURE PollutionModelObjects;

ModelWorks 2.2 - Appendix (Sample Models)

A 241

 BEGIN
 DeclSV(pollutants, pollutantsDot,0.0, 0.0, 10000.0,
 "Air pollutants (aggregated)", "pollutants", "mg/m^3");

 DeclMV(pollutants, 0.0,10.0,
 "Air pollutants (aggregated)", "pollutants", "mg/m^3",
 notOnFile, writeInTable, isY);

 DeclP(emissionRate, 0.1, 0.0, 10.0, rtc,
 "Relative emission rate of air pollutants", "emissionRate", "/vehicle/hour");
 DeclP(decayRate, 0.2, 0.0, 10.0, rtc,
 "Decay rate of air pollutants", "decayRate", "/hour");

 END PollutionModelObjects;

 PROCEDURE ActivatePollutantsModel;
 BEGIN
 IF NOT MDeclared(pollM) THEN
 DeclM(pollM, Euler, NoInitialize, NoInput, NoOutput, DiffEquations,
 NoTerminate, PollutionModelObjects, "Air pollution at a crossroad",
 "pollM", NoAbout);
 SetSimTime(0.0,30.0);
 END(*IF*);
 END ActivatePollutantsModel;

 PROCEDURE DeactivatePollutantsModel;
 BEGIN
 IF MDeclared(pollM) THEN RemoveM(pollM) END(*IF*);
 END DeactivatePollutantsModel;

 PROCEDURE PollutantsModelIsActive(): BOOLEAN;
 BEGIN
 RETURN MDeclared(pollM)
 END PollutantsModelIsActive;

BEGIN
 pollM := notDeclaredModel;
END CPPollutants.

A.5.2.4 Putting All Together

MODULE CPMaster;

 (*
 Module CPMaster

 Purpose: Demonstration of the combination of a DEVS (discrete event
 system) for traffic with a DESS (Differential equation system
 specification) for air pollutants.

 The model simulates the arrival, queue formation in case of
 a red traffic light, and leaving of vehicles at a crossroad (a
 DEVS). Moreover the model simulates also the accumulation
 resp. decay of hereby exhausted air pollutants (DESS). Traffic
 parameters determine the frequencies of trucks and cars, the
 time needed to restart an engine, the switching time of the
 traffic light etc. This allows to study the effect of crossroad
 policies and behavior recommendations for drivers. Pollutant
 parameters determine the production and fate of aggregated air
 pollutants in order to simulate scenarios of different
 regulations for vehicle emissions.

ModelWorks 2.2 - Appendix (Sample Models)

A 242

 Revision history:
 =================

 Author Date Description
 ------ ---- -----------
 AF 03/11/93 First implementation
 *)

 (* Imports from 'Dialog Machine' (DM) *)
 FROM DMMenus IMPORT Menu, Command, AccessStatus, Marking,
 InstallMenu, InstallCommand, InstallAliasChar;
 FROM DMEntryForms IMPORT FormFrame, WriteLabel,
 CheckBox, UseEntryForm;

 (* Imports from ModelWorks (Sim) *)
 FROM SimMaster IMPORT RunSimEnvironment;

 (* Imports from CPMaster modular model definition (CP) *)
 FROM CPTraffic IMPORT ActivateTrafficModel, DeactivateTrafficModel,
 TrafficModelIsActive;
 FROM CPPollutants IMPORT ActivatePollutantsModel, DeactivatePollutantsModel,
 PollutantsModelIsActive;

 VAR
 modM: Menu; modActCmd: Command;

 PROCEDURE Choose;
 CONST lm = 6; VAR bf: FormFrame; ok, carCB, pollCB: BOOLEAN; cl: INTEGER;
 BEGIN
 cl := 2; WriteLabel(cl,lm-1,"Check models to be activated:"); INC(cl);
 carCB := TrafficModelIsActive();
 pollCB := PollutantsModelIsActive();
 CheckBox(cl,lm,"Traffic sub model (DEVS)",carCB); INC(cl);
 CheckBox(cl,lm,"Pollutants sub model (DESS)",pollCB); INC(cl);
 bf.x:= 0; bf.y:= -1 (*display dialog window in middle of screen*);
 bf.lines:= cl+1; bf.columns:= 50;
 UseEntryForm(bf,ok);
 IF ok THEN
 IF carCB THEN ActivateTrafficModel ELSE DeactivateTrafficModel END;
 IF pollCB THEN ActivatePollutantsModel ELSE DeactivatePollutantsModel END;
 END(*IF*);
 END Choose;

 PROCEDURE InstallMenus;
 BEGIN
 ActivateTrafficModel; (* by default active *)
 ActivatePollutantsModel; (* by default active *)
 InstallMenu(modM,"Models", enabled);
 InstallCommand(modM, modActCmd,"Activation…", Choose, enabled, unchecked);
 InstallAliasChar(modM, modActCmd,"L");
 END InstallMenus;

BEGIN
 RunSimEnvironment(InstallMenus);
END CPMaster.

ModelWorks 2.2 - Appendix (Sample Models)

A 243

A.6 RESEARCH SAM PL E MODEL S

The following research sample models demonstrate the typical use of various aspects of
ModelWorks in research applications. However, these model definition programs list not the
full original source code, but a slightly streamlined one. This should make the underlying
principles more visible, than this would be the case for the original source code, somewhat
cluttering the essence. Yet all these programs are fully functional.

All these model definition programs use ModelWorks' standard user interface, some extend it
by installing additional menus, entry forms, and windows. Most demonstrate the use of
structured simulations or experiments and make use of either the "Dialog Machine",
ModelWorks' optional client interface, and auxiliary library modules.

A.6.1 Population Dynamics of Larch Bud Moth - LBM

The following program code contains a sample model demonstrating the use of ModelWorks in
a research project. This model definition program demonstrates also modular modeling, in
particular the use of a so-called parallel model in order to allow the simulationist to compare
simulation results with measured data, dynamic setting of curve attributes during simulation
runs, and dynamic activation respectively deactivation of models during a simulation session.

The model system is a structured system consisting of two submodels (Fig. A9).

LBM

LBMObsLBMMod

ModelWorks Dialog Machine
 - DMFiles

LBMObsUE.DAT

AuxLib

Fig. A9: Module structure of the research sample model.

The first submodel, module LBMMod, describes the ecological interaction of the host plant
larch Larix decidua MILLER with the herbivorous insect larch bud moth Zeiraphera diniana GN.
(Lep., Tortricidae) (FISCHLIN, 1982; BALTENSWEILER & FISCHLIN, 1988). The second
submodel, module LBMObs, is a parallel model formulated like any other ModelWorks model,
except that it dynamic part has only some output equations but no state variables nor dynamic
equations. It mimicks the real system by reading and outputting field data in function of time

ModelWorks 2.2 - Appendix (Sample Models)

A 244

(CELLIER & FISCHLIN, 1980; FISCHLIN, 1991). A master module, the program module LBM,
combines all modules to a model definition program (Fig. A9).

The next two listings show the definition and the implementation parts of the module LBMMod
containing the discrete time submodel describing the relationship between the host plant and the
insect:

DEFINITION MODULE LBMMod;

 (*

 Purpose Simulates Larch Bud Moth population dynamics for the
 Upper Engadine valley from 1949 till 1977. Model b:
 local dynamics: larch - larch bud moth interaction

 Reference Fischlin 1982, "Analyse eines Wald-Insekten Systemes:
 Der subalpine Lärchen-Arvenwald und der Graue
 Lärchenwickler Zeiraphera diniana Gn. (Lep.,
 Tortricidae)", Diss ETHZ No. 6977.

 Remark This program module contains the model which runs
 under the simulation environment ModelWorks V0.5

 Programming A.Fischlin, Systems Ecology, ETHZ, Dez. 1986

 *)

 FROM SimBase IMPORT AuxVar;

 VAR
 yt: AuxVar; (* output: simulated larval density for whole valley *)
 ytLn: AuxVar; (* output: ln of simulated larval density for whole valley *)

 PROCEDURE ActivateLarchLBMModel;
 PROCEDURE DeactivateLarchLBMModel;
 PROCEDURE LarchLBMModelIsActive(): BOOLEAN;

END LBMMod.

IMPLEMENTATION MODULE LBMMod;

 (*

 Revision history:
 =================

 Author Date Description
 ------ ---- -----------

 af Dez.86 First implementation
 af 12/05/90 ModelWorks 2.0 adaptation, now
 dynamic model activation and de-
 activation supported
 dg 05/12/91 Now imports from DMMathLib instead MathLib
 *)

 FROM DMMathLib IMPORT Exp, Ln;
 FROM SimMaster IMPORT RunSimEnvironment;

 FROM SimBase IMPORT Model, DeclM, MDeclared, RemoveM, notDeclaredModel,
 IntegrationMethod, DeclSV, StashFiling, Tabulation, Graphing,

ModelWorks 2.2 - Appendix (Sample Models)

A 245

 DeclMV, DeclP, RTCType, NoInput, NoTerminate, NoAbout,
 SetSimTime, SetMonInterval, SetDefltCurveAttrForMV, Stain,
 LineStyle, StateVar, NewState, Parameter, AuxVar;

 FROM LBMObs IMPORT negLogDelta, yLL, yUL, kmin, kmax (* time domain *);

 VAR
 m: Model;
 c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,nrt: Parameter;
 p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14: REAL;
 rt,et: StateVar;
 rt1,et1: NewState;
 def, springEggs: AuxVar;

 PROCEDURE Initialize;

 PROCEDURE Parameters;
 BEGIN
 p1:=c4;
 p2:=c5;
 p3:=-c2*c6*(1.0-c1);
 p4:=c6*(1.0-c1)*(1.0 -c3);
 p5:=c2*c7*c9*c10*(1.0-c1);
 p6:=c9*(1.0-c1)*(c2*c7*c11-c10*(c2*(1.0-c8)+c7*(1.0-c3)));
 p7:=c9*(1.0-c1)*(c10*(1.0-c3)*(1.0-c8)-c11*(c2*(1.0-c8)+c7*(1.0-c3)));
 p8:=c9*c11*(1.0-c1)*(1.0-c3)*(1.0-c8);
 p9:=c12;
 p10:=c13;
 p11:=c14;
 p12:=c15;
 p13:=c16;
 p14:=c6*c17*nrt;
 END Parameters;

 BEGIN (*Initialize*)
 Parameters;
 END Initialize;

 PROCEDURE Output;
 BEGIN
 yt:= (p3*rt+p4)*et/p14;
 ytLn:= Ln(negLogDelta+yt);
 springEggs:= (1.0 - c1) * et;
 END Output;

 PROCEDURE Dynamic;

 PROCEDURE gmstarv(x1,x2: REAL): REAL;
 BEGIN
 IF x2=0.0 THEN RETURN 0.0 END;
 IF x2>0.0 THEN RETURN Exp(-x1/x2) END;
 END gmstarv;

 PROCEDURE grecr(def,rt: REAL): REAL;
 CONST eps = 0.00001;
 VAR
 zrt: REAL;
 BEGIN (*grecr*)
 IF (def < p12) THEN
 IF (rt >= p9-eps) AND (rt <= p9) (* rt = p9 *) THEN
 RETURN 1.0
 ELSIF rt > p9 THEN
 zrt:= p10+ABS((p11-rt)/(rt-p9));

ModelWorks 2.2 - Appendix (Sample Models)

A 246

 IF zrt > rt-p9 THEN
 RETURN p9/rt
 ELSE (*zrt <= rt-p9*)
 RETURN 1.0-zrt/rt
 END(*IF*);
 ELSE
 (* " --- warning: rt < p9" *)
 HALT
 END(*IF*);
 ELSE (*def >= p12*)
 IF def < p13 THEN
 RETURN 1.0+(def-p12)*(p11-rt)/(p13-p12)/rt
 ELSIF (def > p12) (*AND (def >= p13)*) THEN
 RETURN p11/rt
 ELSE (*(def = p12) AND (def >= p13)*)
 HALT
 END(*IF*);
 END(*IF*);
 END grecr;

 BEGIN (*Dynamic*)
 def:= (1.0-gmstarv(p1*rt+p2,p3*rt*et+p4*et))*(p3*rt*et+p4*et)/(p1*rt+p2);
 rt1:=grecr(def,rt)*rt;
 et1:=(1.0-gmstarv(p1*rt+p2,p3*rt*et+p4*et))*
 (p5*rt*rt*rt+p6*rt*rt+p7*rt+p8)*et;
 END Dynamic;

 PROCEDURE ModelObjects;
 BEGIN
 DeclSV(rt, rt1, 15.0, 11.99, 18.5,
 "Raw fiber content (% fresh weight)", "rf", "%");
 DeclSV(et, et1, 4765975.0, 0.0, 1.0E12,
 "Larch bud moth eggs (individuals)", "eggs", "numbers");

 DeclMV(rt, 10.0, 20.0, "Raw fiber content (% fresh weight)", "rf",
 "%", notOnFile, writeInTable,notInGraph);
 SetDefltCurveAttrForMV (m, rt,sapphire,dashSpotted,"•");
 DeclMV(springEggs, 0.0, 1.0E12,"Larch bud moth eggs in spring (individuals)",
 "eggs", "lbm", notOnFile, notInTable, notInGraph);
 DeclMV(yt, yLL, yUL,"Larval density (larvae/kg branches)",
 "Y", "lbm/kg", notOnFile, writeInTable, notInGraph);
 SetDefltCurveAttrForMV (m, yt,ruby,unbroken,"*");
 DeclMV(ytLn, Ln(negLogDelta), Ln(negLogDelta+yUL),
 "Ln of larval density (larvae/kg branches)",
 "Ln(Y)", "lbm/kg", notOnFile, notInTable, isY);
 SetDefltCurveAttrForMV (m, ytLn,ruby,unbroken,"*");
 DeclMV(def, 0.0, 1.0,"Defoliation",
 "def", "", notOnFile, notInTable, notInGraph);
 SetDefltCurveAttrForMV (m, def,emerald,broken,0C);

 DeclP(nrt, 511147.0, 511147.0, 511147.0, noRtc,
 "nrt (number of trees)", "trees", "trees");
 DeclP(c1, 0.5728, 0.4841, 0.6538, noRtc,
 "c1 (egg winter mortality)", "c1", "lbm");
 DeclP(c2, 0.05112, 0.016, 0.087, noRtc,
 "c2 (slope of small larvae mortality vs. rf)", "c2", "/%");
 DeclP(c3, -0.17932, -0.565, 0.206, noRtc,
 "c3 (y-intercept of small larvae mortality vs. rf)", "c3", "");
 DeclP(c4, -2.25933*nrt, -2.4129*nrt, -2.1057*nrt, noRtc,
 "c4 (slope of needle biomass vs. rf)", "c4", "/%");
 DeclP(c5, 67.38939*nrt, 62.8076*nrt, 71.9712*nrt, noRtc,
 "c5 (y-intercept of needle biomass vs. rf)", "c5", "");
 DeclP(c6, 0.005472, 0.0027, 0.0106, noRtc,
 "c6 (food demand of a large larvae)", "c6", "kg/lbm");
 DeclP(c7, 0.124017, 0.1070, 0.1410, noRtc,
 "c7 (slope of large larvae mortality vs. rf)", "c7", "/%");
 DeclP(c8, -1.435284, -1.685, -1.1855, noRtc,

ModelWorks 2.2 - Appendix (Sample Models)

A 247

 "c8 (y-intercept of large larvae mortality vs. rf)", "c8", "");
 DeclP(c9, 0.44, 0.363, 0.517, noRtc,
 "c9 (sex ratio)", "c9", "");
 DeclP(c10, -18.475457, -24.7217, -12.2294, noRtc,
 "c10 (slope of fecundity vs. rf)", "c10", "lbm/%");
 DeclP(c11, 356.72636, 264.9847, 448.4680, noRtc,
 "c11 (y-intercept of fecundity vs. rf)", "c11", "lbm");
 DeclP(c12, 11.99, 11.79, 12.19, noRtc,
 "c12 (minimum rf)", "c12", "%");
 DeclP(c13, 0.425, 0.4, 0.5, noRtc,
 "c13 (minimum decrement of rf)", "c13", "%");
 DeclP(c14, 18.0, 17.5, 18.5, noRtc,
 "c14 (maximum rf)", "c14", "%");
 DeclP(c15, 0.4, 0.35, 0.6, noRtc,
 "c15 (defoliation threshold)", "c15", "");
 DeclP(c16, 0.8, 0.7, 1.0, noRtc,
 "c16 (defoliation threshold of maximum stress)", "c16", "");
 DeclP(c17, 91.3, 91.3, 91.3, noRtc,
 "c17 (branches per tree)", "c17", "kg");

 END ModelObjects;

 PROCEDURE ActivateLarchLBMModel;
 BEGIN
 IF NOT MDeclared(m) THEN
 DeclM(m, discreteTime, Initialize, NoInput, Output, Dynamic, NoTerminate,
ModelObjects,
 "Larch Bud Moth model b1 V3.0 (Larch-Larch bud moth relationship)",
 "LWMod3 b1", NoAbout);
 END(*IF*);
 END ActivateLarchLBMModel;

 PROCEDURE DeactivateLarchLBMModel;
 BEGIN
 IF MDeclared(m) THEN RemoveM(m) END(*IF*);
 END DeactivateLarchLBMModel;

 PROCEDURE LarchLBMModelIsActive(): BOOLEAN;
 BEGIN
 RETURN MDeclared(m)
 END LarchLBMModelIsActive;

BEGIN
 m := notDeclaredModel;
END LBMMod.

The module LBMObs provides a parallel submodel of the measured larval densities of the larch
bud moth (observations) made in the field while studying the larch bud moth system in the
Upper Engadine valley in Switzerland from 1949 till the presence (BALTENSWEILER &
FISCHLIN, 1988). This allows to compare the observations with simulated values. At the be-
gin of the simulation session this parallel model simply reads the observations stored in the data
file into an array and will assign the measured values during any simulations to a monitoring
variable, which the simulationist can display from within the simulation environment.

In case the simulationist should set the global simulation time such that it lies outside the range
1949 and 1988, the values produced by this module are no longer valid. The module has been
programmed such that it visualizes missing values in the graph by letting portions of the
curve(s) disappear. This is accomplished by setting the curve attribute to invisble as soon as
values have become undefined, yet the legend is drawn with the attributes normally used if val-
ues are available.

ModelWorks 2.2 - Appendix (Sample Models)

A 248

The next three listings show the definition and the implementation parts of the module LBMObs
which reads the data from the text file LBMObsUE.DAT:

DEFINITION MODULE LBMObs;

 (*
 Module LBMObs

 Purpose Simulates the real larch bud moth system in the
 Upper Engadine Valley as a parallel model.

 Method Observed larval densities in larvae/kg larch
 branches as sampled from the Upper Engadine Valley
 are simulated by means of a ModelWorks submodel.
 Data from Fischlin, A. 1982. Analyse
 eines Wald-Insekten-Systems: Der subalpine
 Lärchen-Arvenwald und der graue Lärchenwickler
 Zeiraphera diniana Gn. (Lep., Tortricidae).
 Diss. ETH Nr. 6977. Swiss Federal Institute of
 Technology Zürich, Switzerland, 294pp, page 90,
 Table 10 and from Baltensweiler, W. and Fischlin, A.
 1987, The larch bud moth in the European Alps, In
 Berryman, A.A. (ed.), Population Dynamics of Forest-
 Insect Systems, Plenum Press, in print.

 Remark The data are read from a file only once at model
 declaration and are loaded into memory for subsequent
 usage.
 This program module contains the model which runs
 under the simulation environment ModelWorks V0.5

 Programming A.Fischlin, Systems Ecology, ETHZ, 01/05/87

 *)

 CONST
 kmin = 1949; (*first year sampled*)
 kmax = 1986; (*last year sampled*)
 limkmax = 1977; (* beyond limkmax yminDash, ymaxDash no longer available *)
 yLL = 0.0; (*minimum used on graph scale for larval densities *)
 yUL = 600.0; (*maximum used on graph scale for larval densities *)
 negLogDelta = 0.01; (*offset used to plot log scale if values <= 0*)

 (* The following variables may be freely used in another submodel,
 typically to compare simulation results of a simulation model
 with the observed values *)

 VAR
 yminDash: REAL; (* minimum annual value found in anyone site *)
 ymeanDash: REAL; (* average annual value for whole valley *)
 ymaxDash: REAL; (* maximum annual value found in anyone site *)
 yminDashLn: REAL; (* ln of minimum annual value found in anyone site *)
 ymeanDashLn: REAL; (* ln of average annual value for whole valley *)
 ymaxDashLn: REAL; (* ln of maximum annual value found in anyone site *)

 PROCEDURE ActivateLBMObsModel;
 PROCEDURE DeactivateLBMObsModel;
 PROCEDURE LBMObsModelIsActive(): BOOLEAN;

END LBMObs.

ModelWorks 2.2 - Appendix (Sample Models)

A 249

IMPLEMENTATION MODULE LBMObs;

 (*

 Revision history:
 =================

 Author Date Description
 ------ ---- -----------

 af 01/05/87 First implementation
 af 12/05/90 - ModelWorks 2.0 adaptation, now
 dynamic model activation and de-
 activation supported
 - Curve attributes set, in particular
 if no observations available
 lineStyle is set to invisible
 dg 05/12/91 Now imports from DMMathLib instead MathLib
 dg 06/03/93 Import lists cleaned up
 af 06/04/93 Prepared for ModelWorks 2.2 release
 *)

 FROM DMFiles IMPORT
 Response, TextFile, Lookup, Reset, Close, EOF, EOL, ReadChars,
 SkipGap, ReadChar, GetCardinal, legalNum, GetExistingFile;
 FROM DMMessages IMPORT Inform, Warn;
 FROM DMStrings IMPORT Concatenate;
 FROM DMConversions IMPORT CardToString, StringToReal, UndefREAL,
 IsUndefREAL;

 FROM DMMathLib IMPORT Ln;

 FROM SimBase IMPORT
 Model, DeclM, IntegrationMethod, DeclSV, DeclMV, MDeclared,
 notDeclaredModel, RemoveM, StashFiling, Tabulation, Graphing,
 SetSimTime, SetMonInterval, NoInitialize,
 NoInput, NoOutput, NoDynamic, NoTerminate, NoAbout,
 SetDefltCurveAttrForMV, Stain, LineStyle;

 FROM SimMaster IMPORT CurrentTime, InstallDefSimEnv;

 VAR
 (*storage for observations*)
 yminD, ymeanD, ymaxD: ARRAY [kmin..kmax] OF REAL;

 obsMod: Model;

 PROCEDURE InitData;
 VAR f: TextFile; r: Response; year,k: CARDINAL; ch: CHAR;
 PROCEDURE TestEOF;
 BEGIN
 IF EOF(f) THEN Warn("Not enough data in observation file","","") END;
 END TestEOF;
 PROCEDURE ReadReal(VAR f: TextFile; VAR r: REAL);
 VAR numStr: ARRAY [0..31] OF CHAR;
 BEGIN (*ReadReal*)
 SkipGap(f); ReadChars(f,numStr);
 IF (CAP(numStr[0])='N') AND (numStr[1]=0C) THEN
 r := UndefREAL(); legalNum := TRUE;
 ELSE
 StringToReal(numStr,r,legalNum);
 END(*IF*);

ModelWorks 2.2 - Appendix (Sample Models)

A 250

 END ReadReal;
 PROCEDURE CheckNum(k: CARDINAL; curVar: ARRAY OF CHAR);
 VAR msg1,msg2: ARRAY [0..127] OF CHAR; numStr: ARRAY [0..3] OF CHAR;
 BEGIN (*CheckNum*)
 IF NOT legalNum OR (k<>year) THEN
 CardToString(k,numStr,0);
 Concatenate("Illegal number encountered: year = ",numStr,msg1);
 Concatenate("while attempting to read ",curVar,msg2);
 Warn(msg1,msg2,"");
 END(*IF*);
 END CheckNum;
 BEGIN (*InitData*)
 f.filename := "LBMObsUE.DAT";
 Lookup(f,f.filename,FALSE);
 IF f.res<>done THEN
 Inform("Couldn't open file 'LBMObsUE.DAT' containing observations", "","");
 GetExistingFile(f,"Please locate 'LBMObsUE.DAT' with observations");
 END(*IF*);
 IF f.res=done THEN
 ReadChar(f,ch);
 WHILE ch<>EOL DO ReadChar(f,ch) END;
 FOR k:= kmin TO kmax DO
 TestEOF; GetCardinal(f,year); CheckNum(k,"year");
 TestEOF; ReadReal(f,ymeanD[k]); CheckNum(k,"Ymean'");
 TestEOF; ReadReal(f,yminD[k]); CheckNum(k,"Ymin'");
 TestEOF; ReadReal(f,ymaxD[k]); CheckNum(k,"Ymax'");
 END(*FOR*);
 Close(f);
 ELSE
 FOR k:= kmin TO kmax DO
 ymeanD[k] := UndefREAL();
 yminD[k] := UndefREAL();
 ymaxD[k] := UndefREAL();
 END(*FOR*);
 END(*IF*);
 END InitData;

 PROCEDURE Output;
 VAR k: INTEGER;
 BEGIN
 k:= TRUNC(CurrentTime()+0.1)(*ensures correct rounding*);
 IF (k>=kmin) AND (k<=kmax) THEN
 ymeanDash := ymeanD[k];
 IF NOT IsUndefREAL(ymeanDash) THEN ymeanDashLn := Ln(negLogDelta+ymeanDash) END;
 ELSE
 ymeanDash:= UndefREAL();
 ymeanDashLn:= UndefREAL();
 END(*IF*);
 IF (k>=kmin) AND (k<=limkmax) THEN
 yminDash := yminD[k];
 ymaxDash := ymaxD[k];
 IF NOT IsUndefREAL(yminDash) THEN yminDashLn := Ln(negLogDelta+yminDash) END;
 IF NOT IsUndefREAL(ymaxDash) THEN ymaxDashLn := Ln(negLogDelta+ymaxDash) END;
 ELSE
 yminDash:= UndefREAL();
 ymaxDash:= UndefREAL();
 yminDashLn:= UndefREAL();
 ymaxDashLn:= UndefREAL();
 END(*IF*);
 END Output;

 PROCEDURE ModelObjects;
 BEGIN
 DeclMV(yminDash, yLL, yUL,
 "Minimum larval density per site", "Ymin'",
 "larvae/kg branches",

ModelWorks 2.2 - Appendix (Sample Models)

A 251

 notOnFile, notInTable, notInGraph);
 SetDefltCurveAttrForMV (obsMod, yminDash,turquoise,spotted,0C);
 DeclMV(ymeanDash, yLL, yUL,
 "Average larval density in valley", "Y'",
 "larvae/kg branches",
 notOnFile, writeInTable, notInGraph);
 SetDefltCurveAttrForMV (obsMod, ymeanDash,turquoise,unbroken,0C);
 DeclMV(ymaxDash, yLL, yUL,
 "Maximum larval density per site", "Ymax'",
 "larvae/kg branches",
 notOnFile, notInTable, notInGraph);
 SetDefltCurveAttrForMV (obsMod, ymaxDash,turquoise,spotted,0C);
 DeclMV(yminDashLn, Ln(negLogDelta), Ln(yUL),
 "Ln of minimum larval density per site", "Ln(Ymin')",
 "larvae/kg branches",
 notOnFile, notInTable, notInGraph);
 SetDefltCurveAttrForMV (obsMod, yminDashLn,turquoise,spotted,0C);
 DeclMV(ymeanDashLn, Ln(negLogDelta), Ln(yUL),
 "Ln of average larval density in valley", "Ln(Y')",
 "larvae/kg branches",
 notOnFile, notInTable, isY);
 SetDefltCurveAttrForMV (obsMod, ymeanDashLn,turquoise,unbroken,0C);
 DeclMV(ymaxDashLn, Ln(negLogDelta), Ln(yUL),
 "Ln of maximum larval density per site", "Ln(Ymax')",
 "larvae/kg branches",
 notOnFile, notInTable, notInGraph);
 SetDefltCurveAttrForMV (obsMod, ymaxDashLn,turquoise,spotted,0C);
 END ModelObjects;

 PROCEDURE ActivateLBMObsModel;
 BEGIN
 IF NOT MDeclared(obsMod) THEN
 DeclM(obsMod, discreteTime,
 NoInitialize, NoInput, Output, NoDynamic, NoTerminate, ModelObjects,
 "Observations from the Upper Engadine Valley", "Obs UE",
 NoAbout);
 InstallDefSimEnv(InitData);
 END(*IF*);
 END ActivateLBMObsModel;

 PROCEDURE DeactivateLBMObsModel;
 BEGIN
 IF MDeclared(obsMod) THEN RemoveM(obsMod) END(*IF*);
 END DeactivateLBMObsModel;

 PROCEDURE LBMObsModelIsActive (): BOOLEAN;
 BEGIN
 RETURN MDeclared(obsMod)
 END LBMObsModelIsActive;

BEGIN
 obsMod := notDeclaredModel;
END LBMObs.

Excerpt (middle portion missing) from data file LBMObsUE.DAT accessed by module
LBMObs:

Year y' y'MIN y'MAX
1949 0.018 0.006 0.041

ModelWorks 2.2 - Appendix (Sample Models)

A 252

1950 0.082 0.006 0.232
1951 0.444 0.001 1.266
1952 4.174 0.191 10.464
1953 68.797 16.667 128.490
1954 331.760 163.340 933.524
1955 126.541 25.048 317.868
1956 21.280 9.888 41.974
1957 2.246 1.330 4.538
1958 0.085 0.000 0.359
…
…
…
1985 0.120 N N
1986 0.690 N N
1987 2.279 0.445 4.866
1988 39.029 4.149 88.146

Legend
y' mean observed larval density
y'MIN minimum observed larval density
y'MAX maximum observed larval density

The following module is the main program module LBM. Its sole purpose is to start the simu-
lation environment (procedure RunSimEnvironment) and to install a menu (procedure
InstallMenus) which gives access to the actual models. The latter menu contains a command
which asks the simulationist which submodel(s) she wishes to load (activate) or to remove (de-
activate) (procedure Choose). The master module imports from the modules LBMMod
(population model) and LBMObs (exports the parallel observation model) the procedures
ActivateLarchLBMModel and DeactivateLarchLBMModel resp. ActivateLBMObsModel and
DeactivateLBMObsModel. These procedures will declare or remove the desired models, thus
allowing the simulationist to drop or load a model anytime during the simulation session.

MODULE LBM; (* af 1/5/87; 12/5/90 *)

 (*
 Module LBM (Larch Bud Moth)

 Purpose master module modelling the larch bud moth system
 by means of ModelWorks V0.3 simulating the system
 behavior for the Upper Engadine Valley

 References Fischlin, A. 1982. Analyse eines Wald-Insekten-
 Systems: Der subalpine Laerchen-Arvenwald und der
 graue Laerchenwickler Zeiraphera diniana Gn. (Lep.,
 Tortricidae). Diss. ETH Nr 6977. Swiss Federal
 Institute of Technology Zuerich, Switzerland, 294pp.
 *)

 (* Imports from ModelWorks (Sim) *)
 FROM SimBase IMPORT SetDefltGlobSimPars, MWWindowArrangement;
 FROM SimMaster IMPORT RunSimEnvironment;
 FROM SimGraphUtils IMPORT PlaceGraphOnSuperScreen;
 FROM StructModAux IMPORT InstallCustomMenu, SetSimEnv, AssignSubModel,
 InstallMyGlobPreferences;

 (* Imports from Larch Bud Moth modular model definition (LBM) *)
 FROM LBMObs IMPORT ActivateLBMObsModel, DeactivateLBMObsModel,
 LBMObsModelIsActive, kmin, kmax;
 FROM LBMMod IMPORT ActivateLarchLBMModel, DeactivateLarchLBMModel,
 LarchLBMModelIsActive;

 VAR
 obs, larchLBM: INTEGER;

ModelWorks 2.2 - Appendix (Sample Models)

A 253

 PROCEDURE InitSimEnv;
 BEGIN
 InstallCustomMenu("Models","Activation…","L");
 SetSimEnv(obs);
 END InitSimEnv;

 PROCEDURE SetMyGlobPreferences;
 CONST dummy = 0.1;
 BEGIN
 SetDefltGlobSimPars(FLOAT(kmin), FLOAT(kmax), dummy, dummy, 1.0, 1.0);
 PlaceGraphOnSuperScreen(tiled);
 END SetMyGlobPreferences;

BEGIN
 InstallMyGlobPreferences(SetMyGlobPreferences);
 AssignSubModel(obs,"Observations - Parallel Model Upper Engadine",
 ActivateLBMObsModel, DeactivateLBMObsModel, LBMObsModelIsActive);
 AssignSubModel(larchLBM,"Larch - Larch Bud Moth Model (b1)",
 ActivateLarchLBMModel, DeactivateLarchLBMModel, LarchLBMModelIsActive);
 RunSimEnvironment(InitSimEnv);
END LBM.

ModelWorks 2.2 - Appendix (Sample Models)

A 254

A.6.2 Discrete Event Harvesting In a Continuously Growing Forest - ForestYield

Forests can fix or release previously fixed carbon, hereby affecting the CO2-concentration of
the atmosphere. Forest growth, e.g. in form of aforestations, is the essential process, which is
potentially able to fix additional carbon. It is more or less proportional to the carbon fixing
capability of a forest. Growth of tree biomass Q can be roughly modeled by the pattern of
logistic growth (PEARL, 1927), i.e. growth is the slower the less biomass is already present,
reaches then a maximum while biomass accumulates, and slows down again in a mature forest
(FISCHLIN & BUGMANN, 1993; 1994). In order to account for various growth patterns
(FISCHLIN & BUGMANN, 1993; 1994), the model parameters r and K can be adjusted according
to the studied type of forest j. Given these assumptions the following continuous time model
equations result:

dQj(t)

dt
 = rj·

(Kj – Qj(t))
Kj

 · Qj(t) (1)

where

j Type of forest, e.g. "Beech forest", "Montane spruce", or "Subalpine spruce"
Qj Dry Weight [DW] of above ground biomass (includes wood) [t DW/ha]
rj Maximum relative growth rate [/a]
Kj Carrying capacity [t DW/ha]

In addition to growth, the model has to simulate harvesting and the fate of the carbon
transported out of the forest in form of wood and transferred into long-lived forest products.

A simple model of conventional harvesting as currently practiced in Switzerland is in form of
discrete events: In reality forests are cut in steps, hence harvesting can be modelled as a row of
3 cuts with e.g. 8 years in between, initiated as soon as Qj amounts to 90% of Kj. For each
type of forest the harvest Hj can be modeled as a sequence of three state events occuring at the
cutting times t- = th, th+8, and th+16, where hi = 30, 50 respectively 70% of the current Qj is
cut, i.e. removed out of the forest:

Hj(t-) = { hi · Qj(t-)

0

t- = th + i·8 i = 0,1,2

else

(2)

th = t | Qj(t) = 0.9·Kj h0 = 0.3 h1 = 0.5 h2 = 0.7 (a)

Qj(t) = Qj(t-) – Hj(t-) (3)

where

Hj Harvested biomass [t DW/ha·a]
hi Fraction of harvested wood in percentages of currently present biomass Qj
th Harvesting time or time of first cut in a sequence of 3 cuts

t- Continuous left-hand side of time before and up to the discrete event harvest

Alternatively a maximum sustainable yield (MSY) can be obtained if forest biomass Qj is
around Qj* , i.e. a biomass which maximizes dQj(t)/dt. This is the case if Qj* = Kj/2 and if
havesting occurs continuously. However, in practice a truly continuous harvesting is not
feasible, hence, a MSY harvesting scheme can be modeled approximately as follows:
Whenever Qj exceeds Kj/2 + εj a biomass of 2·εj is harvested:

ModelWorks 2.2 - Appendix (Sample Models)

A 255

Hj(t-) = { 2·εj

0

t- = th

t- ≠ th

(2')

th = t | Qj(t) = 0.5·Kj + εj (a')

Both types of harvesting transfer a certain fraction µ, e.g. 40% (HARMON et al., 1990), of the
harvested biomass Hj to endurable wood products Pj:

Pj(t) = Pj(t-) + µ·Hj(t-) (4)

where

Pj Biomass in endurable wood products [t DW/ha]
µ Fraction of harvested biomass ending up in endurable wood products

Finally, the decay of the endurable wood products and the associated release of CO2 to the
atmosphere may be modeled as follows:

dPj(t)

dt
 = - dj·Pj(t) (5)

where

dj Relative decay rate [/a]

The following table lists all needed model parameters and the model can be solved by using
small initial values for the biomass, e.g. Qj(0) = 5 t/ha.

Parameter Unit j = Beech forest j = Montane spruce
forest

j = Subalpine
spruce forest

rj a-1 0.04 0.05 0.05

Kj t DW/ha 550 600 170

dj a-1 0.025 0.037 0.037

εj t DW/ha 40 80 25

Eq. (1) and (5) are differential equations and form a DESS, called biomass, which describes
growth and decay of biomass pools. Eq. (2) respectively (2'), (3), and (4) correspond to
instantaneous state transition functions and define the dynamics of a discrete event system
(DEVS), called harvest, since it describes the discrete harvest. What results represents a
structured, continuous time system coupling a DESS with a DEVS.

There are two state variables, Qj and Pj, both belonging to the DESS submodel; Hj is just an
auxiliary variable of the DEVS. However, the state variables Qj and Pj are also affected by the
dynamics of the DEVS (see Eq. 3 and 4). One solution to model the system is the following:

As a consequence of the state event occuring at condition (a) respectively (a') and at time th=t,
the event output function gθ of the DESS biomass produces an event output ϑ on behalf of the
DEVS harvest (see chapter Theory Eq. 4.2b). Such an event output is of class ν = h0, its τ =
0, and it will pass as the transaction α the DESS' state vector [Qj,Pj]'. The corresponding
event input of the DEVS harvest will cause the calculation of the auxiliary variable Hj and
according to Eq. (3) and (4) also a change in the state of the DESS, i.e. the first cut of a
harvesting sequence. Furthermore, in the case of a conventional harvesting scheme, the event

ModelWorks 2.2 - Appendix (Sample Models)

A 256

of class h0 schedules immediately the subsequent second cut (event of class ν = h1). Finally,
the event of class ν = h1 schedules the third cut (event of class ν = h2). In order to allow for
the proper state changes, all events of class h0 to h2 pass the received transaction, i.e. the state
vector [Qj,Pj]', on to the subsequent event, i.e. while scheduling harvesting events they use
this vector as the transaction α.

The following model definition program ForestYield implements the described model and
allows to experiment with all three forest types (beech, montane and subalpine spruce) and with
various management or silvycultural practices such as (no harvesting at all, clear cutting, and
plenter management).

MODULE ForestYield;

 (**

 MODEL: ForestYield

 Purpose: Simulation of silvicultural management
 strategies for Swiss forestry under the perspective
 of C-sequestration in order to contribute to
 curbing climatic change. The model definition
 program allows to explore strategies of maximum
 sustainable yield vs. conventional management in
 relation with the management of the carbon fluxes
 and pools, in particular the storing of carbon in
 form of endurable wood products. For more details
 see the listed references.

 References

 Fischlin, A. & Bugmann, H., 1993. Think globally, act
 locally! A small country case study in reducing
 net CO2 emissions by carbon fixation policies. In:
 Kanninen, M. (ed.), Carbon balance of the world's
 forested ecosystems: Towards a global assessment.
 Publications of the Academy of Finland, VAPK
 Publishing, Helsinki: in print.

 Fischlin, A. & Bugmann, H.K., 1994. Können forstliche
 Massnahmen einen Beitrag zur Verminderung der
 schweizerischen CO2-Emissionen leisten? Ökologische
 Grundlagen und erste Abschätzungen. Schweiz. Z.
 Forstw., 145(4): 275-292.

 Authors: A. Fischlin & H. Bugmann, 21.Nov.93,
 Systems Ecology, ETHZ

 **)

 FROM DMStrings IMPORT Concatenate, Append, AppendCh, AssignString;
 FROM DMStorage IMPORT Allocate, Deallocate;
 FROM DMConversions IMPORT IntToString, UndefREAL, IsUndefREAL,
 RealToString, RealFormat;
 FROM DMMessages IMPORT Ask;
 FROM DMMenus IMPORT InstallMenu, InstallCommand, Menu, Command,
 CheckCommand, UncheckCommand, IsCommandChecked, AccessStatus, Marking,
 InstallSeparator, Separator;
 FROM DMMaster IMPORT DialogMachineTask;

 FROM SimBase IMPORT
 Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
 StashFiling, Tabulation, Graphing, DeclMV, SelectM,
 SetP, GetP, SetProjDescrs, RemoveM, MDeclared, RemoveP, PDeclared,
 SetSimTime, SetIntegrationStep, SetMonInterval,
 GetDefltGlobSimPars, Message, MWWindowArrangement,
 NoInitialize, NoInput, NoOutput, NoTerminate, NoAbout, DoNothing,

ModelWorks 2.2 - Appendix (Sample Models)

A 257

 StateVar, Derivative, Parameter, AuxVar,
 MWWindow, GetWindowPlace, SetWindowPlace, ClearTable;

 FROM SimEvents IMPORT
 EventClass, nilTransaction, Transaction, StateTransition,
 AsTransaction, noStateTransition, InitEventScheduler,
 SchedulingOnlyAfter, ScheduleEvent, PendingEvents, NextEventAt,
 DiscardEventsBefore, DiscardEventsAfter, never, DeclDEVM;

 FROM SimMaster IMPORT
 RunSimEnvironment, CurrentTime, InstallExperiment, SimRun,
 PauseRun, MWSubState, GetMWSubState;

 FROM SimGraphUtils IMPORT PlaceGraphOnSuperScreen;

 FROM StateEvents IMPORT
 ExpectStateEvt, StateEvt, IsStateEvt, unexpectedStateEvt,
 StateEvtExpected, IgnoreStateEvt;

 (**)
 (* Data - parameters and structures of submodels: *)
 (**)

 TYPE
 Alfa = ARRAY [0..31] OF CHAR;

 (* Forest *)
 (* ====== *)

 TYPE
 ForestType = (Beech, MontaneSpruce, SubalpineSpruce);

 Forest = RECORD
 m: Model; (* forest model *)
 j: ForestType; (* type of forest *)
 name,ident: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Alfa;
 Qj: StateVar; (* dry weight of above-ground biomass in forest *)
 QjDot: Derivative;
 rj: Parameter; (* maximum relative growth rate *)
 r: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Parameter;
 Kj: Parameter; (* carrying capacity of forest *)
 K: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Parameter;
 END(*RECORD*);

 (* Woodsector *)
 (* ========== *)

 TYPE
 WoodSector = RECORD
 m: Model; (* wood sector model *)
 Pj: StateVar; (* dry weight of endurable forest products *)
 PjDot: Derivative;
 mu: Parameter; (* fraction of wood harvest ending in endurable forest
products *)
 dj: Parameter; (* relative decay rate of endurable forest products *)
 d: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Parameter;
 END(*RECORD*);

 (* Harvest *)
 (* ======= *)

 CONST

ModelWorks 2.2 - Appendix (Sample Models)

A 258

 clearCutting = 1; (* EventClasses have to be globally unique *)
 plenterHarvesting = 2;
 fstSubCut = 0;
 lastSubCut = 2;

 TYPE
 HarvestType = (unused, clearCut, plenter);
 Harvest = RECORD
 m: Model; (* harvesting model *)
 hT: HarvestType; (* type of harvesting *)
 name,ident: ARRAY [MIN(HarvestType)..MAX(HarvestType)] OF Alfa;
 thetaClrCut: Parameter; (* Clear cut threshold (fraction of Qj) at which
harvest takes place *)
 thetaPlent: Parameter; (* Plenter threshold (fraction of Qj) at which harvest
takes place *)
 epsj: Parameter; (* fraction of harvested wood as well as
 tolerance for exceeding thetaPlent before plenter
harvesting *)
 eps: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Parameter;
 i: [fstSubCut..lastSubCut]; (* index of sub cut while clear cutting *)
 h: ARRAY [fstSubCut..lastSubCut] OF Parameter;
 (* fraction of harvested wood in % of Qj *)
 interval: Parameter; (* years between subsequent sub cuts while clear
cutting *)
 hEvt: StateEvt; (* state event harvesting *)
 Hj: AuxVar; (* harvested biomass *)
 END(*RECORD*);

 (* Observer *)
 (* ======== *)

 TYPE
 Observer = RECORD
 m: Model;
 accCPool: StateVar; (* total carbon fixed pooled over time, needed to compute
avgTotCFixed *)
 accCPoolDot: Derivative;
 totCFixed: AuxVar; (* total carbon fixed in forest and endurable forest products
*)
 avgTotCFixed: AuxVar; (* average over time of total carbon fixed (totCFixed) *)
 cDWRatio: Parameter; (* ratio of C to dry weight *)
 thetaDash: Parameter; (* fraction of Kj, as soon as reached by Qj, causing to
 start assessing the average total carbon pool (see
 procedure StartCPoolAssessment), or in other words
 to ignore the transient behavior of the system
 before that moment *)
 begAccCEvt: StateEvt; (* state event start of C-pool assessment *)
 startCPoolAssessTime: REAL; (* time when the C-pool assessment started *)
 END(*RECORD*);

 (* Forestry *)
 (* ======== *)

 TYPE
 Forestry = RECORD
 forest: Forest;
 harvest: Harvest;
 woodSector: WoodSector;
 observer: Observer;
 END;
 VAR
 f: Forestry;

ModelWorks 2.2 - Appendix (Sample Models)

A 259

 (*************)
 (* Submodels *)
 (*************)

 (* Forest *)
 (* ====== *)

 PROCEDURE ForestInitialize;
 BEGIN
 WITH f.forest DO
 GetP (m, r[j], rj);
 GetP (m, K[j], Kj);
 END(*WITH*);
 END ForestInitialize;

 PROCEDURE ForestDynamic;
 BEGIN
 WITH f.forest DO
 QjDot := rj*(Kj - Qj)/Kj*Qj; (* Eq. (1) *)
 END(*WITH*);
 END ForestDynamic;

 PROCEDURE ForestOutput;
 BEGIN
 WITH f.forest DO WITH f.harvest DO
 IF (hT=clearCut) AND IsStateEvt(hEvt,Qj) THEN
 i := fstSubCut;
 ScheduleEvent(clearCutting,0.0,AsTransaction(f));
 ELSIF (hT=plenter) AND IsStateEvt(hEvt,Qj) THEN
 ScheduleEvent(plenterHarvesting,0.0,AsTransaction(f));
 END(*IF*);
 END(*WITH*) END(*WITH*);
 END ForestOutput;

 (* Harvest *)
 (* ======= *)

 PROCEDURE HarvestInitialize;
� BEGIN
 WITH f.forest DO WITH f.harvest DO
 IF (hT=clearCut) THEN
 ExpectStateEvt(hEvt,Qj,thetaClrCut*Kj,MAX(REAL));
 ELSIF (hT=plenter) THEN
 ExpectStateEvt(hEvt,Qj,thetaPlent*Kj+epsj,MAX(REAL));
 END(*IF*);
 IF (hT=plenter) THEN GetP (f.harvest.m, eps[j], epsj) END;
 END(*WITH*) END(*WITH*);
 END HarvestInitialize;

 PROCEDURE ClearCutEvent(alfa: Transaction);
 TYPE ForestryAsTransaction = POINTER TO Forestry;
 VAR msg: ARRAY [0..127] OF CHAR; f: ForestryAsTransaction;
 BEGIN
 f := alfa;
 WITH f^ DO
 msg :="Clear cut: sub cut "; AppendCh(msg,CHR(ORD('0')+harvest.i));
 Message(msg);
 harvest.Hj := harvest.h[harvest.i]*forest.Qj; (* Eq. (2) *)
 IF harvest.i<lastSubCut THEN
 INC(harvest.i);
 ScheduleEvent(clearCutting,harvest.interval,alfa);
 END(*IF*);
 forest.Qj := forest.Qj - harvest.Hj; (* Eq. (3) *)

ModelWorks 2.2 - Appendix (Sample Models)

A 260

 woodSector.Pj := woodSector.Pj + woodSector.mu*harvest.Hj; (* Eq. (4) *)
 END(*WITH*);
 END ClearCutEvent;

 PROCEDURE PlenterHarvestEvent(alfa: Transaction);
 TYPE ForestryAsTransaction = POINTER TO Forestry;
 VAR msg: ARRAY [0..127] OF CHAR; f: ForestryAsTransaction;
 BEGIN
 f := alfa;
 WITH f^ DO
 Message("Plenter harvest");
 harvest.Hj := 2.0*harvest.epsj; (* Eq. (2') *)
 forest.Qj := forest.Qj - harvest.Hj; (* Eq. (3) *)
 woodSector.Pj := woodSector.Pj + woodSector.mu*harvest.Hj; (* Eq. (4) *)
 END(*WITH*);
 END PlenterHarvestEvent;

 (* Woodsector *)
 (* ========== *)

 PROCEDURE WoodSectorInitialize;
 BEGIN
 WITH f.forest DO WITH f.woodSector DO
 GetP (f.woodSector.m, d[j], dj);
 END(*WITH*) END(*WITH*);
 END WoodSectorInitialize;

 PROCEDURE WoodSectorDynamic;
 BEGIN
 WITH f.woodSector DO
 PjDot := - dj*Pj; (* Eq. (5) *)
 END(*WITH*);
 END WoodSectorDynamic;

 (* Observer *)
 (* ======== *)

 PROCEDURE ObserverInitialize;
 BEGIN
 WITH f.observer DO
 startCPoolAssessTime := UndefREAL();
 ExpectStateEvt(begAccCEvt,f.forest.Qj,thetaDash*f.forest.Kj,MAX(REAL));
 END(*WITH*);
 END ObserverInitialize;

 PROCEDURE ObserverDynamic;
 BEGIN
 WITH f.observer DO
 accCPoolDot := totCFixed;
 END(*WITH*);
 END ObserverDynamic;

 PROCEDURE StartCPoolAssessment;
 VAR msg: ARRAY [0..127] OF CHAR;
 BEGIN
 WITH f.observer DO
 startCPoolAssessTime := CurrentTime();
 accCPool := 0.0;
 msg :="Start of assessing average total C-pool size";
 Message(msg);
 IgnoreStateEvt(begAccCEvt); (* subsequently ignore any such event *)
 END(*WITH*);
 END StartCPoolAssessment;

ModelWorks 2.2 - Appendix (Sample Models)

A 261

 PROCEDURE ObserverOutput;
 BEGIN
 WITH f.observer DO
 totCFixed := cDWRatio*(f.forest.Qj + f.woodSector.Pj);
 IF IsUndefREAL(startCPoolAssessTime) THEN
 avgTotCFixed := UndefREAL();
 ELSE
 avgTotCFixed := accCPool/(CurrentTime()-startCPoolAssessTime);
 END(*IF*);
 IF IsStateEvt(begAccCEvt,f.forest.Qj) AND StateEvtExpected(begAccCEvt) THEN
 StartCPoolAssessment;
 END(*IF*);
 END(*WITH*);
 END ObserverOutput;

 PROCEDURE ObserverTerminate;
 PROCEDURE MakeMsgForX(descr: ARRAY OF CHAR; x: REAL; unit: ARRAY OF CHAR);
 VAR msg: ARRAY [0..127] OF CHAR;
 BEGIN (*MakeMsgForX*)
 RealToString(x,msg,0,3,FixedFormat);
 Concatenate(descr,msg,msg); Append(msg,unit);
 Message(msg);
 END MakeMsgForX;
 BEGIN (*ObserverTerminate*)
 WITH f.observer DO
 MakeMsgForX("Mean total C fixed = ",avgTotCFixed," [t/ha]");
 END(*WITH*);
 END ObserverTerminate;�

 (* Forestry *)
 (* ======== *)

 PROCEDURE DeclForestryBase; (* Declare basis of all model variants *)
 BEGIN
 (* some objects of model will be declared dynamically by DeclForest *)
 WITH f.forest DO
 f.forest.j := Beech; (* must be initialized once *)
 name[Beech] := "Beech forest";
 name[MontaneSpruce] := "Montane spruce forest";
 name[SubalpineSpruce] := "Subalpine spruce forest";
 ident[Beech] := "Beech";
 ident[MontaneSpruce] := "MtSprc";
 ident[SubalpineSpruce] := "SaSprc";
 r[Beech] := 0.04;
 r[MontaneSpruce] := 0.05;
 r[SubalpineSpruce] := 0.05;
 K[Beech] := 550.0;
 K[MontaneSpruce] := 600.0;
 K[SubalpineSpruce] := 450.0;
 DeclM(m, Heun, ForestInitialize, NoInput,
 ForestOutput, ForestDynamic, NoTerminate, DoNothing,
 "Forest submodel", "forest.m", NoAbout);

 DeclSV(Qj, QjDot, 5.0, 0.0, 800.0,
 "Biomass (dry weight) of forest", "Qj", "t/ha");

 DeclMV(Qj, 0.0, 600.0,
 "Biomass (dry weight) of forest", "Qj", "t/ha",
 notOnFile, writeInTable, isY);
 DeclMV(QjDot, 0.0, 40.0,
 "Biomass derivative", "dQj/dt", "t/ha/a",
 notOnFile, notInTable, notInGraph);
 END(*WITH*);

 (* harvest model and model objects will be declared only dynamically by DeclHarvesting

ModelWorks 2.2 - Appendix (Sample Models)

A 262

*)
 WITH f.harvest DO
 hT := unused; (* must be initialized once *)
 name[unused] := "Unused forest";
 name[clearCut] := "Clear cutting";
 name[plenter] := "Plenter management";
 ident[Beech] := "unused";
 ident[MontaneSpruce] := "clrCut";
 ident[SubalpineSpruce] := "plent";
 hEvt := unexpectedStateEvt; (* must be initialized once *)
 thetaClrCut := 0.9;
 thetaPlent := 0.5;
 eps[Beech] := 40.0;
 eps[MontaneSpruce] := 80.0;
 eps[SubalpineSpruce] := 25.0;
 h[fstSubCut] := 0.3;
 h[fstSubCut+1] := 0.5;
 h[lastSubCut] := 0.7;
 interval := 8.0;
 END(*WITH*);

 WITH f.woodSector DO
 DeclM(m, Heun, WoodSectorInitialize, NoInput,
 NoOutput, WoodSectorDynamic, NoTerminate, DoNothing,
 "Wood sector submodel", "woodSect.m", NoAbout);

 DeclSV(Pj, PjDot, 0.0, 0.0, 800.0,
 "Endurable forest products", "Pj", "t/ha");

 DeclMV(Pj, 0.0, 600.0,
 "Endurable forest products", "Pj", "t/ha",
 notOnFile, writeInTable, isY);

 d[Beech] := 0.025;
 d[MontaneSpruce] := 0.037;
 d[SubalpineSpruce] := 0.037;
 DeclP(mu, 0.4, 0.0, 1.0, rtc,
 "Fraction transferred from harvest to wood sector", "µ", "%");
 END(*WITH*);

 WITH f.observer DO
 begAccCEvt := unexpectedStateEvt;
 DeclM(m, Heun, ObserverInitialize, NoInput,
 ObserverOutput, ObserverDynamic, ObserverTerminate, DoNothing,
 "Observer submodel", "observer.m", NoAbout);

 DeclSV(accCPool, accCPoolDot, 0.0, 0.0, 0.0,
 "Total carbon ever fixed (pooled over time)", "accCPool", "t/ha");

 DeclMV(accCPool, 0.0, 600.0,
 "Total carbon ever fixed (pooled over time)", "accCPool", "t/ha",
 notOnFile, notInTable, notInGraph);
 DeclMV(totCFixed, 0.0, 600.0,
 "Total carbon fixed", "totCFixed", "t/ha",
 notOnFile, writeInTable, isY);
 DeclMV(avgTotCFixed, 0.0, 600.0,
 "Average total carbon fixed", "avgTotCFixed", "t/ha",
 notOnFile, writeInTable, isY);

 DeclP(cDWRatio, 0.45, 0.3, 0.6, rtc,
 "C in wood (ratio C/dry weight)", "cDWRatio", "%");
 DeclP(thetaDash, 0.3, 0.0, 1.0, rtc,
 "Threshold (% of K) to start assessing C-pool size", "theta'", "%");
 END(*WITH*);

 END DeclForestryBase;

 PROCEDURE DeclPlenterHarvest;

ModelWorks 2.2 - Appendix (Sample Models)

A 263

 VAR descr1,descr2: ARRAY [0..63] OF CHAR; id1,id2: ARRAY [0..15] OF CHAR;
 selected: BOOLEAN;
 BEGIN
 WITH f.harvest DO
 SelectM(m,selected);
 DeclP(thetaPlent, thetaPlent, 0.0, 1.0, rtc,
 "Threshold (% of K) to intitiate plenter harvesting", "theta[plent]", "%");
 descr1 := "Tolerance of theta[";
 id1 := "eps[";
 Concat enat e(descr1, f . f orest . i dent [f . f orest . j] , descr2) ; Append(descr2, "] bef ore harvest i ng") ;
 Concatenate(id1,f.forest.ident[f.forest.j],id2); Append(id2,"]");
 DeclP(eps[f.forest.j], eps[f.forest.j], 0.0, 300.0, rtc, descr2, id2, "%");
 epsj := eps[f.forest.j];
 END(*WITH*);
 END DeclPlenterHarvest;

 PROCEDURE DeclForest;
 VAR descr1,descr2: ARRAY [0..63] OF CHAR; id1,id2: ARRAY [0..15] OF CHAR;
 selected: BOOLEAN;
 BEGIN
 WITH f.forest DO
 SelectM(m,selected);

 descr1 := "Intrinsic growth rate of ";
 id1 := "r[";
 Concatenate(descr1,name[j],descr2); Append(descr2," forest");
 Concatenate(id1,ident[j],id2); Append(id2,"]");
 DeclP(r[j], r[j], 0.0, 1.0, rtc, descr2, id2, "/a");
 rj := r[j];

 descr1 := "Carrying capacity of ";
 id1 := "K[";
 Concatenate(descr1,name[j],descr2); Append(descr2," forest");
 Concatenate(id1,ident[j],id2); Append(id2,"]");
 DeclP(K[j], K[j], 0.0, 1000.0, rtc, descr2, id2, "t/ha");
 Kj := K[j];

 END(*WITH*);
 IF MDeclared(f.harvest.m) AND (f.harvest.hT=plenter) THEN DeclPlenterHarvest END;
 WITH f.woodSector DO
 SelectM(m,selected);

 descr1 := "Decay rate of endurable ";
 id1 := "d[";
 Concat enat e(descr1, f . f orest . name[f . f orest . j] , descr2) ; Append(descr2, " f orest product s") ;
 Concatenate(id1,f.forest.ident[f.forest.j],id2); Append(id2,"]");
 DeclP(d[f.forest.j], d[f.forest.j], 0.0, 1.0, rtc, descr2, id2, "t/ha");
 dj := d[f.forest.j];

 END(*WITH*);
 END DeclForest;

 PROCEDURE DeclHarvesting;
 VAR stTransFct: ARRAY [0..0] OF StateTransition;
 iStr: ARRAY [0..7] OF CHAR; ii: [fstSubCut..lastSubCut];
 descr1,descr2: ARRAY [0..63] OF CHAR; id1,id2: ARRAY [0..15] OF CHAR;
 BEGIN
 WITH f.harvest DO

 CASE hT OF
 | clearCut:
 stTransFct[0].ec := clearCutting;
 stTransFct[0].fct := ClearCutEvent;
 | plenter:
 stTransFct[0].ec := plenterHarvesting;
 stTransFct[0].fct := PlenterHarvestEvent;
 END(*CASE*);

ModelWorks 2.2 - Appendix (Sample Models)

A 264

 DeclDEVM(m, HarvestInitialize, NoInput, NoOutput, stTransFct, NoTerminate,
 DoNothing, "Harvesting submodel", "harvest.m", NoAbout);

 DeclSV(Hj, Hj, 0.0, 0.0, 0.0,
 "Harvested wood", "Hj", "t/ha");

 DeclMV(Hj, 0.0, 600.0,
 "Harvested wood", "Hj", "t/ha",
 notOnFile, writeInTable, notInGraph);

 CASE hT OF
 | clearCut:
 DeclP(thetaClrCut, thetaClrCut, 0.0, 1.0, rtc,
 "Threshold (% of K) to intitiate clear cutting", "theta[clrCut]", "%");
 FOR ii:= fstSubCut TO lastSubCut DO
 IntToString(ii,iStr,0);
 Concatenate("Fraction harvested in sub cut ",iStr,descr1);
 Append(descr1," while clear cutting");
 Concatenate("h",iStr,id1);
 DeclP(h[ii], h[ii], 0.0, 1.0, rtc, descr1, id1, "%");
 END(*FOR*);
 i:= fstSubCut;
 DeclP(interval, interval, 0.0, 20.0, rtc,
 "Interval between sub cuts while clear cutting", "interv", "a");
 | plenter:
 DeclPlenterHarvest;
 END(*CASE*);

 END(*WITH*);
 END DeclHarvesting;

 (***)
 (* Interactive specification of model variants via menu commands *)
 (***)

 VAR
 forMenu : Menu;
 cmdF: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Command;
 cmdH: ARRAY [MIN(HarvestType)..MAX(HarvestType)] OF Command;

 PROCEDURE DiscardCurForest;
 BEGIN
 WITH f.forest DO
 UncheckCommand(forMenu,cmdF[j]);
 IF MDeclared(m) THEN
 IF PDeclared(m,r[j]) THEN RemoveP(m,r[j]) END;
 IF PDeclared(m,K[j]) THEN RemoveP(m,K[j]) END;
 IF PDeclared(f.woodSector.m,f.woodSector.d[j]) THEN
 RemoveP(f.woodSector.m,f.woodSector.d[j])
 END(*IF*);
 IF MDeclared(f.harvest.m) AND (f.harvest.hT=plenter) THEN
 RemoveP(f.harvest.m,f.harvest.thetaPlent);
 RemoveP(f.harvest.m,f.harvest.eps[j])
 END(*IF*);
 END(*IF*);
 END(*WITH*);
 END DiscardCurForest;

 PROCEDURE ActivateAForest(ft: ForestType);
 BEGIN
 DiscardCurForest;
 WITH f.forest DO
 j := ft;
 CheckCommand(forMenu, cmdF[j]);
 END(*WITH*);
 DeclForest;

ModelWorks 2.2 - Appendix (Sample Models)

A 265

 SetProjDescrs("Swiss forests and C-sequestration", f.forest.name[ft], "", TRUE, TRUE,
 TRUE, TRUE, TRUE, TRUE, TRUE, TRUE);
 END ActivateAForest;

 PROCEDURE ActivateBeechForest;
 BEGIN
 ActivateAForest(Beech);
 END ActivateBeechForest;

 PROCEDURE ActivateMontaneSpruceForest;
 BEGIN
 ActivateAForest(MontaneSpruce);
 END ActivateMontaneSpruceForest;

 PROCEDURE ActivateSubalpineSpruceForest;
 BEGIN
 ActivateAForest(SubalpineSpruce);
 END ActivateSubalpineSpruceForest;

 PROCEDURE DiscardCurHarvesting;
 BEGIN
 UncheckCommand(forMenu,cmdH[f.harvest.hT]);
 IF MDeclared(f.harvest.m) THEN
 RemoveM(f.harvest.m);
 IgnoreStateEvt(f.harvest.hEvt);
 (* ignore all eventually pending events *)
 IF f.harvest.hT=clearCut THEN
 DiscardEventsAfter(clearCutting,CurrentTime(),AsTransaction(f));
 ELSIF f.harvest.hT=plenter THEN
 DiscardEventsAfter(plenterHarvesting,CurrentTime(),AsTransaction(f));
 END(*IF*);
 END(*IF*);
 END DiscardCurHarvesting;

 PROCEDURE ActivateAHarvesting(harv: HarvestType);
 BEGIN (*ActivateAHarvesting*)
 WITH f.harvest DO
 DiscardCurHarvesting;
 hT := harv;
 CheckCommand(forMenu, cmdH[harv]);
 IF hT<>unused THEN
 DeclHarvesting
 ELSIF PendingEvents()>0 THEN
 DiscardEventsBefore(never)
 END(*IF*);
 END(*WITH*);
 END ActivateAHarvesting;

 PROCEDURE ActivateUnused;
 BEGIN
 ActivateAHarvesting(unused)
 END ActivateUnused;

 PROCEDURE ActivateClearCutMgmt;
 BEGIN
 ActivateAHarvesting(clearCut)
 END ActivateClearCutMgmt;

 PROCEDURE ActivatePlenterMgmt;
 BEGIN
 ActivateAHarvesting(plenter)
 END ActivatePlenterMgmt;

 PROCEDURE InstallCustomMenu;
 BEGIN
 InstallMenu(forMenu, "Forestry", enabled);

ModelWorks 2.2 - Appendix (Sample Models)

A 266

 InstallCommand(forMenu, cmdF[Beech], f.forest.name[Beech],
 ActivateBeechForest, enabled, unchecked);
 InstallCommand(forMenu, cmdF[MontaneSpruce], f.forest.name[MontaneSpruce],
 ActivateMontaneSpruceForest, enabled, unchecked);
 InstallCommand(forMenu, cmdF[SubalpineSpruce], f.forest.name[SubalpineSpruce],
 ActivateSubalpineSpruceForest, enabled, unchecked);
 InstallSeparator(forMenu,line);
 InstallCommand(forMenu, cmdH[unused], "Unused forest",
 ActivateUnused, enabled, unchecked);
 InstallCommand(forMenu, cmdH[clearCut], "Clear cutting",
 ActivateClearCutMgmt, enabled, unchecked);
 InstallCommand(forMenu, cmdH[plenter], "Plenter management",
 ActivatePlenterMgmt, enabled, unchecked);
 END InstallCustomMenu;

 (**************)
 (* Experiment *)
 (**************)

 PROCEDURE Experiment;
 VAR jj: ForestType; ii: HarvestType;
 z: ARRAY [MIN(ForestType)..MAX(ForestType)],
 [MIN(HarvestType)..MAX(HarvestType)] OF REAL;
 x,y,w,h: INTEGER; isOpen : BOOLEAN;
 PROCEDURE MakeMsgForX(descr: ARRAY OF CHAR;
 x: REAL; unit: ARRAY OF CHAR;
 jj: ForestType; ii: HarvestType);
 VAR rStr: ARRAY [0..15] OF CHAR; msg: ARRAY [0..127] OF CHAR;
 BEGIN (*MakeMsgForX*)
 RealToString(x,rStr,0,3,FixedFormat);
 AssignString(descr,msg); Append(msg,rStr); Append(msg,unit);
 Append(msg,f.forest.name[jj]);
 Append(msg," / ");
 Append(msg,f.harvest.name[ii]);
 Message(msg);
 END MakeMsgForX;
 BEGIN (*Experiment*)
 FOR jj:= MIN(ForestType) TO MAX(ForestType) DO
 ActivateAForest(jj);
 FOR ii:= MIN(HarvestType) TO MAX(HarvestType) DO
 ActivateAHarvesting(ii);
 SimRun;
 z[jj,ii] := f.observer.avgTotCFixed;
 END(*FOR*);
 END(*FOR*);

 (* Display of results: *)
 GetWindowPlace(TableW,x,y,w,h,isOpen);
 IF isOpen THEN ClearTable ELSE SetWindowPlace(TableW,x,y,w,h) END;
 FOR jj:= MIN(ForestType) TO MAX(ForestType) DO
 FOR ii:= MIN(HarvestType) TO MAX(HarvestType) DO
 MakeMsgForX("Mean total C fixed = ",z[jj,ii]," [t/ha] <-- Run: ",jj,ii);
 END(*FOR*);
 END(*FOR*);
 END Experiment;

 (***)
 (* Initialization of models and default variants *)
 (***)

 PROCEDURE DefineModelAndEnvironment;
 BEGIN
 DeclForestryBase;
 InstallCustomMenu;
 ActivateBeechForest;

ModelWorks 2.2 - Appendix (Sample Models)

A 267

 ActivateClearCutMgmt;
 SetSimTime(0.0,500.0);
 SetIntegrationStep(0.5);
 SetMonInterval(1.0);
 InstallExperiment(Experiment);
 PlaceGraphOnSuperScreen(tiled);
 END DefineModelAndEnvironment;

BEGIN
 RunSimEnvironment(DefineModelAndEnvironment);
END ForestYield.

ModelWorks 2.2 - Appendix (Sample Models)

A 268

ModelWorks 2.2 - Appendix (Literature)

A 269

B Literature

The following list contains references of cited literature as well as references to recommended
further reading on the subject of modelling and simulation:

ATKINSON, L.V. & HARLEY, P.J., 1983. An Introduction to numerical methods with Pascal. London:
Addison-Wesley, 300pp.

BALTENSWEILER, W. & FISCHLIN, A., 1988. The larch bud moth in the Alps. In: Berryman, A.A. (ed.),
Dynamics of forest insect populations: patterns, causes, implications. New York a.o.: Plenum
Publishing Corporation: 331-351.

BERRYMAN, A.A. & MILLSTEIN,J.A., 1989. Are ecological systems chaotic - and if not why not? TREE 4:
26-8.

CELLIER, F.E. & FISCHLIN, A., 1980. Computer-assisted modelling of ill-defined systems. In: Trappl,R., Klir,
G.J. & Pichler, F.R. (eds.), General Systems Methodology, Mathematical Systems Theory, Fuzzy Sets,
Proc. of the Fifth European Meeting on Cybernetics and Systems Research, Vol. VIII, 417-429,
McGraw-Hill Intern. Book Comp., Washington, New York, 1982, 544pp.

CODY, W.J., 1981. Analysis of proposals for the floating-point standard. IEEE Computer, 14 (3): 63-68.

ENGELN-MÜLLGES, G. & REUTTER, F., 1988. Formelsammlung zur Numerischen Mathematik mit
MODULA 2-Programmen. Wissenschaftsverlag, Mannheim a.o., 510pp.

FISCHLIN, A., 1982. Analyse eines Wald-Insekten-Systems: Der subalpine Lärchen-Arvenwald und der graue
Lärchenwickler Zeiraphera diniana Gn.(Lep , Tortricidae). Diss. Eidg. Tech. Hochsch. Zürich, No. 6977,
294pp.

FISCHLIN, A., 1986a. Simplifying the usage and programming of modern workstations with Modula-2: The
Dialog Machine. Internal report, Project-Centre IDA, Swiss Federal Institute of Technology Zürich
(ETHZ), Switzerland, 15pp.

FISCHLIN, A., 1986b. The "Dialog Machine" for the Macintosh.. Internal report, Project-Centre IDA, Swiss
Federal Institute of Technology Zürich (ETHZ), Switzerland.

FISCHLIN, A., 1991. Interactive modeling and simulation of environmental systems on workstations. In:
Möller, D.P.F. (ed.), Analysis of dynamic systems in medicine, biology, and ecology. Proc. of the 4th
Ebernburger Working Conference, April 5-7, 1990, Ebernburg, Bad Münster am Stein-Ebernburg, BRD,
Informatik-Fachberichte 275, Springer, Berlin a.o.: 131-145.

FISCHLIN, A., 1992. Modellierung und Computersimulationen in den Umweltnaturwissenschaften [Modelling
and computer simulation in the environmental sciences]. In: Schaufelberger, W. et al. (eds.), Computer
im Unterricht an der ETH Zürich, Bericht über das Projekt IDA (Informatik Dient Allen) 1986-1991,
197pp., Zürich, Verlag der Fachvereine: 165-178.

FISCHLIN, A., MANSOUR, M.A., RIMVALL , M. & SCHAUFELBERGER, W., 1987. Simulation and computer
aided control system design in engineering education. In: Troch,I., Kopacek,P. & Breitenecker, F. (eds.),
Simulation of Control Systems, Pergamon Press, 459pp., Oxford a.o., 51-60pp.

FISCHLIN, A. & SCHAUFELBERGER, W., 1987. Arbeitsplatzrechner im technisch-naturwissenschaftlichen
Hochschulunterricht. Bulletin SEV/VSE, 78 (Januar): 15-21.

FISCHLIN, A. & ULRICH, M., 1987. Interaktive Simulation schlecht-definierter Systeme auf modernen
Arbeitsplatzrechnern: die Modula-2 Simulationssoftware ModelWorks. Proceedings, Treffen des
GI/ASIM-Arbeitskreises 4.5.2.1 "Simulation in Biologie und Medizin", February, 27-28, 1987, Vieweg,
Braunschweig: 1-9.

FISCHLIN, A. & BUGMANN, H., 1993. Think globally, act locally! A small country case study in reducing net
CO2 emissions by carbon fixation policies. In: Kanninen, M. (ed.), Carbon balance of the world's

ModelWorks 2.2 - Appendix (Literature)

A 270

forested ecosystems: Towards a global assessment. Publications of the Academy of Finland, VAPK
Publishing, Helsinki: in print.

FISCHLIN, A. & BUGMANN, H., 1994. Können forstliche Massnahmen eine Beitrag zur Verminderung der
schweizerischen CO2-Emissionen leisten? Schweiz. Z. Forstwes., 145 (4): 275-292.

FORRESTER, J.R., 1970. Principles of systems. Addison Wesley, N.Y.

IEEE STD 754-1985, 1985. IEEE standard for binary floating-point arithmetic. New York: IEEE, Inc. or IEEE
TASK P754, 1981. A proposed standard for binary floating-point arithmetic - Draft 8. IEEE Computer,
14 (3): 51-62.

KELLER, D., 1989. Introduction to the Dialog Machine. Interner Bericht Nr. 5 (Nov.), Projekt-Zentrum IDA,
Swiss Federal Institute of Technology Zürich (ETHZ), Switzerland, 37pp.

KORN, G.A. & WAIT, J.V., 1978. Digital continuous-system simulation. Prentice-Hall, Englewood Cliffs,
N.J., 212pp.

KREUTZER, W., 1986. System simulation: programming styles and languages. Sydney a.o.: Addison-Wesley,
366pp.

LOTKA, A.J., 1925. Elements of physical biology. Baltimore: Williams and Wilkins.

LUENBERGER, D.G., 1979. Introduction to dynamic systems - Theory, models, and applications. Wiley, New
York, 446pp.

MANSOUR, M. & SCHAUFELBERGER, W., 1989. Software and laboratory experiments using computers in
control education. IEEE Control Systems Magazine, 272 (April): 19-24.

MAY, R.M. & OSTER, G.F., 1976. Bifurcations and dynamic complexity in simple ecological models. Am.
Nat., 110: 573-99.

MAY, R.M. (ed.), 1981. Theoretical ecology. Principles and applications.. Blackwell Scientific Publications,
Osney Mead, Oxford, 2nd ed., 489pp.

MAY, R.M., 1974. Biological populations with nonoverlapping generations: stable points, stable cycles, and
chaos. Science, 186: 645-7.

MAY, R.M., 1975. Biological populations obeying difference equations: stable points, stable cycles, and chaos.
J. Theor. Biol. 51: 511-24.

MAY, R.M., 1976. Simple mathematical models with very complicated dynamics. Nature 261: 459-67.

NEMECEK, T., 1993. The role of aphid behavior in the epidemiology of potato virus Y: a simulation study.
Diss. ETH Zürich No. 10086, 232pp.

PEARL, R., 1927. The growth of populations. Q. Rev. Biol., 2: 532-548.

ROBINSON, S.B., 1986. STELLA - Modeling and simulation software for use with the Macintosh, Byte: 277-
278

THOENY, J., FISCHLIN, A. & GYALISTRAS, D., 1994. RASS1: Towards bridging the gap between interactive
and off-line simulation. Halin, J. (ed.), 1995, Proc. CISS 94, Springer, in prep.

ULRICH, M., 1987. ModelWorks. An interactive Modula-2 simulation environment. Post-graduate thesis,
Project-Centre IDA, Swiss Federal Institute of Technology Zürich (ETHZ), Switzerland, 53pp.

VOLTERRA, V., 1926. Variazione e fluttuazini del numero d'individui in specie animali conviventi. Mem.
Accad. Nazionale Lincei (ser. 6) 2: 31-113.

WIRTH, N., 1985. Programming in Modula-2, Third, Corrected Edition. Springer-Verlag, Berlin a.o., 202pp.

1RASS is an acronym for RAMSES Simulation Server.

ModelWorks 2.2 - Appendix (Literature)

A 271

WIRTH, N., 1988. Programming in Modula-2. Springer, Berlin a.o., 4th, corrected edition.

WIRTH, N., GUTKNECHT, J., HEIZ, W., SCHÄR, H., SEILER, H. & VETTERLI, C., 1988. MacMETH. A fast
Modula-2 language system for the Apple Macintosh. User Manual. 2nd ed. Institut für Informatik ETH
Zürich, Switzerland, 100pp.

WIRTH, N., GUTKNECHT, J., HEIZ, W., SCHÄR, H., SEILER, H., VETTERLI, C. & FISCHLIN, A., 1992.
MacMETH. A fast Modula-2 language system for the Apple Macintosh. User Manual. 4th. completely
revised ed., Departement Informatik ETH Zürich, Switzerland, 116pp.

WYMORE, A.W., 1984. Theory of Systems. In: VICK, C. R., RAMAMOORTHY , C. V.(EDS.): Handbook of
Software Engineering, Van Nostrand Reinhold Company, New York, 1984

ZEIGLER, B. P., 1976.Theory of Modelling and Simulation, John Wiley & Sons.

ZEIGLER, B. P., 1984. System Theoretic Foundations of Modelling and Simulation. In: Ören, T. I., Zeigler,
B. P., Elzas, M. S.(eds): Simulation and Model-Based Methodologies: An Integrative View, Springer-
Verlag.

ModelWorks V2.2 - Appendix (Versions)

C ModelWorks Versions and Implementations

The ModelWorks version described in this text is version V2.2 finalized in spring 1994. There
exist in fact five, slightly differing implementations or versions of ModelWorks:

1) The standard Macintosh version V2.2. Runs on all Macintosh computers with at least
1 MBytes of main memory and offers all functions as described in this text without
any restrictions.

2) The Reflex Macintosh version V2.0/Reflex. It is a reduced subset from the standard
version and runs on 512KBytes machines like the Macintosh Reflex (Mac 512KE).
The following restrictions apply: no graph printing except screen dumps, no clip-
board support, and no dumping of graphs onto the stash file. Colors are available on
color screens and on printer systems which support color screen dumps. However
the simulation environment mode "restore graph with colors" is not available.

3) The IBM PC GEM-Version V1.1/PC. It is also a reduced subset from the standard
Macintosh version. Besides the same restrictions which apply to the Reflex Macin-
tosh version, this version can not support colors. This is because of the MS DOS
memory limitation of 640 KBytes. Furthermore this version requires static linking.

4) The IBM PC Windows-Version V2.2/PC. It is functionally equivalent with the stan-
dard Macintosh version and runs on every machine capable of running MS Windows
3.1. This version requires static linking.

5) The Macintosh II version V2.2/II. It is functionally identical with the standard
version but takes full advantage of the Motorola 68020, 68030 or 68040 32-Bit CPU
and the mathematical coprocessors Motorola 68881, 68882. It is faster, however, it
runs only on Macintosh II, Quadra, or other similar models, given the machine is
equipped with a floating point unit (FPU).

For the Macintosh ModelWorks is distributed as part of the RAMSES1 software package, for
the IBM PC only as ModelWorks alone. In both cases ModelWorks is released together with
the "Dialog Machine". All mentioned software can be obtained via anonymous internet file
transfer ftp (at no charge) from the host ftp.ito.umnw.ethz.ch (current internet address
129.132.80.130) in ftp directory /pub/mac/RAMSES or /pub/pc/RAMSES. For details on the
installation and the software architecture see the separate booklet "Installation Guide and
Technical Reference of the RAMSES software" distributed together with the RAMSES software
package.

The usage of the software for noncommercial purposes is free and unrestricted as long as the
authorship of the used software is stated clearly on any redistributed model or other program,
i.e. any product descriptions or labels must state in writing that the "Interactive ModelWorks
Simulation Software by A. Fischlin et al. from the Swiss Federal Institute of Technology Zürich
ETHZ" has been used to develop the product. All copyrights are reserved and are held by the
authors and the Swiss Federal Institute of Technology Zürich ETHZ. ModelWorks may not be
sold, nor included in any sold product as an incentive, nor otherwise redistributed for a profit
without prior written consent by the authors and the Swiss Federal Institute of Technology
Zürich ETHZ. Please keep the software and the documentation together!

1RAMSES is an acronym for Research Aids for Modeling and Simulation of Environmental Systems. For more
information on the concepts of RAMSES see FISCHLIN (1991).

A 272

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D Use and Definitions of ModelWorks and Library Modules

D.1 M ODEL W ORKS MANDATORY CLIENT INTERFACE

The definition modules belonging to the mandatory client interface of ModelWorks, i.e. the
modules SimBase and SimMaster, are not listed here. Please consult chapter Client Interface
from the part III Reference instead, since all objects exported by SimBase and SimMaster are
already fully described there. Note, for the reader's convenience, the chapter Quick References
lists the modules SimBase and SimMaster once more fully; thus, in order to gain a good
overview over the whole client interface of ModelWorks, consult the ModelWorks' quick
reference.

D.2 M ODEL W ORKS OPTIONAL CLIENT INTERFACE

D.2.1 SimEvents

The module SimEvents is needed to work with models of the type discrete event system (DEVS)
as described in the chapter Model Formalisms in part II Theory. This module extends the client
interface of ModelWorks, is optional, but has to be used whenever the modeler wishes to
implement DEVS. For a typical usage see the sample model Diversity, the submodel CPTraffic
of the structured model definition program CarPollution , or the research sample model
ForestYield.

DEFINITION MODULE SimEvents;

 (***

 Module SimEvents (MW_V2.2)

 Copyright (c) 1993 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Purpose Support for discrete event simulations (DEVS)
 according to the event scheduling approach

 This module is part of the optional client interface of
 "ModelWorks", an interactive Modula-2 modelling
 and simulation environment.

 Programming

 o Design
 A. Fischlin 7/Mar/93

 o Implementation
 A. Fischlin 7/Mar/93

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 21/Mar/94 AF

A 273

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 ***)

 FROM SYSTEM IMPORT ADDRESS, BYTE;
 FROM SimBase IMPORT Model;

 (**************************)
 (* Discrete event classes *)
 (**************************)

 CONST
 minEventClass = 0;
 maxEventClass = 3000;
 unknownEventClass = maxEventClass;

 TYPE
 EventClass = [minEventClass..maxEventClass];
 (*
 Each state transition of a DEVS is characterized by a
 particular discrete event class. A DEVS owns a finite set of
 event classes. Each event class must be positive and unique
 within the simulation environment and must be declared and
 associated with a given state transition function via a data
 structure of type StateTransition. The set of event classes
 respectively state transition functions belonging to a DEVS
 are declared when calling procedure DeclDiscEvtM. Event
 classes are mainly useful if another model wishes to produce
 an event output. Such a model, e.g. a continuous time (DESS)
 or discrete time model (SQM), may do so by scheduling the
 event output together with the appropriate event class (using
 procedure ScheduleEvent). If the simulation time is advanced
 to the time the event is due, ModelWorks will then dispatch
 the event to the appropriate state transition function.
 *)

 Transaction = ADDRESS;
 (*
 Every discrete event may be associated with a particular set
 of data, the transaction. E.g. arriving customers may be
 described by several attributes such as sex, age, demand
 etc. Use nilTransaction to schedule or handle data-less
 events.
 *)

 TYPE
 StateTransitionFunction = PROCEDURE (Transaction);
 StateTransition = RECORD
 ec: EventClass;
 fct: StateTransitionFunction;
 END;
 (*
 Associates state transition function fct with the event class
 cl. Typically a state transition function changes
 instantaneously the state of a DEVS if a corresponding event
 is encountered.
 *)

 VAR
 nilTransaction: Transaction; (* read only! *)
 noStateTransition: ARRAY [0..0] OF StateTransition; (* read only! *)

 PROCEDURE AsTransaction(VAR d: ARRAY OF BYTE): Transaction;
 (*
 Converts any data structure into a Transaction.
 Example:

 ScheduleEvent(ec,tau,AsTransaction(myGlobOjbect));

A 274

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 schedules an event of class ec operating on the transaction
 myGlobOjbect. myGlobOjbect has been declared as a global
 variable and is of type ObjectDescriptor, the latter having
 been declared similar to this:

 TYPE ObjectDescriptor = RECORD
 x,y: INTEGER;
 r: REAL;
 ...
 END;

 Fields of the transaction may then be accessed from within the
 state transition function associated with the event class ec as
 follows:

 PROCEDURE MyStatetransFct (alfa: Transaction);
 VAR theObj: ObjectDescriptor;
 BEGIN
 theObj := alfa;
 WITH theObj^ DO
 IF x=y THEN r := ...
 ...
 END(*WITH*);
 END MyStatetransFct;

 Make sure that the transaction exists not only during scheduling,
 but also when it is becomes due; otherwise the state transition
 function is likely to corrupt your program.
 *)

 PROCEDURE EventClassExists(ec: EventClass): BOOLEAN;
 (*
 Tests whether any DEVS has been declared to ModelWorks which does
 provide state transitions for the event class ec.
 *)

 (***)
 (* Declaration of discrete event models (DEVS) *)
 (***)

 VAR
 dummyDEVChg: REAL;
 (*
 Use this dummy variable instead of the formal parameter ds
 (Derivative or NewState) tau declaring state variables
 belonging to a discrete event model (see procedure DeclSV
 from module SimBase.
 *)

 PROCEDURE DeclDEVM(VAR m: Model; initialize, input, output: PROC;
 statetransfct: ARRAY OF StateTransition; terminate,
 declModelObjects: PROC; descriptor, identifier: ARRAY OF CHAR;
 about: PROC);
 (*
 Declares a discrete event model (DEVS). The array
 statetransfct contains for every event class the corresponding
 state transition function. For all other formal parameters see
 DeclM from module SimBase. The integration method will appear
 as discreteEvent (see IntegrationMethod from module SimBase).
 StateTransitions remain known to ModelWorks as long as owner
 model remains declared.

 IMPLEMENTATION RESTRICTION: During simulations event classes can't be

A 275

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 reused, e.g. by removing a model (using SimBase.RemoveM) and
 immediately reusing the same event classes for another model by calling
 DeclDEVM. This implies that every event class has to be uniquely
 associated with a single model during the entire course of a simulation
 run.
 *)

 PROCEDURE GetDefltDEVM(VAR m: Model; VAR initialize, input, output: PROC;
 VAR statetransfct: ARRAY OF StateTransition; terminate: PROC;
 VAR descriptor, identifier: ARRAY OF CHAR; VAR about: PROC);
 PROCEDURE SetDefltDEVM(VAR m: Model; initialize, input, output: PROC;
 statetransfct: ARRAY OF StateTransition; terminate: PROC;
 descriptor, identifier: ARRAY OF CHAR; about: PROC);

 (********************)
 (* Event scheduling *)
 (********************)

 CONST
 always = MIN(REAL);
 never = MAX(REAL);

 VAR
 schedulingDone: BOOLEAN;

 PROCEDURE InitEventScheduler;
 (*
 Clears the event scheduling mechanism, i.e. the event
 scheduling queue, of the simulation environment. Any
 eventually still pending events will be discarded. Then it
 makes the scheduling mechanism ready to accept events always by
 calling SchedulingOnlyAfter(always).
 *)

 PROCEDURE ScheduleEvent(ec: EventClass; tau: REAL; alfa: Transaction);
 (*
 Schedules the event of class ec for transaction alfa. Use
 nilTransaction to schedule an event without a transaction, i.e.
 without any data and attributes. The event will be due after
 time tau has elapsed. The event can only be successfully
 scheduled if the following condition is satisfied (t+tau) >=
 tmin. If the scheduling was successful => schedulingDone = TRUE.
 *)

 PROCEDURE NextEventAt(): REAL;
 (* Returns the time (ts+tau) at which the next pending event is due. *)

 PROCEDURE ProbeNextPendingEvent(VAR ec: EventClass; VAR when: REAL;
 VAR alfa: Transaction);
 (*
 Retrieves the characteristics of the next pending event. The
 time when (ts+tau) is the due time.
 *)

 PROCEDURE GetNextPendingEvent (VAR ec: EventClass; VAR when: REAL;
 VAR alfa: Transaction);
 (*
 Retrieves the characteristics and removes the next pending
 event from the event scheduling queue.
 *)

 PROCEDURE PendingEvents(): INTEGER;
 (* Returns the total number of currently pending events *)

A 276

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 PROCEDURE SchedulingOnlyAfter(tmin: REAL);
 (*
 Disallows the scheduling of any events with a due time <=
 tmin. Once this routine has been called, ScheduleEvent is only
 succesful, if it schedules events with a due time > tmin.
 *)

 PROCEDURE DiscardEventsAfter(ec: EventClass; aftert: REAL; alfa: Transaction);
 (*
 Discards from the event scheduling queue all events for event
 class ec, due after the time aftert, and which operate on the
 transaction alfa. Note: events with a due time = aftert are
 also discarded. (event is only really discarded if alfa is
 the same as the scheduled transaction!)
 *)

 PROCEDURE DiscardEventsBefore(beforet: REAL);
 (*
 discards from the event scheduling queue all events for which
 the due time < beforet. Note: events with a due time = beforet
 are not discarded)
 *)

END SimEvents.

A 277

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.2.2 SimDeltaCalc

In the context of model validation, sensitivity analysis, or parameter identification arises often the
need to calculate a performance index, e.g. between measured time series and simulated model
behavior or between two trajectories produced by two different simulation runs. Module
SimDeltaCalc allows to calculate distances between two trajectories at any point in time,
regardless of the temporal resolution at which the trajectories are defined; for instance, a
measured time series sampled at discrete time points, eventually even irregularily spaced because
of missing values, can be compared with a continuous time model trajectory monitored with a
small monitoring interval hm. For a typical usage of this optional client interface module see the
sample model GauseIdentif, which demonstrates an interactive parameter identification.

DEFINITION MODULE SimDeltaCalc;

 (***

 Module SimDeltaCalc (MW_V2.2)

 Copyright 1991 by Olivier Roth and Swiss
 Federal Institute of Technology Zuerich ETHZ

 Purpose: Computing and handling of deviations (d) of simulations
 compared to e.g. observed data series. This module
 is typically used to compute a performance index
 for identification or validation.

 This module is part of the optional client interface of
 "ModelWorks", an interactive Modula-2 modelling
 and simulation environment.

 Remarks: This module works together with module "SimGraphUtils",
 i.e. the procedures DeclDispData or DeclDispDataM must
 be used to install the reference data to which the
 delta's (d) should be computed.

 Programming

 o Design and Implementation
 O. Roth 15/10/91

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 15/10/91 OR

 ***)

 (* The problem:

 Y | v
 | xxxxxx
 | x v xxxxxxx
 | v x xx
 |xxxxxx x v xx
 | xx x xx
 | xx x
 | xx

A 278

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 |-----|-----|-----|-----|-----|-----| ->t
 0 1 2 3 4 5 6
 A B C

 Validation statistics example (see fig. above):
 Y is e.g. a state variable, x = simulated, v = observed or
 measured; t stands for an independent variable e.g. time.

 A series of n (v,t) points has to be declared by DeclDispData
 from module SimGraphUtils. As a goodness of fit criterion we
 look for the vertical distances (d) of simulated (linearly
 interpolated) results (x) and the observed data (v).
 There may ocurr 3 cases (see fig. above): A) one observed
 data point falls into the last simulated time interval;
 B) no observed data point was encountered during last time
 interval; C) many observed data points were encountered during
 the last time interval. The procedures "AccuDelta" and
 "GetDelta" keep track on the last independent variable
 and look ahead to the next element in the data array if a new
 ∆ has to be computed. This requires correct sorting of the
 data array before declaration!
 *)

 TYPE
 DeltaVar;

 DeltaProc = PROCEDURE ((*ySim~*)REAL, (*yData*)REAL): REAL;
 (* ySim~ denotes simulated y interpolated at position xData,
 yData denotes the y value from the installed data series at
 position xData *)

 VAR defaultDelta: DeltaProc;

 PROCEDURE InstallDeltaProc(VAR mvDepVar: REAL; compDelta: DeltaProc);

 PROCEDURE InitDeltaStat(VAR mvDepVar: REAL; xSim, ySim: REAL;
 VAR dv: DeltaVar);
 (* initializes the internal variables which hold the wanted statistics.
 - call InitDeltaStat from within your "Initial" procedure,
 note: set xSim to its actual value at t0 before!
 mvDepVar should be declared previously with DeclDispData;
 returns dv for later reference when calling AccuDelta *)

 PROCEDURE AccuDelta(dv: DeltaVar; xSim, ySim: REAL);
 (* This procedures accumulates simple statistics intermediates such as:
 ∑ ∆; ∑ ∆^2; ∑ |∆|; n; where ∆ is the difference between
 the installed data series (DeclDispDat) and the interpolated
 simulated variable (∆ is computed by means of the installed DeltaProc)
 and n holds the count of accumulated ∆s.
 - AccuDelta should be called once for each time step, i.e. normally
 in procedure "output" of your model;
 assumes that dv is correct! *)

 PROCEDURE GetDeltaStat(VAR mvDepVar: REAL;
 VAR sumY, sumY2, sumAbsY: REAL;
 VAR count: INTEGER);
 (* allows you to get the stored statistics which were accumulated
 since the last InitDeltaStat (normally a simulation run, see AccuDelta
 for more details). *)

A 279

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 PROCEDURE SetDeltaStat(VAR mvDepVar: REAL;
 sumY, sumY2, sumAbsY: REAL; count: INTEGER);
 (* allows to set these statistics. This procedure can be usefull
 if you have to resume an interrupted run or ev. for a complete reset *)

 PROCEDURE WriteDeltaStatMsg(VAR mvDepVar: REAL);
 (* writes the stored statistics for each variable to the table window
 and to the stashfile in form of a message. *)

END SimDeltaCalc.

A 280

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.2.3 SimGraphUtils

This module allows first to make output in ModelWorks' window Graph, e.g. to draw additional
curves or any other graphical elements. This may be useful to show measured time series
together with simulated results, to draw error bars or non-standard symbols etc. Thirdly does
this module allow to place the window Graph always on that screen which has colors and the
highest resolution; this feature is particularly useful when running ModelWorks model
definition programs on different computer systems, among which some have more than one
screen, e.g. one black and white only and one with colors. Thirdly, this module supports
window input, i.e. allows to detect mouse clicks in the window Graph. The latter can be used to
determine points such as an initial state vector in the state space of a 2nd order system, e.g. to
explore interactively a phase portrait. For a typical usage of this optional client interface module
see the sample models Lorenz1,GauseIdentif, LVPhasePlot, StochLogGrow for graphical output,
plus module VDPol for mouse input.

DEFINITION MODULE SimGraphUtils;

 (***

 Module SimGraphUtils (MW_V2.2)

 Copyright 1989 by Olivier Roth and Swiss
 Federal Institute of Technology Zuerich ETHZ

 Purpose: Provides some utilities to make I/O to the graph window and the
 graph of the modelling and simulation environment "ModelWorks".

 This module is part of the optional client interface of
 "ModelWorks", an interactive Modula-2 modelling
 and simulation environment.

 Remarks: Most procedures behave similar to those of the module DM2DGraphs
 and may now be combined with many procedures from DMWindIO.
 The window and its associated graph are objects of the ModelWorks
 environment and should therefore not be removed.

 Programming

 o Programming and Implementation
 O. Roth 12.09.89

 o Implementation
 O. Roth 12.09.89

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 22/04/96 af

 ***)

 FROM SimBase IMPORT MWWindowArrangement, Model,
 Stain, LineStyle, Graphing;
 FROM DMWindIO IMPORT Color;

1Only distributed but not listed in this Appendix

A 281

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 FROM Matrices IMPORT Matrix;

 TYPE
 Curve;

 VAR
 nonexistent: Curve; (* read only! *)

 (* - - - - - - - -
 Procedure to arrange the ModelWorks Windows on a multi-screen machine
 - *)

 PROCEDURE PlaceGraphOnSuperScreen(defltwa: MWWindowArrangement);
 (* Defines the default window arrangement according to 'defltwa'
 and places the ModelWorks graph window on the largest color
 screen in case the Model Definition Program is running on a
 multi-screen machine. *)

 (* -
 Procedure to access the ModelWorks 'Graph' WINDOW:
 - *)

 PROCEDURE SelectForOutputGraph;
 (* This procedures brings the ModelWorks 'Graph' window to front
 and makes it the current output window. This allows subsequently
 calls to almost all of the I/O procedures of the 'Dialog
 Machine' module 'DMWindIO'. *)

 (* -
 Procedures to access the GRAPH in the 'Graph' window similar to
 the routines exported by module DM2DGraphs (see 'Dialog Machine'):
 - *)

 PROCEDURE DefineCurve(VAR c: Curve;
 col: Stain; style: LineStyle; sym: CHAR);
 (* Every curve has it own plotting style and color.This allows
 for the simultaneous drawing of an arbitary number of curves
 within the ModelWorks graph. sym specifies a character which is
 drawn repeatedly at the data points, they help identifying a
 curve (sym = 0C, no mark is plotted).
 Use this procedure also if you want to alter an allready existing
 curve. *)

 PROCEDURE RemoveCurve(VAR c: Curve);
 (* This procedure removes a curve definition. This procedure sets c
 to nonexistent. *)

 PROCEDURE DrawLegend(c: Curve; x, y: INTEGER; comment: ARRAY OF CHAR);
 (* Draws a portion of curve c with the current attributes at position
 x and y and writes the comment to the right of c. After this procedure
 the pen location is just to the right of the string "comment", so it´s
 possibe to add for example values of parameters by calling DMWindIO
 procedures WriteReal (etc.) just after this procedure. *)

 PROCEDURE Plot(c: Curve; newX, newY: REAL);
 (* You can plot (draw a curve) from the last (saved) position to the point
 specified by the new coordinates newX and newY.
 Note: ModelWorks resets the pen position when clearing the graph.
 Errors: If the point specified by newX and newY lies outside the integer
 (pixel) range DM2DGraphsDone will be set to FALSE. *)

A 282

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 PROCEDURE Move(c: Curve; newX, newY: REAL);
 (* moves the pen to postion (x,y). Typically used to draw several curves
 with the same attributes to reset the pen position after having drawn a
 curve.
 Errors: If the point specified by x and y lies outside the integer (pixel)
 range DM2DGraphsDone will be set to FALSE. *)

 PROCEDURE PlotSym(x, y: REAL; sym: CHAR);
 (* draws the symbol sym at the position (x,y). May be used as an alternate
 method to make scatter grams.
 Errors: If the point specified by x and y lies outside the integer (pixel)
 range DM2DGraphsDone will be set to FALSE. *)

 PROCEDURE PlotCurve(c: Curve; nrOfPoints: CARDINAL; x, y: ARRAY OF REAL);
 (* Plots an entier sequence of nrOfPoints coordinate pairs contained within
 the two vectors x and y. May also be useful to implement an update mechanism.
 Errors: - If the point specified by x and y lies outside the integer (pixel)
 range DM2DGraphsDone will be set to FALSE.
 - If the maximum number of elements of x or y is less than nrOfPoints,
 then only the lower number of elements of either x or y will be
 plotted. WARNING: The x and y arrays are value parameters,
 hence require sufficient stack size at run time. The design of
 this routine is for curves of a rather small dimension. To
 plot large data sets use instead of PlotCurve the procedure
 DeclDispDataM (see below). *)

 PROCEDURE GraphToWindowPoint(xReal, yReal: REAL;
 VAR xInt, yInt: INTEGER);
 (* Calculates the pixel coordinates (xInt and yInt) of the
 graph's window (see WindowIO) from the specified graph
 coordinates (xReal and yReal). Note that the vertical axis of the
 ModelWorks graph is transformed to yMin = 0.0 and yMax = 1.0 (see
 also procedure MVValToPoint).
 Errors: If the point specified by xReal and yReal lies outside
 the integer (pixel) range, DM2DGraphsDone will be set to
 FALSE and xInt and yInt is set to MIN(INTEGER) or
 MAX(INTEGER) respectively. *)

 PROCEDURE WindowToGraphPoint(xInt, yInt: INTEGER;
 VAR xReal, yReal: REAL);
 (* Calculates graph coordinates (xReal and yReal) from the
 specified pixel coordinates (xInt and yInt) of the graph's window
 (see WindowIO). Note that the vertical axis of the ModelWorks
 graph is transformed to yMin = 0.0 and yMax = 1.0 (see also
 procedure PointToMVVal).
 Errors: If the point specified by xReal and yReal lies outside the
 integer (pixel) range, DM2DGraphsDone will be set to FALSE
 and xInt and yInt is set to MIN(INTEGER) or MAX(INTEGER)
 respectively. *)

 (* -
 Drawing procedures used in a ModelWorks aware context:
 - *)

 PROCEDURE InstallGraphClickHandler(gch: PROC);
 (* Installs the mouse click handler procedure gch into the
 ModelWorks simulation environment. After successful
 installation, each time the simulationist clicks into the graph
 window, gch will be called and a pair of xpixel coordinates [x,y]
 where the mouse click occurred, are passed to the handler. Use

A 283

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 procedures such as PointToMVVal to interprete the meaning of the
 point [x,y] in terms of monitorable variables. *)

 VAR
 timeIsIndep: REAL;

 PROCEDURE PointToMVVal(xInt,yInt: INTEGER; m: Model; VAR mv: REAL;
 VAR curG: Graphing): REAL;
 (* Returns the corresponding value of the monitorable variable mv
 of the model m from the given pixel coordinates (xInt and yInt)
 of the ModelWorks graph window. As a side effect the routine
 returns also the current graphing of the mv. In case the mv
 should currently not be in display (curG=notInGraph), the value
 is returned as if curG would have been isY. To denote the
 independent variable time, use timeIsIndep as the actual
 parameter for mv (see also procedure WindowToGraphPoint).
 Errors: If m or mv should not be known to ModelWorks' model base,
 the routine displays an appropriate error message and returns
 0.0 and curG=notInGraph.
 If the point specified by xReal and yReal lies outside the
 integer (pixel) range, DM2DGraphsDone will be set to FALSE
 and xInt and yInt is set to MIN(INTEGER) or MAX(INTEGER)
 respectively. *)

 PROCEDURE MVValToPoint(val: REAL; m: Model; VAR mv: REAL;
 VAR curG: Graphing): INTEGER;
 (* Returns the pixel coordinate for the window Graph (see
 WindowIO) from the specified coordinate val interpreted for the
 monitorable variable mv of the model m. As a side effect the
 routine returns also the current graphing of the mv. In case the
 mv should currently not be in display (curG=notInGraph), the
 value is returned as if curG would have been isY. To denote the
 independent variable time, use timeIsIndep as the actual
 parameter for mv (see also procedure GraphToWindowPoint).
 Errors: If m or mv should not be known to ModelWorks' model base,
 the routine displays an appropriate error message and returns
 0 and curG=notInGraph.
 If the point specified by val lies outside the integer
 (pixel) range, DM2DGraphsDone will be set to FALSE and the
 routine returns either MIN(INTEGER) or MAX(INTEGER)
 respectively. *)

 PROCEDURE TimeIsX() : BOOLEAN;
 (* Above procedure returns whether time is the current abscissa (x axis). *)

 TYPE
 Abscissa = RECORD isMV: POINTER TO REAL; xMin,xMax: REAL END;

 PROCEDURE CurrentAbscissa(VAR a: Abscissa);
 (* Returns a pointer (isMV) to the monitorable variable currently used as
 abscissa and its extremes (xMin~curScaleMin,xMax~curScaleMax). In case that
 time is in use, isMV will point to timeIsIndep *)

 (* -
 Procedures to convert different Color Types:
 - *)

 PROCEDURE StainToColor(stain: Stain; VAR color: Color);
 PROCEDURE ColorToStain(color: Color; VAR stain: Stain);
 (* Translates Stain from module SimBase to Color from module
 DMWindIO and vice versa; exception for StainToColor:
 autoDefCol is translated to black. *)

A 284

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 (* -
 Display data series (e.g. for validation) all at once:
 - *)

 (*
 Follow these steps to use the data display feature of that module:
 1. Declare an ordinary monitorable variable with the procedure 'DeclMV'
 as a "master" monitorable variable for data arrays to be
 declared later (see next step). Several properties, i.e. descr,
 ident, unit, (and curve attributes as color, linestyle, symbol)
 will be inheritated by the later associated data arrays. So if the
 monitorable variable's graphing variable is set 'isY' the data are
 selected to be displayed. (This mv is called "master"-mv in what
 follows)
 2. Since the data arrays symbol (CHAR), line style (LineStyle) and
 color (Stain) will be taken from the "master" monitorable variable
 you can call 'SetCurveAttrForMV' and ev. 'SetDefltCurveAttrForMV'.
 3. Declare the associated data arrays with the "master" monitorable
 variable, the independent monitorable variable, and all the data
 arrays with a call to 'DeclDispData'.
 4. To enable the display mechanism the monitorable variable mvDepVar
 must be isY and mvIndepVar must be isX. If another monitorable
 variable represents the current x axis then nothing can be
 displayed.
 5. ModelWorks will display automatically all declared data in the
 normal graph of the "Graph" window at the specified moment,
 i.e. typically at InitMonitoring, or at TermMonitoring. To
 allow for a general control of the moment of display the
 procedure 'DisplayDataNow' and 'DisplayAllDataNow' are also
 exported.
 Caution:
 - Be sure to follow the steps given above in the correct
 order (1 before 3!) or no data can be declared and displayed.
 - Do not assign any values to the "master" monitorable variable
 to avoid conflicts with the data declaration.
 - Setting writeInTable or writeOnFile of the "Master" monitorable
 variable is not prohibited but makes no sence, since a
 dummy value NAN(017) and not the data series will be displayed.
 *)

 TYPE
 DisplayTime = (showAtInit, showAtTerm, noAutoShow);
 DispDataProc = PROCEDURE(Model, VAR REAL);

 PROCEDURE DeclDispData(mDepVar : Model; VAR mvDepVar : REAL;
 mIndepVar : Model; VAR mvIndepVar: REAL;
 x, v,
 vLo, vUp : ARRAY OF REAL;
 n : INTEGER;
 withRangeBars: BOOLEAN;
 dispTime : DisplayTime);

 (* In order to display a data series (e.g. validation data) f.ex. before a
 simulation run, the necessary data have to be declared beforehand, i.e.
 normally just at the end of all other ModelWorks objects declarations.
 The variables are as follows:
 mDepVar : model to which belongs the mvDepVar
 mvDepVar : monitorable variable representing the dependent data array
 mIndepVar : model to which belongs the mvIndepVar
 mvIndepVar : monitorable variable representing the independent data array,
 if mvIndepVar is specified
 "timeIsIndep" (or is not a declared monitorable var), then
 "time" is assumed to be the independent variable,
 x : array of independent values,
 v : array of dependent values,

A 285

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 vLo : array of lower e.g. confidence or range values,
 vUp : array of upper e.g. confidence or range values,
 n : number of given data,
 withRangeBars: flag, if TRUE range bars will be drawn using vLo and vUp,
 dispTime : the time when the data should be displayed,

 Note:
 The curve attributes of the data to display can be set through the
 procedure 'SetCurvAttrForMV' on the monitorable variable 'mvDepVar' and
 the default strategy for curve attributes assignments are the same as for
 ordinary monitorable variables for color and symbol but not for the
 lineStyle:

 the default line style is hidden which means that the connections from
 [x,v]-point to [x,v]-point are not drawn. In that case and if withRangeBars
 is set true then the error bars are displayd solidly. All other line styles
 are applied to the connections from point to point as well as to the error
 bars themselves.

 This procedure allows also redeclare such data series, i.e. to associate
 other data to the same mvDepVar and mvIndepVar.

 WARNING: The x, v, vLo, vUp arrays are value parameters,
 hence require sufficient stack size at run time. The design of
 this routine is for vectors of a rather small dimension. To
 plot large data sets use instead of this routine the procedure
 DeclDispDataM (see below).
 *)

 PROCEDURE DeclDispDataM(mDepVar : Model; VAR mvDepVar : REAL;
 mIndepVar : Model; VAR mvIndepVar: REAL;
 data : Matrix;
 withRangeBars: BOOLEAN;
 dispTime : DisplayTime);
 (* alternate form of DeclDispData (described above) using type Matrix to pass
 * the data (x = col 1, v = col 2, vLo = col 3, vUp = col 4) *)

 PROCEDURE DisplayDataNow(mDepVar : Model; VAR mvDepVar : REAL);
 (* This procedure allows to display a series of e.g. validation data
 before a simulation run. The previously declared data are displayed
 in the current graph window under the following conditions:
 + the data have been declared properly and are valid;
 + the associated monitorable variable is selected to be displayed (isY);
 + the declared indepVar is the currently active independent
 monitorable variable (isX);
 + the declared indepVar is either not a monitorable variable (for
 example 'timeIsIndep' what implies that time is meant) and time is
 the selected independent var;
 + the data fall into the declared scaling range;
 *)

 PROCEDURE DisplayAllDataNow;
 (* Displays all declared datasets at the specified moments. The same conditions
 apply as for 'DisplayDataNow'.
 *)

 PROCEDURE DoForAllDispData(p: DispDataProc);
 (* Calls procedure p for all DispData currently declared. Be
 careful when using this procedure, since it allows to access
 also DispData-definitions which may not belong to the caller.
 *)

 PROCEDURE RemoveDispData(mDepVar : Model; VAR mvDepVar : REAL);
 (* This procedure allows to free the memory from the declared data
 to display.

A 286

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 *)

 PROCEDURE SetDispDataM(mDepVar: Model; VAR mvDepVar: REAL; data: Matrix);
 PROCEDURE GetDispDataM(mDepVar: Model; VAR mvDepVar: REAL; VAR data: Matrix);
 (* these procedures allow to set/retrieve the installed data through matrices *)

END SimGraphUtils.

A 287

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.2.4 SimIntegrate

The optional client interface module SimIntegrate can be used to compute definite integrals, i.e.
to solve the equations of a particular model without advancing ModelWorks' global independent
variable t. Instead a lower and upper boundary of the independent variable is used and such a
numerical integration can be called always, e.g. in the client procedure initialize. Note however,
that this is only possible for autonomous models, since the integration is performed for a single
model only.

DEFINITION MODULE SimIntegrate;

 (***

 Module SimIntegrate (MW_V2.2)

 Copyright 1989 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zuerich ETHZ

 Purpose Provides means to integrate an autonomous
 differential equation system without any
 monitoring

 This module is part of the optional client interface of
 "ModelWorks", an interactive Modula-2 modelling
 and simulation environment.

 Programming

 o Design
 A. Fischlin 26/06/89

 o Implementation
 A. Fischlin 26/06/89

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 26/06/89 af

 ***)

 FROM SimBase IMPORT Model;

 PROCEDURE Integrate (m: Model; from, till: REAL);
 (*
 Computes the definite integral of the autonomous model m
 within the boundaries from and till. It integrates the model
 equations with the current integration method associated with
 the model m. The integration will be performed for every
 state variable and as initial values ModelWorks will use the
 current initial values associated with the declared state
 variables. Either stopping the simulation permanently (kill)
 or encountering the termination condition will stop the
 integration.
 *)

END SimIntegrate.

A 288

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

A 289

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.2.5 SimObjects

The optional client interface module SimObjects supports advanced uses of ModelWorks in the
following ways: First it provides mechanisms to attach attributes to any model or model object
currently declared in ModelWorks' data base. Typical attributes are a model or state varibale
index or a pointer to a data structure maintained by the client. Of course this module provides
also procedures to access such attributes. Moreover, SimObjects allows to access directly
ModelWorks' internal data structures of models and model objects. This may be important if
the modeler wishes to use ModelWorks' objects in algorithms which use dynamic lists or for
efficiency reasons. A typical example of such a functionality supported by this module is the
procedure MinimizeAfterDialog from the auxiliary library module IdentifyPars as used in the
sample model GauseIdentif.

DEFINITION MODULE SimObjects;

 (***

 Module SimObjects (MW_V2.2)

 Copyright 1991 by Dimitrios Gyalistras and Swiss
 Federal Institute of Technology Zuerich ETHZ

 Purpose Provides an access to the Model- and Model Object- base
 of ModelWorks as well as procedures to attach reference
 attributes to ModelWorks objects.

 This module is part of the optional client interface of
 "ModelWorks", an interactive Modula-2 modelling
 and simulation environment.

 Programming

 o Design
 D. Gyalistras 25/07/91
 O. Roth 09/10/91
 A. Fischlin 27/11/91

 o Implementation
 D. Gyalistras 25/7/91
 O. Roth 09/10/91

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 02/03/93 dg

 ***)

 FROM SYSTEM IMPORT ADDRESS;
 FROM DMStrings IMPORT String;
 FROM SimBase IMPORT Model;

 TYPE
 RefAttr;

 VAR
 aDetachedRefAttr: RefAttr; (* read only variable *)

A 290

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 PROCEDURE AttachRefAttrToModel (m: Model; VAR a: RefAttr; val: ADDRESS);
 PROCEDURE DetachRefAttrFromModel(m: Model; VAR a: RefAttr);

 PROCEDURE AttachRefAttrToObject (m: Model; VAR o: REAL; VAR a: RefAttr; val: ADDRESS);
 PROCEDURE DetachRefAttrFromObject(m: Model; VAR o: REAL; VAR a: RefAttr);

 PROCEDURE FindModelRefAttr (m: Model; VAR a: RefAttr);
 PROCEDURE FindObjectRefAttr(m: Model; VAR o: REAL; VAR a: RefAttr);

 PROCEDURE SetRefAttr(a: RefAttr; val: ADDRESS);
 PROCEDURE GetRefAttr(a: RefAttr): ADDRESS;
 (*
 You may associate with any model or model object an address
 attribute by calling AttachRefAttrToModel respectively
 AttachRefAttrToObject. The attribute's value may then be
 freely used via SetRefAttr for assignments or GetRefAttr for
 retrieval purposes. RefAttrs are particularly useful when using
 one of the SimBase.DoForAllXYZ procedures. Note that in case
 there is currently no attribute attached to a model or object,
 the value aDetachedRefAttr is passed by ModelWorks. It is also
 possible to access an attribute via model respectively model
 plus object by the procedures FindModelRefAttr respectively
 FindObjectRefAttr. Note however, that the latter method is
 less efficient and is therefore not recommended in heavy
 number-crunching simulations. Again aDetachedRefAttr is
 returned in case there is currently no attribute attached.
 *)

 PROCEDURE CurCalcMRefAttr(): ADDRESS;
 (*
 Returns first attribute associated to the model of which the
 initialize, input, output, or dynamic etc. procedure is
 currently calculated. The value NIL is returned if
 (SimMaster.MWState <> simulating) or (SimMaster.MWSubState <>
 running), or if no attribute has been attached to the model.
 *)

 PROCEDURE CurAboutMRefAttr(): ADDRESS;
 (*
 Returns first attribute associated to the model of which the
 about procedure is currently executed. The value NIL is returned
 if this procedure is called outside 'about'.
 *)

 PROCEDURE ModelLevel(m: Model):CARDINAL;
 (*
 Returns the program level at which model m has been
 instanciated if the model exists, otherwise 0.
 *)

 PROCEDURE ObjectLevel(m: Model; VAR o: REAL):CARDINAL;
 (*
 Returns the program level at which object o of model m has been
 instanciated if such an object exists, otherwise 0.
 *)

(* -- *)
(* direct object manipulations: *)

(* the following type and procedures allow for very efficient access
 to the most important ModelWorks objects. These information are
 provided for the advanced client who writes additional, generally

A 291

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 usable tools for the ModelWorks environment. The direct access to
 some of these data can be risky - the programmer ought to understand
 well what he/she does. *)

 TYPE
 MWObj = (Mo, SV, Pa, MV, AV);
 ExportObjectType = (stateVar, modParam, outAuxVar);
 RealPtr = POINTER TO REAL;
 PtrToClientObject = ADDRESS;

 ObjPtr = POINTER TO ObjectHeader;
 ObjectHeader = RECORD
 ident : String;
 descr : String;
 unit : String;
 varAdr : RealPtr; (* read only; real itself may be altered *)
 min, max : REAL;
 nrAttr : INTEGER;
 refAttr : PtrToClientObject; (* read only *)
 chAttr : CHAR;
 kind : MWObj; (* read only *)
 parentM : Model; (* read only *)
 next : ObjPtr; (* read only *)
 prev : ObjPtr; (* read only *)
 END(*ObjectHeader*);

 PROCEDURE FirstModel(): ObjPtr;
 PROCEDURE FirstSV(m: Model): ObjPtr;
 PROCEDURE FirstP (m: Model): ObjPtr;
 PROCEDURE FirstMV(m: Model): ObjPtr;

 PROCEDURE LastModel(): ObjPtr;
 PROCEDURE LastSV(m: Model): ObjPtr;
 PROCEDURE LastP (m: Model): ObjPtr;
 PROCEDURE LastMV(m: Model): ObjPtr;

 PROCEDURE AllowForRAMSESExport (owner: Model;
 VAR obj: REAL; ident: ARRAY OF CHAR;
 eot: ExportObjectType);
 (*
 Once a model object has been passed to this routine, it becomes
 visible for RAMSES model systems, which corresponds to an
 export from the ModelWorks object base to the RAMSES object
 base. Within the RAMSES object base objects can be identified
 via their identifiers.
 *)

END SimObjects.

A 292

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3 A UXILIARY LIBRARY

The here listed definitions represent only a few of the modules actually contained in the auxiliary
library of the RAMSES software package1. They are likely to be of interest in a modeling and
simulation context. For the relationship between auxiliary library modules and the "Dialog
Machine" and ModelWorks see also part II Theory section Module structure of ModelWorks.

D.3.1 IdentifyPars

The module IdentifyPars supports the interactive (or batch), nonlinear parameter identification of
model parameters. No restrictions apply either to the type of model (any elementary or
structured model type may be involved), to the model parameters (linear or nonlinear in the
parameters), nor to the type of optimization criteria. The only requirements are that the model
definition program is complete in order to run a first simulation and that the user provides some
data which specify the desired model behavior. Module IdentifyPars allows then to search for
other model parameter values, or other initial values which behave eventually closer to the desired
model behavior. Of course, neither convergence nor minimal identification time can be
warranted for such a general procedure. For a typical usage of this auxiliary library module see
the sample model GauseIdentif.

DEFINITION MODULE IdentifyPars;

 (***

 Module IdentifyPars (Version 1.1)

 Copyright ©1989 by Olivier Roth and Swiss
 Federal Institute of Technology Zürich ETHZ

 Purpose: Identifies parameters of a "ModelWorks"
 model implemented as a model definition program.

 Remarks: Uses internally the "Dialog Machine", the mandatory
 client interface of ModelWorks, i.e. SimBase and
 SimMaster, and from the optional client interface the
 module SimObjects. Moreover the auxiliary library
 modules Lists, IRand, and Matrices (actually consisting
 of many modules).

 Note, this module exists in several implementation
 versions, since the more complex identification routines
 such as Powell have been implemented in form of large
 libraries. The simple implementation does not
 import from this package and has therefore the advantage
 of being much smaller; however, as a consequence, the
 method Powell can't be used in this version (On the Macintosh
 check the version text with the Get Info command to verify
 which version you are currently using).

 Implementation restriction:
 A maximum of 1024 parameters can be identified at once.

 Programming

 o Design and Implementation
 O. Roth 19.05.90

1For availability, installation, and complete list see the separate booklet "Installation Guide and Technical
Reference of the RAMSES software".

A 293

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 A. Fischlin 27.01.93

 Swiss Federal Institute of Technology Zurich ETHZ
 Department of Environmental Sciences
 Systems Ecology Group
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Last revision of definition: 27/Jan/93 af

 ***)

 TYPE
 RealFct = PROCEDURE (): REAL;
 MinMethod = (halfDouble, amoeba, price, random, brent, powell, simplex);

 (* Description of the different methods can be found in:
 + Press, H.W., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T., 1986,
 "Numerical Recipes: the Art of Scientific Computing", Cambridge University Press,
 New York, 818pp.
 + Price, W.L., 1976, "A controlled random search procedure for global
 optimisation", The Computer Journal 20(4): 367-370.
 *)

 PROCEDURE MarkParForIdentification(VAR p: REAL);
 PROCEDURE UnmarkParForIdentification(VAR p: REAL);
 PROCEDURE UnmarkAllParsForIdentification;
 (* maintains a list of parameters which are to be identified later
 with the identification procedures of this module (see
 below). You may mark or unmark any parameter from that list
 by means of the 3 procedures above, given the parameters have
 been previously declared to ModelWorks by SimBase.DeclP. or
 interactively by a call to procedure MinimizeAfterDialog (see
 below). *)

 PROCEDURE SetDefltMinim(meth: MinMethod;
 maxIter: INTEGER;
 convC: REAL);
 PROCEDURE GetDefltMinim(VAR meth: MinMethod;
 VAR maxIter: INTEGER;
 VAR convC: REAL);
 (* Set/get the default minimization method "meth", the default maximum
 number of iterations "maxIter", and the default convergence
 criterion value "convC". These procedures are typically called
 before "MinimizeAfterDialog" to assure meaningfull default
 settings. *)

 PROCEDURE MinimizeAfterDialog(func: RealFct);
 (* Opens a scrollable selector box in which you may choose and select
 (mark) parameters interactively to be identified. "func" is
 the procedure computing the performance index (i.e. it calls
 e.g. SimRun and then SimDeltaCalc.GetDeltaStat). *)

 PROCEDURE Minimize(method: MinMethod; convC: REAL;
 maxIter: INTEGER; func: RealFct);
 (* Executes all necessary runs to perform an identification. "method"
 specifies one of the above listed identification methods,
 "convC" stands for a convergence criterion value, "maxIter"
 denotes the maximum number of iterations, and "func" is a
 function procedure returning the value of the performance
 index by calling e.g. SimRun and then
 SimDeltaCalc.GetDeltaStat. Note: "maxIter" is NOT the exact
 maximal number of performed SimRun's, since an iteration

A 294

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 consists usually of several runs (depending on the selected
 identification method). *)

END IdentifyPars.

A 295

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.2 JulianDays

Calendar time is usually the preferred way to associate important characteristics with time, e.g.
the seasonal temperature cycle is usually related to months. However, computations such as
time intervals from calendar time are a nuisance; e.g. how many hours are between 21st
February, 8h23'00'', and 2nd September, 14h17'00" in the year 1954? On the other hand if any
date is measured in Julian days, i.e. a real number t, which have an origin or reference point to at
a known calendar time of yearo, montho, dayo, houro, mino, seco etc., such computations are
reduced to simple real arithmetics. To the end that such a time can still be read by humans, the
only thing needed are convenient functions which allow to convert between calendar time and a
Julian time at any point in time. In addition we need also means to define the point of origin to.
This functionality is exactly the purpose of module JulianDays. In the context of dynamic
models which have to operate on time, it provides the numerically delicate but easy to use
conversion algorithms which allow to use a Julian time scale conveniently.

DEFINITION MODULE JulianDays;

 (***

 Module JulianDays (Version 2.0)

 Copyright 1989 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zuerich ETHZ

 Purpose Translates back and forth dates into a number of
 days (Julian days) in order to allow the computing
 with dates.

 Remark This implementation is based on the Gregorian
 calendar, which is valid after 15.Oct.1582. Note that
 this date followed immediately after 4.Oct.1582 to
 correct for accumulated errors in the Julian calendar
 introduced by Julius Caesar "ab urbe condiata", the
 foundation of Rome, i.e. 753 BC (Gregorian calendar
 correction by Pope Gregor XIII). The Gregorian
 calendar will need no corrections for 3333
 years.

 Note there is also the so-called Julian Period, which
 is used in astronomy as proposed by Joseph Justus
 Scaliger (1581): First Julian Date (J.D.) is middle
 noon, 1. Jan.4713 BC. The Julian time is calculated
 in days, and is a real defining hours, minutes plus
 seconds. Note that in this method a day starts at
 noon of standard world time or Greenwich time. There
 is a modified Julian Date (M.J.D.) in use today (much
 used in space travel) which starts at 17.Nov.1858
 00h00'00" ~24 00 000.5 J.D.

 Programming

 - Design
 A. Fischlin 24/09/89

 - Implementation
 A. Fischlin 24/09/89

 Swiss Federal Institute of Technology Zurich ETHZ
 Department of Environmental Sciences
 Systems Ecology Group
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

A 296

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 Last revision of definition: 3/02/94 af

 ***)

 CONST
 Jan = 1; Feb = 2; Mar = 3; Apr = 4; Mai = 5; Jun = 6;
 Jul = 7; Aug = 8; Sep = 9; Oct = 10; Nov = 11; Dec = 12;

 Sun = 1; Mon = 2; Tue = 3; Wed = 4; Thur = 5; Fri = 6; Sat = 7;

 TYPE
 Month = [Jan..Dec];
 WeekDay = [Sun..Sat];
 DateAndTime = RECORD
 year: INTEGER; (* e.g. 1582,...,1994,...,2040 etc.*)
 month: Month;
 day: INTEGER; (* [1..31] (depends on month) *)
 hour, (* [0..23] *)
 min: INTEGER; (* [0..59] *)
 sec: INTEGER; (* [0..59] *)
 dayOfWeek: WeekDay; (* e.g. Sun *)
 secFrac: REAL; (* fraction of a second,
 e.g. 0.13 for 13 hundredth of a second *)
 END;

 PROCEDURE DateTimeToJulDay(dt: DateAndTime): LONGREAL;
 PROCEDURE JulDayToDateTime(jd: LONGREAL; VAR dt: DateAndTime);
 (*
 Above two routines allow to convert between a julian day given
 as a real number and an ordinary calendar date plus the time of
 the day.
 *)

 PROCEDURE DateToJulDay(day,month,year: INTEGER): LONGINT;
 PROCEDURE JulDayToDate(jd: LONGINT; VAR day: INTEGER;
 VAR month: Month;
 VAR year: INTEGER;
 VAR dayOfWeek: WeekDay);
 (*
 Above two routines allow to convert between a julian day and an
 ordinary calendar date. Hereby ignoring the time of the day.
 *)

 PROCEDURE IsLeapYear(yr: INTEGER): BOOLEAN;

 PROCEDURE SetCalendarRange(firstYear,lastYear,firstSunday: INTEGER);
 (*
 This procedure allows to set the calendar range for which the
 algorithms of this module shall work. They work correctly
 from the date 15.Oct.1582 onwards for the next 3333 years and
 given the following restrictions are satisfied: The first
 year must be an year following immediately a leap year. The
 day of the first Sunday in January in the first year
 (firstSunday) must be specified, otherwise weekdays won't be
 computed correctly. If faulty values are specified
 this routine will lead to an error condition.

 The default range is firstYear = 1949, lastYear = 5282,
 firstSunday = 2, since the 2nd January 1949 is a
 Sunday. (Other possibilities: Sunday, 6.Jan.1805).

 Note that calling this procedure may be useful in order to
 use Julian days of type INTEGER instead of LONGINT. Then the
 calendar routines can cover fully 137 years without causing
 an overflow when assigning the LONGINT result of procedure
 DateToJulDay to an INTEGER variable.
 *)

A 297

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

END JulianDays.

A 298

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.3 Queues

Queues of any objects such as persons or parcels are often needed in the context of simulations
with DEVS. Module Queues provides the instantiation and the management of FIFO-queues
(First In, First Out). For a typical usage of this auxiliary library module see the sample model
CarPollution, in particular the submodels CPTraffic andCPCrossRoad.

DEFINITION MODULE Queues;

 (***

 Module Queues (Version 1.0)

 Copyright (c) 1992 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Version written for:
 MacMETH_V3.2 (1-Pass Modula-2 implementation)

 Purpose Utilities needed for discrete event simulations
 involving queues

 Programming

 o Design
 A. Fischlin 17/Mar/93

 o Implementation
 A. Fischlin 17/Mar/93

 Swiss Federal Institute of Technology Zurich ETHZ
 CH-8092 Zurich
 Switzerland

 Last revision of definition: 17/Mar/93 AF

 ***)

 FROM SimEvents IMPORT Transaction;

 TYPE
 FIFOQueue;
 ItemAction = PROCEDURE (Transaction);

 VAR
 notExistingFIFOQueue: FIFOQueue; (* read only *)

 PROCEDURE CreateFIFOQueue(VAR q: FIFOQueue; maxLength: INTEGER);

 PROCEDURE EmptyFIFOQueue(q: FIFOQueue);
 PROCEDURE FileIntoFIFOQueue(q: FIFOQueue; ta: Transaction);
 PROCEDURE FirstInFIFOQueue(q: FIFOQueue): Transaction;
 PROCEDURE Take1stFromFIFOQueue(q: FIFOQueue): Transaction;
 PROCEDURE FIFOQueueLength(q: FIFOQueue): INTEGER;
 PROCEDURE IsFIFOQueueFull(fifoq: FIFOQueue): BOOLEAN;
 PROCEDURE IsFIFOQueueEmpty(fifoq: FIFOQueue): BOOLEAN;
 PROCEDURE DoForAllInFIFOQueue(q: FIFOQueue; ia: ItemAction);

 PROCEDURE FIFOQueueExists(q: FIFOQueue): BOOLEAN;
 PROCEDURE DiscardFIFOQueue(VAR q: FIFOQueue);

END Queues.

A 299

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

A 300

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.4 RandGen

Any stochastic simulation requires the generation of pseudo-random numbers. This module
provides the basic algorithms to produce a sequence of random numbers or variates, uniformly
distributed in the interval [0..1). The algorithm contained in this module has been carefully
selected for maximum period length, maximum randomness, maximum reliability and portability,
needed for scientific applications, in contrast to the random number generators often available
from the system software. For a typical usage of this auxiliary library module see the sample
model Markov or any of these sample models: Diversity, StochLogGrow, CarPollution (in
particular CPTraffic plus CPObjects), and StochLogGrow.

DEFINITION MODULE RandGen;

 (***

 Module RandGen (Version 1.0)

 Copyright 1988 by Andreas Fischlin and Systems
 Ecology Group ETHZ, Swiss Federal Institute of
 Technology Zuerich ETHZ

 Purpose Basic pseudo-random number generator producing
 uniformly distributed variates within interval (0,1).
 The generator is based on a combination of three
 multiplicative linear congruential random number
 generators.

 Remarks The generator is highly portable and produces
 very-long-cycle random-number sequences. They
 exceed the usual period length of MAX(INTEGER)
 given by the machine dependent word length. Thus
 the generator produces satisfactory results even on
 a personal computer with a small word length (e.g.
 16-Bit machines) and it is efficient, since it does
 not require double precision arithmetics. On
 32-Bit machines like IBM main-frames or the Apple®
 Macintosh™ PC this means that the slow 64-Bit
 multiplication and division can be
 avoided.

 The cycle length of the generator is estimated to
 be > 2.78 E13 so that the sequence will not repeat
 for over 220 years in case that 1000 variates were
 calculated per second (Wichmann & Hill, 1987)

 References:
 Wichmann, B.A. & Hill, I.D., 1982. An efficient and
 portable pseudo-random number generator. Algorithm
 AS 183. Applied Statistics, 31(2): 188-190.

 Wichmann, B. & Hill, D., 1987. Building a random-number
 generator. A Pascal routine for very-long-cycle
 random-number sequences. Byte 1987(March):
 127-28

 Programming

 - Design
 A. Fischlin (21 Dez 88)

 - Implementation
 A.Fischlin/O.Roth (21 Dez 88)

 Swiss Federal Institute of Technology Zurich

A 301

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 Systems Ecology
 Department of Environmental Sciences
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Last revision: 31 Jan 89 (A.F.)

 ***)

 PROCEDURE SetSeeds(z0,z1,z2: INTEGER);
 (*defaults: z0 = 1, z1 = 10000, z2 = 3000 *)
 PROCEDURE GetSeeds(VAR z0,z1,z2: INTEGER);
 PROCEDURE Randomize;
 (*set seeds using seed values depending on a particular, unique
 and non repeatable event in real time, e.g. date and time of
 the clock. Implies a call to SetSeeds*)
 PROCEDURE ResetSeeds;
 (*reset seeds to values defined by last call to SetSeeds*)

 PROCEDURE U(): REAL;
 (*returns within (0,1) uniformly distributed variates*)

 (*
 Based on a combination of three multiplicative linear
 congruential random number generators of the form z(k+1) =
 A*z(k) MOD M with a prime modulus and a primitive root
 multiplier (=> individual generator full length period). The
 multipliers A are: 171, 172, and 170; the modulus' M are:
 30269, 30307, and 30323.
 *)

END RandGen.

D.3.5 RandGen0

This module provides some generators for often used variates such as uniformly distributed
integer or real variates, and negative exponentially distributed variates. Note that this module
together with similar modules has been designed for optimal flexibility by allowing to install into
it any basic random number generator providing uniformly distributed variates in the interval
[0..1) or alternatively (0..1] resp. (0..1). For a typical usage of this auxiliary library module see
the research sample models Diversity and CarPollution (in particular CPTraffic). For the use of
this auxiliary library module see also auxiliary library module RandGen.

DEFINITION MODULE RandGen0;

 (***

 Module RandGen0 (Version 1.0)

 Copyright (c) 1992 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Version written for:
 MacMETH_V3.2 (1-Pass Modula-2 implementation)

 Purpose Simple random number generators often used in
 stochastic simulations.

A 302

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 Remarks This module is best used in connection with
 module RandGen.

 Programming

 o Design
 A. Fischlin 12/Mar/93

 o Implementation
 A. Fischlin 12/Mar/93

 Swiss Federal Institute of Technology Zurich ETHZ
 CH-8092 Zurich
 Switzerland

 Last revision of definition: 12/Mar/93 AF

 ***)

 PROCEDURE J(): INTEGER;
 PROCEDURE Jp(min,max: INTEGER): INTEGER;
 (*
 Return in the range [min..max] uniformly distributed integer
 variates. For J the range [min..max] has to be defined by
 procedure SetJPar. Default: [min..max] = [0..1].
 *)

 PROCEDURE SetJPar(min,max: INTEGER);
 PROCEDURE GetJPar(VAR min,max: INTEGER);
 (*
 Setting and retrieval of the range parameters [min..max] used
 by the integer random number generator J.
 *)

 PROCEDURE R(): REAL;
 PROCEDURE Rp(min,max: REAL): REAL;
 (*
 Return in the range [min..max] uniformly distributed real
 variates. For R the range [min..max] has to be defined by
 procedure SetRPar. Default: [min..max] = [0.0..1.0].
 *)

 PROCEDURE SetRPar(min,max: REAL);
 PROCEDURE GetRPar(VAR min,max: REAL);
 (*
 Setting and retrieval of the range parameters [min..max] used
 by the real random number generator R.
 *)

 PROCEDURE NegExp(): REAL;
 PROCEDURE NegExpP(lambda: REAL): REAL;
 (*
 Sampling of negative exponentially distributed variates. For
 NegExp the mean lambda has to be defined by procedure
 SetNegExpPar. Default: lambda = 1, i.e. a Poisson process where
 on average occurs 1 event per time unit.
 *)

 PROCEDURE SetNegExpPar(lambda: REAL);
 PROCEDURE GetNegExpPar(VAR lambda: REAL);
 (*
 Setting and retrieval of the mean parameter lambda used by the

A 303

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 negative exponential random number generator NegExp.
 *)

 TYPE
 URandGen = PROCEDURE(): REAL;

 (* NOTE: Always call one of the following two procedures before
 calling any other random number generator from this module: *)

 PROCEDURE InstallU0(u0: URandGen);
 (*
 Allows to install the basic random number generator needed by
 all generators exported by this module. The random number
 generator u0 must sample uniformly distributes variates within
 interval [0..1), i.e. it may generate 0.0, but must not
 generate exactly 1. For instance you may install procedure U
 from module RandGen contained in the auxiliary library of the
 RAMSES software, which satisfies these specifications and
 produces high quality pseudo-random number sequences (See also
 procedure InstallU1).
 *)

 PROCEDURE InstallU1(u1: URandGen);
 (*
 Allows to install the basic random number generator needed by
 all generators exported by this module. The random number
 generator u1 must sample uniformly distributes variates within
 interval (0..1] or (0..1), i.e. it may or may not generate 1.0,
 but must not generate exactly 0. The installation of a good
 generator u1 satisfying these specifications results in more
 efficient variates sampling by the NegExp generator than when
 installing a basic generator via procedure InstallU0. However,
 the efficiency may be in conflict with the quality of the
 generated pseudo-random number sequences (see also procedure
 InstallU0).
 *)

END RandGen0.

D.3.6 RandGen1

More generators. For the use of this auxiliary library module see also auxiliary library modules
RandGen0 and RandGen.

DEFINITION MODULE RandGen1;

 (***

 Module RandGen1 (former RandGens) (Version 2.0)

 Copyright ©1990 by Thomas Nemecek and Swiss
 Federal Institute of Technology Zürich ETHZ

 Version written for:
 'Dialog Machine' DM_V2.02 (User interface)
 MacMETH_V2.6.2 (1-Pass Modula-2 implementation)

 Purpose provides different random number generators

 Programming

A 304

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 o Design
 T. Nemecek 20.7.90

 o Implementation
 T. Nemecek 20.7.90

 Swiss Federal Institute of Technology Zurich ETHZ
 Department of Environmental Sciences
 Systems Ecology Group
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Last revision of definition: 9/5/96 ft

 ***)

 PROCEDURE Weibull(): REAL;
 PROCEDURE WeibullP(alpha, beta: REAL): REAL;
 (*
 Provides Weibull distributed random variables. The 2-parametric
 Weibull distribution is used. Prbability density function:
 f(x) = alpha * beta^-alpha * x^(alpha-1) * Exp(-(x/beta)^alpha)

 For Weibull the parameters have to be defined by procedure
 SetWeibullPars (s.b.). Defaults are: alpha = 1.0
 beta = 1.0
 *)

 PROCEDURE SetWeibullPars(alpha, beta: REAL);
 PROCEDURE GetWeibullPars(VAR alpha, beta: REAL);
 (*
 Setting and retrieval of the parameters alpha and beta
 used by the random number generator Weibull.
 *)

 PROCEDURE Triang(): REAL;
 PROCEDURE TriangP(min, mode, max: REAL): REAL;
 (*
 Provides random numbers following a triangular distribution
 with the parameters min,mode,max, where
 min = lowest value
 max = highest value
 mode = coordinate of maximum.
 For Triang the parameters have to be defined by procedure
 SetTriangPars (s.b.). Defaults are: min = -1.0
 max = 1.0
 mode = 0.0
 *)

 PROCEDURE SetTriangPars(min, mode, max: REAL);
 PROCEDURE GetTriangPars(VAR min, mode, max: REAL);
 (*
 Setting and retrieval of the parameters min, max and mode
 used by the random number generator Triang.
 *)

 PROCEDURE VM(): REAL;
 PROCEDURE VMP(mean, kappa: REAL): REAL;
 (*
 provides random number from the von Mises distribution
 (called also the circular normal distribution). The
 values are in the interval [0, 2π]
 For VM the parameters have to be defined by procedure
 SetVMPars (s.b.). Defaults are: mean = 0.0
 kappa = 1.0

A 305

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 *)

 PROCEDURE SetVMPars(mean, kappa: REAL);
 PROCEDURE GetVMPars(VAR mean, kappa: REAL);
 (*
 Setting and retrieval of the parameters mean and kappa
 used by the random number generator VM.
 *)

 TYPE
 URandGen = PROCEDURE(): REAL;

 (* NOTE: ALWAYS call one of the following two procedures before
 calling any other random number generator from this module: *)

 PROCEDURE InstallU0(u0: URandGen);
 (* Allows to install the basic random number generator needed by
 all generators exported by this module. The random number
 generator u0 must sample uniformly distributes variates within
 interval [0..1), i.e. it may generate 0.0, but must not
 generate exactly 1. For instance you may install procedure U
 from module RandGen contained in the auxiliary library of the
 RAMSES software, which satisfies these specifications and
 produces high quality pseudo-random number sequences (See also
 procedure InstallU1). *)

 PROCEDURE InstallU1(u1: URandGen);
 (* Allows to install the basic random number generator needed by
 all generators exported by this module. The random number
 generator u1 must sample uniformly distributes variates within
 interval (0..1] or (0..1), i.e. it may or may not generate 1.0,
 but must not generate exactly 0. The installation of a good
 generator u1 satisfying these specifications results in more
 efficient variates sampling by the NegExp generator than when
 installing a basic generator via procedure InstallU0. However,
 the efficiency may be in conflict with the quality of the
 generated pseudo-random number sequences (see also procedure
 InstallU0). *)

END RandGen1.

D.3.7 RandNormal

This module provides a generator for normally distributed real variates. Note that this module
together with similar modules has been designed for optimal flexibility by allowing to install into
it any basic random number generator providing uniformly distributed variates in the interval
[0..1), (0..1] or (0..1). For a typical usage of this auxiliary library module see the research
sample model StochLogGrow. For the use of this auxiliary library module see also auxiliary
library module RandGen.

DEFINITION MODULE RandNormal;

 (**

 Module RandNormal (Version 1.0)

 Copyright 1987 by Andreas Fischlin and CELTIA,
 Swiss Federal Institute of Technology Zuerich ETHZ

 Purpose Computation of normally distributed variates

A 306

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 References
 Bell, J.R. 1968. Normal random deviates. Algorithm
 334. Colected Algorithms from CACM (Communications
 of the Association for Computing Machinery): 334-P 1-R1

 Box, G. & Muller, M. 1958. A note on the generation of
 normal deviates. Ann. Math. Stat. 28: 610.

 Von Neumann, J. 1959. Various techniques used in
 connection with random digits. In: Nat. Bur.
 Standards Appl. Math. Ser. 12, US GTovt. Printing Off.,
 Washington, D.C., p. 36.

 Remark This implementation allows to be completely independent
 from any particular random number generator (see InstallU).
 NOTE: The module won't crash if InstallU is never called,
 but it will not be able to produce correct results!

 Imported modules: System, MathLib

 Programming

 - Design
 A. Fischlin (17 Dec 87)

 - Implementation
 A. Fischlin (17 Dec 87)

 Swiss Federal Institute of Technology Zurich
 Project Centre IDA
 Pilot Project CELTIA
 [Computer-aided Explorative Learning and Teaching
 with Interactive Animated Simulation]
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Last revision: 22/Mar/93 (af)

 **)

 TYPE
 URandGen = PROCEDURE(): REAL;

 PROCEDURE InstallU(U: URandGen);
 (*
 Installs procedure U which returns variates
 from a random variable uniformally distributed within
 interval [0..1). (NOTE: Always call
 this procedure before calling N or Np).
 *)

 PROCEDURE N(): REAL;
 PROCEDURE Np(mu,stdDev: REAL): REAL;
 (*
 Return a variate from a normally distributed random variable
 with mean mu and the standard deviation stdDev. For N these
 parameters have to be set by procedure SetPars, where the
 default values for mu respectively stdDev are 0 resp. 1.0.
 The variates are computed by the method Box and Muller
 and the Von Neumann rejection technique.

 Implementation note: Crashing of N() or Np in case where U()
 returns zero is prevented by calling U() again; however, if
 zero is an absorbing state for U() this would lead to an
 infinite loop within N() resp. Np(); hence, the implementation
 counts the occurrences of U() returning zero and halts program
 execution after 50000 occurrences.

A 307

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 *)

 PROCEDURE SetPars(mu,stdDev: REAL);
 PROCEDURE GetPars(VAR mu,stdDev: REAL);
 (*
 Set or get the current parameters mu (mean) and the
 stdDev (standard deviation = SQRT(variance)) for
 the normally distributed random variable for which
 procedure N returns variates.
 *)

 PROCEDURE ResetN;
 (*
 The here adopted method (Box and Muller and the Von Neumann
 rejection) computes at each second call of N resp. Np two
 values. Inbetween the already computed and not yet used value
 is simply returned without any further calculations. In order
 to produce completely defined results, for instance after
 setting a new seed value in the basic pseudo-random sequence
 used by U, call this procedure. Only this will fully reset the
 internal mode of this module and put it to a state where it
 always produces the same pseudo random sequence of normally
 distributed variates.
 *)

END RandNormal.

A 308

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.8 ReadData

This module facilitates the reading of data from files, for instance from files storing
measurements, at the begin or during simulations. ReadData is capable to scan a text file by
recognizing numbers, strings, and comments. Numbers are checked for syntax and range, and if
an error is detected, the user is informed and asked via a dialog box to correct the error or to
abandon the reading process completely. The scanner recognizes strings delimited by blanks
(actually any ASCII-ch <= ' ') and comments bracketed by the symbols "(*" respectively ")*".
This module is most useful while implementing and debugging the reading of complex data sets
(note, an alternative to this module is to use directly the module DMFiles from the "Dialog
Machine" as demonstrated by the sample model Sensitivity and the research sample model
LBM). For a typical usage of module ReadData see the sample model SwissPop.

DEFINITION MODULE ReadData;

 (***

 Module ReadData (Version 1.0)

 Copyright 1989 by Andreas Fischlin and CELTIA,
 Swiss Federal Institute of Technology Zuerich ETHZ

 Purpose Export of several utilities to read and test data
 while reading from a file with data in columnar form.

 Programming

 - Design
 A. Fischlin (12 Feb 89)

 - Implementation
 A. Fischlin (12 Feb 89)
 T. Nemecek (9 Sep 89)
 O. Roth (23 Nov 89)
 F. Thommen (03 Mar 91)

 Swiss Federal Institute of Technology Zurich
 Systems Ecology Group
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Last revision: 15 Mar 91 ft

 ***)

 (* List of all idents exported by this module:

 FROM ReadData IMPORT
 negLogDelta, SkipGapOrComment, ReadCharsUnlessAComment,
 SetMissingValCode, GetMissingValCode, SetMissingReal,
 GetMissingReal, SetMissingInt, GetMissingInt, dataF,
 OpenADataFile, OpenDataFile, ReReadDataFile, CloseDataFile,
 SkipHeaderLine, ReadHeaderLine, ReadLn, GetChars, GetStr,
 GetInt, GetReal, SetEOSCode, GetEOSCode, FindSegment,
 SkipToNextSegment, AtEOL, AtEOS, AtEOF, TestEOF, Relation,
 Compare2Strings, ErrorType, NumbType, ErrMsgProc, SetErrMsgP,
 GetErrMsgP, UseDefaultErrMsg;

 *)

 FROM DMStrings IMPORT String;

A 309

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 FROM DMFiles IMPORT TextFile;

 CONST
 negLogDelta = 0.01; (*offset to plot log scale if values <= 0*)

 (* File handling: *)
 VAR dataF: TextFile;

 PROCEDURE OpenADataFile(VAR fn: ARRAY OF CHAR; VAR ok: BOOLEAN);
 (* opens a file using the standard open file dialog *)

 PROCEDURE OpenDataFile (VAR fn: ARRAY OF CHAR; VAR ok: BOOLEAN);
 (* opens a file specified by fn automatically, and calls OpenADataFile
 * if fn couldn't be found *)

 PROCEDURE ReReadDataFile;

 PROCEDURE CloseDataFile;

 (* Reading and number testing *)

 VAR readingAborted: BOOLEAN;
 (* Returns wether the file reading has been aborted by pressing the
 * pushButton "Stop reading". It is highly recommended to use this
 * variable to test whether the reading of the data has been
 * successful. If readingAborted = FALSE subsequently avoid any
 * program loop, for instance a simulation; instead make sure you
 * immediately return control to the'Dialog Machine'. The latter
 * is very important if the user has pressed the button 'Abort
 * prgm', which has signaled to the 'Dialog Machine' to terminate
 * itself (i.e. it actually called QuitDialogMachine from
 * DMMaster). After executing QuitDialogMachine, the 'Dialog
 * Machine' accepts no more user events and any loop under client
 * control can no longer be terminated via ordinary user events
 * such as a menu command 'Stop'. Thus any loop with a termination
 * condition depending on an user event will no longer function,
 * since the current (sub)program level accepts no more user
 * events. *)

 PROCEDURE SkipGapOrComment;
 (* skips all characters <= " " and all text enclosed in comment
 * brackets as used in Modula-2, i.e. "(* *)"
 * This procedure is used in this module. *)

 PROCEDURE ReadCharsUnlessAComment(VAR string: ARRAY OF CHAR);
 (* reads a string beginning from the current position until
 * a character <= " " or a comment is encountered. *)

 (* Missing values: *)

 (* default missingValCode = "N" *)
 PROCEDURE SetMissingValCode(missingValCode : CHAR);
 PROCEDURE GetMissingValCode(VAR missingValCode: CHAR);

 (* default missingReal = DMConversions.UndefREAL() *)
 PROCEDURE SetMissingReal(missingReal : REAL);
 PROCEDURE GetMissingReal(VAR missingReal: REAL);

 (* default missingInt = 0 *)
 PROCEDURE SetMissingInt(missingInt : INTEGER);
 PROCEDURE GetMissingInt(VAR missingInt: INTEGER);

A 310

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 PROCEDURE SkipHeaderLine;

 PROCEDURE ReadHeaderLine(VAR labels: ARRAY OF String;
 VAR nrVars: INTEGER);
 (* IMPORTANT NOTE: labels must be initialized to NIL before first use! *)

 PROCEDURE ReadLn (VAR txt: ARRAY OF CHAR);

 PROCEDURE GetChars(VAR str: ARRAY OF CHAR);

 PROCEDURE GetStr (VAR str: String);

 (* In the following procedures the two first parameters desc and
 * loc are only needed for the display of error messages and help
 * the user to identify an erronous location within the data file:
 * - desc a string describing the kind of data to be read, e.g.
 * population density or number of individuals
 * - loc a location number indicating where the error has
 * been found, e.g. a line number
 *)

 PROCEDURE GetInt (desc : ARRAY OF CHAR; loc: INTEGER;
 VAR x: INTEGER; min, max: INTEGER);

 PROCEDURE GetReal(desc : ARRAY OF CHAR; loc: INTEGER;
 VAR x: REAL; min, max: REAL);

 (* Working with data segments (EOS means End Of Segment): *)

 PROCEDURE SetEOSCode(eosCode : CHAR);

 PROCEDURE GetEOSCode(VAR eosCode: CHAR);

 PROCEDURE FindSegment(segNr: CARDINAL; VAR found: BOOLEAN);

 PROCEDURE SkipToNextSegment(VAR done: BOOLEAN);

 (* Testing: *)

 PROCEDURE AtEOL(): BOOLEAN;

 PROCEDURE AtEOS(): BOOLEAN;

 PROCEDURE AtEOF(): BOOLEAN;

 PROCEDURE TestEOF; (* use only where you don't yet expect EOF (shows alert) *)

 TYPE Relation = (smaller, equal, greater);

 PROCEDURE Compare2Strings(a, b: ARRAY OF CHAR): Relation;

 (* Alerts: *)

 TYPE
 ErrorType = (NoInt, NoReal, TooBig, TooSmall,
 NotEqual, EndOfFile, FileNotFound, DataFNotOpen);
 (* type of the error:
 * -NoInt : Integer expected but string or real encountered
 * -NoReal : Real expected but string or Integer encountered
 * -TooBig : Number higher than max
 * -TooSmall : Number smaller than min
 * -NotEqual : Special case if min=max and number #min resp. max
 * -EndOfFile : Attempt to read the file over it's end

A 311

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 * -FileNotFound : Data file not found
 * -DataFNotOpen : Data file could not be opened *)

 NumbType = (Real, Integer);
 (* tells weather a real or an integer had to be read *)

 Error =
 RECORD
 errorType : ErrorType;
 strFound :ARRAY[0..63] OF CHAR;
 CASE numbType :NumbType OF
 Integer : minI, maxI: INTEGER
 | Real : minR, maxR: REAL
 ELSE
 END;
 desc :ARRAY [0..255] OF CHAR;
 loc :INTEGER
 END(*RECORD*);

 ErrMsgProc = PROCEDURE(Error);

 PROCEDURE SetErrMsgP(errP: ErrMsgProc);
 (* sets the current alert procedure to alert. Useful if working in batch
 * mode to avoid program halt *)

 PROCEDURE GetErrMsgP(VAR currErrP: ErrMsgProc);
 (* gets the current alert procedure *)

 PROCEDURE UseDefaultErrMsg;
 (* re-installs the default alert procedure *)

END ReadData

A 312

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.9 StochStat

Stochastic simulations (see also section Stochastic Simulations in this Appendix) often require a
statistical analysis of the simulation results. The purpose of module StochStat is to support the
sampling of a set of trajectories and to calculate and display graphically some basic statistics
such as means and confidence intervals, assuming a normal distribution. Typically these
trajectories are produced by running the same stochastic model several times (but with different
pseudo random numbers) from within an experiment procedure. For a typical usage of this
module see the sample model StochLogGrow.

DEFINITION MODULE StochStat;

 (***

 Module StochStat (Version 1.1)

 Copyright ©1990 by Thomas Nemecek and Swiss
 Federal Institute of Technology Zürich ETHZ

 Version written for:
 'Dialog Machine' DM_V2.2 (User interface)
 ModelWorks MW_V2.2 (Modelling & Simulation)

 Purpose
 Auxiliary module for stochastic simulation. Calculates
 means, standard deviation and confidence intervals of n
 arrays with m obseravations of a monitorable variable and
 allows to display the means and the confidence intervals
 in the graph window, using the module SimGraphUtils.

 Programming

 o Design
 T. Nemecek 19.4.90

 o Implementation
 T. Nemecek 24.4.90

 Swiss Federal Institute of Technology Zurich ETHZ
 Department of Environmental Sciences
 Systems Ecology Group
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Last revision of definition: 24.06.91 tn

 ***)
 (*. FROM StochStat IMPORT
 StatArray,StatArrayExists,Prob2Tail,Str31,notExistingStatArray,DeclStatArray,
 RemoveStatArray,RemoveAllStatArrays,ClearStatArray,ClearAllStatArrays,
 SetStatArray,SetUndefValue,GetUndefValue,SetTolerance,GetTolerance,
 PutValue,GetValue,GetSingleStatistics,GetStatistics,DeclDispMV,DisplayArray,
 DisplayAllArrays,RealFileFormat,n,dec,FileOutFormat,indepsFormat,
 meansFormat,sumsYFormat,sumsYSquareFormat,stdDevsYFormat,confIntsYFormat,
 confProb,meansOnly,meansSDCI,allVals,DumpStatArray,DumpStatArrays;

 FROM DMFiles IMPORT TextFile;
 FROM DMConversions IMPORT RealFormat;
 FROM SimBase IMPORT Model;

A 313

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 TYPE
 StatArray;
 Prob2Tail = (prob999, prob990, prob950, prob900, prob800);
 (* 2-tailed probablility for confidence intervals the values mean
 promilles. *)
 Str31 = ARRAY [0..31] OF CHAR;

 VAR
 notExistingStatArray: StatArray; (* read only *)

 (************************)
 (* StatArray management *)
 (************************)

 PROCEDURE StatArrayExists(statArray: StatArray): BOOLEAN;

 PROCEDURE DeclStatArray(VAR statArray: StatArray; length: INTEGER);
 (* declares an array of data with n=length observation per run.
 Implicitly calls ClearStatArray! *)

 PROCEDURE RemoveStatArray(VAR statArray: StatArray);

 PROCEDURE RemoveAllStatArrays;

 PROCEDURE ClearStatArray(statArray: StatArray);
 (* fills all columns of the array of data with 0.0,
 except the column with the independent variables, which
 is initialized to the undefined value.
 Resets the array to the initial state. *)

 PROCEDURE ClearAllStatArrays;

 PROCEDURE SetStatArray(statArray: StatArray;
 VAR N, X, sumY, sumYSquare: ARRAY OF REAL);
 (* an initial state of the statArray can be set (var parameters
 only for speed-up reasons). Can be used e.g. to continue an
 experiment, which had to be aborted.
 CAUTION: If any of the values are not known, set undefVal
 for the independent, and 0 for all N, sumY and
 sumYSquare! *)

 (****************)
 (* Data storage *)
 (****************)

 PROCEDURE SetUndefValue(undefVal: REAL);
 (* has only an effect, if no array are currently delrared
 for reasons of consistency*)
 PROCEDURE GetUndefValue(VAR undefVal: REAL);
 (* undefVal is assigned to any statistical value, which can not
 be calculated, because the number of observations is not sufficient,
 e.g. means if n=0, of stDevs is n=1.
 This value is also used to display values in the graph,
 that could not be calculated, e.g. mean if the number
 of observations is 0. You should use an undefVal,
 that does not occur in your data
 The default undefVal is -1.0E30; *)

 PROCEDURE SetTolerance(tol: REAL);
 PROCEDURE GetTolerance(VAR tol: REAL);
 (* tol is the maximal tolerance in which values of the
 independent varible are accepted. The value of the independent
 variable has to lie within the interval [x-tol,x+tol], where x is
 the first value given as independent.

A 314

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 The default tolerance is 10E-4 *)

 PROCEDURE PutValue(statArray: StatArray; index: INTEGER; x, y: REAL);
 (* adds a value y to the stat array *)

 PROCEDURE GetValue(statArray: StatArray; index: INTEGER;
 VAR count, x, sumY, sumYSquare: REAL);

 (************************)
 (* Statistics *)
 (************************)

 PROCEDURE GetSingleStatistics(statArray: StatArray; index: INTEGER;
 VAR count, x, sumY, sumYSquare, meansY, stdDevsY, confIntsY: REAL;
 confProb: Prob2Tail);
 (* gives statistical values describing a single observation point.
 count = number of observations at any observation point
 x = independent variable
 stdDevsY = standard deviation
 confIntsY = half confidence interval for confProb
 of any observation point in the array. The true mean lies within the
 interval [mean-confIntervalY, mean+confIntervalY] with
 a probability confProb.

 The statistics are given as follows for any observation point:
 if N = 0 ==> at any observation point, sumY, sumYSquare = 0,
 all other statistical values are = undefVal
 if N = 1 ==> the mean,sumY & sumYSquare are the single value resp. its
 square and all other values are = undefVal
 if N ≥ 2 ==> all values are calculated
 *)

 PROCEDURE GetStatistics(statArray: StatArray;
 VAR N, X, sumY, sumYSquare, meansY, stdDevsY, confIntsY: ARRAY OF REAL;
 confProb: Prob2Tail; VAR length: INTEGER);

 (* gives statistical values describing the data.
 N = number of observations at any observation point
 X = independet variable

 For further explanations see text of PROC GetSingleStatistics
 *)

 (************************)
 (* Graphical display *)
 (************************)

 PROCEDURE DeclDispMV(statArray: StatArray;
 mDepVar: Model; VAR mvDepVar: REAL;
 mIndepVar: Model; VAR mvIndepVar: REAL);
 (* Each data array to be displayed in the graph window must be associated
 with a dependent and and independent variable, which should both be declared
 as MVs in the client model. If time should be the independent variable,
 then SimGraphUtils.timeIsIndep can be given as parameter.
 See SimGraphUtils.DEF for description of the monitoring mechanism. *)

 PROCEDURE DisplayArray(statArray: StatArray;
 withErrBars: BOOLEAN;
 confProb: Prob2Tail);
 (* The data are displayed in the graph if the following conditions are met:
 1. the associated MV must be set as isY
 2. the associated indepVar must be set as isX, respectively if the
 simulation time is chosen, none of the MVs must be set as isX.

 error bars with probability confProb are displayed, if withErrBars=TRUE
 and all observation points have an N ≥ 2.
 If no values have been stored at any observation point, these values are

A 315

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 displayed as undefVal. Make sure that undefVal lies outside your
 scaling range. *)

 PROCEDURE DisplayAllArrays(withErrBars: BOOLEAN;
 confProb: Prob2Tail);
 (* The data of all array are displayed. You can select the variables you
 want to display as isY. *)

 (****************)
 (* File output *)
 (****************)

 (* supports the file output of StatArray data together with labels,
 written on the top of the data and the independent variable values,
 written in the leftmost column. The data are written from the
 current position of the file f, which should be open. *)
 TYPE
 RealFileFormat = RECORD
 rf: RealFormat;
 n, dec: CARDINAL;
 END;
 FileOutFormat = RECORD
 means, counts, sumsY, sumsYSquare,
 stdDevsY, confIntsY:
 BOOLEAN;
 indepsFormat,meansFormat, sumsYFormat, sumsYSquareFormat,
 stdDevsYFormat, confIntsYFormat:
 RealFileFormat;
 confProb: Prob2Tail;
 END;
 (* The labels are written with the following suffixes:
 mean -ø
 count -N'
 sum Y -∑Y
 standard deviation -stdev
 condifence intervals -CIL resp. -CIH for low and high limit *)

 VAR (* read only! *)
 meansOnly,
 (* writes only means *)
 meansSDCI,
 (* writes means, standard deviations and confidnce intervals *)
 allVals: FileOutFormat;
 (* writes all stored and calculated values *)
 (* default RealFormat:
 rf = ScientificNotation;
 n = 10
 dec = 5
 default confProb = prob950*)

 PROCEDURE DumpStatArray (VAR f: TextFile;
 label: Str31;
 statArray: StatArray;
 fof: FileOutFormat);
 PROCEDURE DumpStatArrays(VAR f: TextFile;
 labels: ARRAY OF Str31;
 statArrays: ARRAY OF StatArray;
 fof: FileOutFormat;
 nArs: INTEGER);
 (* The independent values of the first StatArray are written in the
 leftmost column. In case the arrays have not the same length, the
 length of the first array determines the number of values written.
 A character "N" is written in the positions where data are missing.
 Only the first nArs statArrays are dumped to the file. *)

END StochStat.

A 316

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.10 StructModAux

StructModAux provides support for a model definition program, which consists of several
modules, where each represents a submodel of a structured model. Mainly the dynamic
activation and deactivation of submodels from within the simulation environment is made
accessible via menu commands, even during simulations. For a typical usage of this optional
auxiliary module see the sample model GreenHouse, which demonstrates the technique of
modular modeling in the context of the green-house effect and the carbon fluxes between
atmosphere and biosphere. The sample model CarPollution and the research sample model
LBM also use StructModAux.

DEFINITION MODULE StructModAux;

 (***

 Module StructModAux (Version 1.0)

 Copyright (c) 1993 by Andreas Fischlin and Swiss
 Federal Institute of Technology Zürich ETHZ

 Purpose Utilities, which are of use when working with
 structured ModelWorks models

 Remarks This module imports from the ModelWorks client
 interface

 Implementation restriction: Assumes a single
 Master Model Definition Program (MDP), i.e. it can not
 support simultaneously more than one MDP!

 Programming

 o Design and Implementation
 A. Fischlin 4/1/94

 Systems Ecology
 Institute of Terrestrial Ecology
 Department of Environmental Sciences
 Swiss Federal Institute of Technology Zurich ETHZ
 Grabenstr. 3
 CH-8952 Schlieren/Zurich
 Switzerland

 Last revision of definition: 4/1/94 AF

 ***)

 FROM DMMenus IMPORT Menu, Command;
 FROM SimBase IMPORT MWWindowArrangement;

 TYPE
 StructModelSet = BITSET;
 BooleanFct = PROCEDURE (): BOOLEAN;

 VAR
 customM: Menu; (* may be used to install more commands *)
 chooseCmd: Command;

 PROCEDURE InstallCustomMenu(title, chooseCmdTxt, chooseAlChr: ARRAY OF CHAR);
 (*
 Installs a menu with the title 'title', and as the first

A 317

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 command (i.e. 'chooseCmd') a command with the text
 'chooseCmdTxt'. The latter menu command is associated with
 procedure 'ChooseModel' and can also be activated with the
 alias char (keyboard equivalent) 'chooseAlChr'.

 Typical usage: InstallCustomMenu("Models","Activation…","L");
 executed from within a InitSimEnv procedure.

 See also example at the end of this definition!
 *)

 PROCEDURE ChooseModel;
 (*
 'ChooseModel' is the procedure associated with the menu command
 'chooseMCmd' which allows the simulationist to activate
 previously installed sub models (see procedure
 'AssignSubModel') dynamically. Note that this routine
 calls implicitely 'SetSimEnv'.
 *)

 PROCEDURE AssignSubModel(VAR which: INTEGER; descr: ARRAY OF CHAR;
 act,deact: PROC; isact: BooleanFct);
 (*
 Installs a sub model with the descriptor 'descr' and uses the
 routines 'act', 'deact' respectively 'isact' to activate or
 deactivate respectively to investigate the current presence of
 the sub model. Upon successful assign the submodel gets the
 number 'which'; use it when calling procedure 'SetSimEnv', e.g.
 to denote those submodels you want to be active by default.
 NOTE: Implementation restriction, only up to a maximum of 16
 sub models can be assigned. Submodels can't be deassigned,
 unless they have been assigned by a subprogram level which is
 to be terminated. In the latter case this module automatically
 deassignes any disappearing submodel.
 *)

 PROCEDURE InstallMyGlobPreferences(myPrefs: PROC);
 (*
 Installs routine 'myPrefs' which is used to define defaults of
 global parameters such as default window positions (e.g. by a
 call to routine 'PlaceGraphOnSuperScreen') or global simulation
 parameters (e.g. by a call to the routine 'SetDefltGlobSimPars'
 from module 'SimBase').
 *)

 PROCEDURE SetSimEnv(sms: StructModelSet);
 (*
 Sets the defaults (i.e. executes the previously installed
 routine 'myPrefs' whenever needed) and activates all the models
 specified in 'sms' according to the sequence in which
 sub models were installed by calls to the routine 'AssignSubModel'.
 *)

 (* ==

 Typical example of a master module collecting several sub models by
 means of above routines:
 ...
 ...

 VAR
 atmos, bios, obs: INTEGER;

 PROCEDURE InitSimEnv;
 BEGIN

A 318

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 InstallCustomMenu("Models","Activation…","L");
 SetSimEnv(atmos,obs); (* default activation *)
 END InitSimEnv;

 PROCEDURE SetMyGlobPreferences;
 BEGIN
 SetDefltGlobSimPars(1900.0, 2300.0, 0.5, 0.0001, 1.0, 10.0);
 PlaceGraphOnSuperScreen(tiled);
 END SetMyGlobPreferences;

 BEGIN (* body MyMaster *)
 InstallMyGlobPreferences(SetMyGlobPreferences);
 AssignSubModel(atmos, atmosModelDescr,
 ActivateAtmosModel, DeactivateAtmosModel, AtmosModelIsActive);
 AssignSubModel(bios, biosModelDescr,
 ActivateBiosModel, DeactivateBiosModel, BiosModelIsActive);
 AssignSubModel(obs, obsModelDescr,
 ActivateObsModel, DeactivateObsModel, ObsModelIsActive);
 RunSimEnvironment(InitSimEnv);
 END MyMaster;

 == *)

END StructModAux.

A 319

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.11 TabFunc

TabFunc allows to compute function values by linear interpolation and extrapolation from so-
called table functions, i.e. functions only given by a series of x,y-value pairs instead of an
analytically defined function such as y = sin x. Besides algorithms for inter- and extrapolation
TabFunc has also an user interface, which allows to inspect and edit table functions interactively
via a table or a graphical display. For a typical usage of this optional auxiliary module see the
sample model UseTabFunc1 and SwissPop.

This section does not list the definition module of TabFunc, instead it describes the user as well
as the client interface of this module in more details.

D.3.11.a User Interface

As soon as at least one table function has been declared successfully (see also below section
Declaration of table functions) the module TabFunc activates a user interface. It consists
mainly of the menu TabFuncs (Fig. A10) and some entry forms associated with its menu
commands, plus a window Table Function Editor.

Fig. A10: Menu TabFuncs

Fig. A11: Entry form to select a table function for the editing or viewing of
the values of a particular table function. The functions are listed with their
identifiers only. Functions marked with a '•' are modifiable, i.e. they can actually be
edited, in contrast to those which can only be viewed.

1Only distributed but not listed in this Appendix

A 320

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

The menu serves the editing and resetting of the declared table functions.

Edit table function...: Lets the user edit or inspect a table function.

First the table function has to be selected by clicking into the corresponding radio
button in an entry form similar to the one shown in Fig. A11. Every table function is
identified via its name (formal parameter tabName of procedure DeclTabF).

Secondly the window Table Function Editor is displayed, which looks similar to the
example shown in Fig. A12. A graph of the current table function is drawn to the left;
a table of the current x,y-pairs, i.e. supporting points, is shown to the right.

Fig. A12: Table Function Editor to display (Draw) and edit values of a table
function. In contrast to analytical functions, such a function is defined by
interpolation within a table of x,y-pairs, i.e. a series of supporting points.
Modifiable table functions can be edited, either by dragging supporting points in the
graph visible in the left part of the window, or by typing new values for supporting
points in the table shown to the right. The depicted table function (the one from the
sample model UseTabFunc.MOD) returns values computed from linear
interpolation (within the range [0,50]) respectively extrapolation (outside [0,50];
since ExtrapolMode = lastSlope, extrapolation slopes are given by the closest two
neighboring points, i.e. first two resp. last two points).

A 321

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

A modifiable table function can be edited in three ways: First by entering new values
in the fields of the table, second in the graph by dragging a supporting point with the
mouse, and third by transforming the function into a constant.

First editing method: The left column in the table contains the values of the indepen-
dent variable (x-values) and the right column the values of the corresponding depen-
dent function value (y-values). Every [x,y]-pair defines a supporting point of the func-
tion. Once editing is completed, the push button Draw allows to see the new table
function in graphical form.

Except for the following restrictions, the tabulated values may be edited freely:
It is required that the x-values are always in ascending order and that all x-values must
be different, i.e. if there are n x-values with the index i, they must satisfy the condition
x1 < x2 < x3 < ... < xi < ... < xn-1 < xn. The user is asked to correct values which do not
satisfy this condition.

In addition to typing a series of [x,y]-pairs, it is also possible to enter a single
value, hereby transforming the whole table function into a single constant (see below
third editing method).

Second editing method: In order to change a dependent function value (y-value), drag
the circle which denotes the corresponding point vertically. You may drag a point
outside the graph's panel, as long as the range limits defined at declaration time (see
below section Declaration of table functions) are not exceeded. To change a value of
the independent variable (x-value), press the option-key while dragging in a horizontal
direction. However, in the latter case you are not allowed to drag a point beyond the
adjacent x-values. The point's new numerical values, visible in the table to the right, are
updated accordingly.

Third editing method: In order to quickly transform a whole table function into a
single constant or model parameter, enter the constant in the top field of the x-values
and click into the push button Const. The top x-value is then copied to all other x-
values and the graph redrawn.

Even if a table function is not modifiable, it is possible to open the window Table
Function Editor. In this case the corresponding graph is depicted and the x,y-values of
the supporting points are tabulated. However, neither dragging of points nor editing of
values is possible.

The push buttons at the lower left corner may be used for editing or to issue
commands.

-- Push button Close (or the keyboard equivalent W) closes the window; in case
the table function has actually been modified, the user is first asked whether the
changes shall be really used (see above button Use) or whether the actual table
function shall remain untouched, exactly as it was before the menu command
TabFuncs/Edit/View table function… has been chosen.

Push button Initial discards all previous editing and reverts the values originally
specified when the table function has been declared (see below section Declara-
tion of table functions) as if the user would have retyped these values into the
table in the upper right corner. Thus, do not confound this with a reset (see menu
command TabFuncs/Reset table functions), since the equivalent to a reset would
require to perform actually the following: First to push the button Initial, then
without any editing inbetween to push the button Use immediately after.

- Push button Draw to (re)draw the graph with the current supporting values, as
shown in the table at the right of the graph. You may push this button as many
times you wish, of course also while editing the table.

A 322

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

- Push button Use accepts the edited coordinates of the supporting points as the
new current values and redraws the graph. Note that from then on all interpola-
tions or extrapolations done with this table function will use the new values.
(Since it is the default button, it may also be pushed via a keyboard equivalent, i.e.
by pressing either the key Return or Enter).

- Push button Const supports the third editing method (see above) and allows to
turn a table function quickly into a single model parameter.

Reset table function...: Resets the values of an individual table function to the values
specified when the table function has been declared. This command displays an entry
form similar to the one shown in Fig. A13, which lists all modifiable table functions.
Select the table function to be reset by clicking into the corresponding radio button.
Again table functions are listed by their names (formal parameter tabName of
procedure DeclTabF). This command is equivalent to first selecting a table function
for editing via the menu command TabFuncs/Edit/View table function… plus pushing
the buttons Initial, Use, and Close from within the window Table Function Editor.

Fig. A13: Entry form to select a particular table function for its resetting.
Only modifiable functions, denoted by their identifiers, are listed .

Reset all table functions: Resets all modifiable table functions to their originally declared
values without asking the user for a selection of a particular table function.

Show table functions editor: Shows the table function editor window by bringing it to the
front.

The user interface, in particular the menu TabFuncs, vanishes as soon as the last table function
has been removed (see also below section Removing table functions).

D.3.11.b Declaration of table functions

It is recommended to initialize the variables of type TabFUNC with the value notExistingTabF
within the body of the corresponding scope before declaring the table functions.

 TYPE TabFUNC;

 VAR notExistingTabF: TabFUNC; (* read only! *)

A 323

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

Table functions may be declared with the procedure DeclTabF or DeclTabFM. The first
alternative requires to specify the values with two arrays of reals (formal parameters xx and yy of
procedure DeclTabF). The second allows to use the data type Matrix (formal parameter xyVecs
of procedure DeclTabF) from the auxiliary module Matrices. Once declared there will be no
difference between table functions, regardless of their declaration method.

 PROCEDURE DeclTabF(VAR t : TabFUNC;
 xx, yy : ARRAY OF REAL;
 NValPairs : INTEGER;
 modifiable : BOOLEAN;
 tabName,
 xName, yName,
 xUnit, yUnit : ARRAY OF CHAR;
 xMin, xMax,
 yMin, yMax : REAL);

 PROCEDURE DeclTabFM(VAR t : TabFUNC;
 xyVecs : Matrix;
 modifiable : BOOLEAN;
 tabName,
 xName, yName,
 xUnit, yUnit : ARRAY OF CHAR;
 xMin, xMax,
 yMin, yMax : REAL);

The meaning of the formal parameters is as follows:

t The variable t is of the opaque type TabFUNC . It is used to identify
the table function. If a table function is already assiciated to t a warning will be
displayed and t is left untouched.

xx, yy The vector xx contains the independent and yy the dependent values of
the table function being defined. The elements of the xx vector must be in ascending
order otherwise the table function will not be declared.

xyVecs This matrix contains the values of the independent variable in the first
column and the values of the dependent variable of the table function in the second
column. Again the independent values must be given in ascending order, otherwise the
table function will not be declared.

NValPairs Number of elements in the xx and yy vectors holding a valid value.

modifiable If TRUE the table function may be modified by the table function
editor, otherwise only viewed.

tabName Is used for the identification of the table function in the user interface,
such as its selection e.g. in the table function editor's entry form (Fig. A11 and A4).

xName, yName, xUnit, yUnit The names of the table function's axis variables and
their unit. These strings will be used in the table function editor window.

xMin, xMax, yMin, yMax Define the upper and lower bounds for each axis. Attempts to
drag points or to enter values outside of these ranges are not possible or will not be
accepted by the table function editor. If during declaration any value of the
independent or dependent variables is outside of these ranges, a warning message will
be displayed and the table function will not be declared.

Note that if DeclTabF or DeclTabFM declares the first table function, the menu TabFuncs will
be installed and becomes visible, given the "Dialog Machine" is currently running (see above
section User Interface).

A 324

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.11.c Modification of table functions

 PROCEDURE GetTabF(t: TabFUNC;
 VAR xx, yy : ARRAY OF REAL;
 VAR NValPairs : INTEGER;
 VAR modifiable : BOOLEAN;
 VAR tabName,
 xName, yName,
 xUnit, yUnit : ARRAY OF CHAR;
 VAR xMin, xMax,
 yMin, yMax : REAL);

 PROCEDURE SetTabF(t : TabFUNC;
 xx, yy : ARRAY OF REAL;
 NValPairs : INTEGER;
 modifiable : BOOLEAN;
 tabName,
 xName, yName,
 xUnit, yUnit : ARRAY OF CHAR;
 xMin, xMax,
 yMin, yMax : REAL);

 PROCEDURE GetTabFM(t : TabFUNC;
 VAR xyVecs : Matrix;
 VAR modifiable : BOOLEAN;
 VAR tabName,
 xName, yName,
 xUnit, yUnit : ARRAY OF CHAR;
 VAR xMin, xMax,
 yMin, yMax : REAL);

 PROCEDURE SetTabFM(t : TabFUNC;
 xyVecs : Matrix;
 modifiable : BOOLEAN;
 tabName,
 xName, yName,
 xUnit, yUnit : ARRAY OF CHAR;
 xMin, xMax,
 yMin, yMax : REAL);

The procedures GetTabF and GetTabFM retrieve the current values of the table function t. The
procedures SetTabF and SetTabFM redefine the table function t; you may even change its
dimensions by passing for parameter NValPairs another value than used during the declaration
of t. If the table function t does not exist, a warning will be displayed. The meaning of the
formal parameters is exactly the same as explained in section Declaration of table functions

 PROCEDURE EditTabF (t: TabFUNC);

This procedure opens the window Table Function Editor and allows to edit the table function t.

 PROCEDURE ResetTabF(t: TabFUNC);

This procedure resets a table function to the original values specified when it has been declared
and discards all interactive editing. Every successful call of DeclTabF respectively DeclTabFM,
orSetTabF respectively SetTabFM, sets new default as well as current values, thus performs also
an implicit reset. Any editing via the table function editor affects only the current values.

 PROCEDURE FreezeEditorGraphBounds(VAR t :TabFUNC;
 xMin, xMax,
 yMin, yMax : REAL);
 PROCEDURE UnfreezeEditorGraphBounds(VAR t:TabFUNC);

The call of the procedure FreezeEditorGraphBounds freezes the range of the axes between the
values xMin and xMax, resp. yMin and yMax. Before a call of this procedure or after the call of

A 325

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

UnfreezeEditorGraphBounds the scaling of the axes shown in the graph of the window Table
Function Editor is adjusted such that the curve fills always the entire graph. To suppress this
autoscaling of the axes call FreezeEditorGraphBounds, albeit, note that this may lead to a
situation where the graph might show no part of the curve at all.

D.3.11.d Inter- and extrapolations with table functions

Table functions allow to compute function values within the defined domain [xx[1], xx[n]] by
linear interpolation or outside this range by extrapolation (Fig. A14) by using one of the
following function procedures:

 PROCEDURE Yie(t: TabFUNC; x: REAL): REAL;
 PROCEDURE Yi (t: TabFUNC; x: REAL): REAL;

0
0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11 12

Independent variable x

D
e
p
e
n
d
e
n
t

v
a
ri

a
b
le

 y

from here on
extrapolation

linear interpolation for y-va-
lues missing in between

Defined domain

Coordinates from table
define points of support

from here on
extrapolation

horizontally

lastSlope

lastSlope

horizontally

Fig. A14: Interpolation and extrapolations computed by the function
procedures Yie (inter- and extrapolation) and Yi (only interpolation) for a function
declared as a so-called table function. The table function is defined by supporting
points given in form of coordinates within the domain of definition. Inside the
domain Yi and Yie compute linear interpolations, outside Yie computes linear
extrapolations, depending on the mode either horizontally or along the slope defined
by the two adjacent supporting points.

Extrapolations are allowed if the function procedure Yie is used (read Yie as follows: returns
dependent value Y by linear inter- or extrapolation). If you use Yi (returns dependent value Y
by interpolation only) any attempt to compute a function value y for an independent value x
outside the defined range [xx[1], xx[n]] will result in a warning message, but the value returned
is the same as if Yie would have been called.

 TYPE ExtrapolMode = (lastSlope, horizontally);

 PROCEDURE DefineExtrapolationMode(VAR t:TabFUNC; extrapolation: ExtrapolMode);
 PROCEDURE ExtrapolationMode (t:TabFUNC): ExtrapolMode;

The above procedures allow to define the extrapolation mode of the table function.

The extrapolation modes are defined as follows (n = number of value pairs):

A 326

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

horizontally:

y = yy[1] if x < xx[1]
y = yy[n] if x > xx[n]

lastSlope:

y = yy[1] +
(x - xx[1]) (yy[2]-yy[1])

xx[2]-xx[1] if x < xx[1]

y = yy[n] +
(x - xx[n]) (yy[n]-yy[n-1])

xx[n]-xx[n-1| if x > xx[n]

D.3.11.e Removing table functions

Table functions can be removed by calling the following procedure:

 PROCEDURE RemoveTabF (VAR t: TabFUNC);

Upon a successful return from RemoveTabF t has the value notExistingTabF. Note that if
RemoveTabF removes the last table function, the menu TabFuncs will also be removed (see
above section User Interface).

D.3.12 WriteDatTim

WriteDatTim may be used to record data and time at the begin and end of a long, e.g. several
hours lasting structured simulation (see sample model Markov for such a use). This module is
best used in conjunction with the module DMClock, which allows to access the internal, built in
clock in a hardware independent way.

DEFINITION MODULE WriteDatTim;

 (***

 Module WriteDatTim (Version 2.02)

 Copyright ©1988 by Andreas Fischlin and CELTIA,
 Swiss Federal Institute of Technology Zürich ETHZ

 Version for MacMETH V2.6.2 1-Pass Modula-2 implementation

 Purpose Writing of date and time

 Programming

 • Design/Implementation
 A. Fischlin (16/Mai/88)

 Swiss Federal Institute of Technology Zurich
 Project Centre IDA
 Pilot Project CELTIA
 [Computer-aided Explorative Learning and Teaching
 with Interactive Animated Simulation]
 ETH-Zentrum
 CH-8092 Zurich
 Switzerland

 Last revision: 25 Nov 90 (A.F.)

 ***)

A 327

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 CONST
 Jan = 1; Feb = 2; Mar = 3; Apr = 4; Mai = 5; Jun = 6;
 Jul = 7; Aug = 8; Sep = 9; Oct = 10; Nov = 11; Dec = 12;
 Sun = 1; Mon = 2; Tue = 3; Wed = 4; Thur = 5; Fri = 6; Sat = 7;

 TYPE
 Months = INTEGER;
 WeekDays = INTEGER;
 DateAndTimeRec =
 RECORD
 year: INTEGER; (* 1904,1905,...2040 *)
 month: Months;
 day, (* 1,...31 *)
 hour, (* 0,...,23 *)
 minute, (* 0,...,59 *)
 second: INTEGER; (* 0,...,59 *)
 dayOfWeek: WeekDays; (* Sun = 1, Sat = 7 *)
 END;

 WriteProc = PROCEDURE (CHAR);
 DateFormat = (brief, (* only numbers: e.g. 31/05/88 *)
 letMonth, (* month in letters: e.g. 31/Mai/1988 *)
 full (* full in letters: e.g. 31st Mai 1988 *)
);
 TimeFormat = (brief24h, (* 24 hour format brief: e.g. 23:15 *)
 brief24hSecs, (* 24 hour brief & secs: e.g. 23:15:02 *)
 let24hSecs, (* hour in letters: e.g. 23h 15' 02" *)
 full24hSecs, (* full in letters: e.g. 23 hours
 15 minutes 02 seconds*)
 brief12h (* 24 hour format brief: e.g. 11:15 pm *)
);

 (* the following procedures write information in English only *)
 PROCEDURE WriteDate(d: DateAndTimeRec; w: WriteProc; df: DateFormat);
 PROCEDURE WriteTime(d: DateAndTimeRec; w: WriteProc; tf: TimeFormat);

END WriteDatTim.

A 328

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

E Quick References

E.1 A UXILIARY LIBRARY

The following quick reference lists the exports of the more important modules contained in the
auxiliary library AuxLib. Its modules are all directly or indirectly based on the "Dialog
Machine" only. Some modules import also from the client interface of ModelWorks, some also
from other auxiliary modules. For details on how to work with the auxiliary library see part II
Theory, chapter ModelWorks Functions, section Module structure of ModelWorks, and this
appendix section Sample Models.

Auxiliary Library Modules based on the Dialog Machine Version 2.2 © 1994 Andreas Fischlin, Olivier Roth, Dimitrios Gyalistras, and Markus Ulrich
Swiss Federal Institute of Technology Zurich ETHZ, Switzerland.

(=================== S Y S T E M E C O L O G Y M O D U L E S =====================)

(***************************** Buttons *********************************)

 TYPE Button; ButtonActionProc = PROCEDURE(Button);
 ButtonDrawProc = PROCEDURE(Button, RectArea); PaletteDrawProc = PROCEDURE(INTEGER);

 VAR notInstalledButton: Button;

 PROCEDURE InstallButton (VAR btn : Button; btnFrame : RectArea;
 buttonAction: ButtonActionProc; drawButton : ButtonDrawProc);
 PROCEDURE ButtonExists(btn: Button): BOOLEAN;
 PROCEDURE RemoveButton(VAR btn: Button); PROCEDURE RemoveAllButtonsOfWindow(w: Window);
 PROCEDURE SetToDefaultButton (w: Window; btn: Button; drawDefltButton: ButtonDrawProc);
 PROCEDURE NoDefaultButton (w: Window);
 PROCEDURE GetDefaultButton(w: Window; VAR btn: Button);
 PROCEDURE SetButtonAliasChar (btn: Button; modif: BITSET; aliasChar: CHAR);
 PROCEDURE DisableButton(btn : Button); PROCEDURE EnableButton (btn : Button);
 PROCEDURE IsEnabled (btn: Button): BOOLEAN;
 PROCEDURE SetButtonNr(btn: Button; btnNr: INTEGER); PROCEDURE ButtonNr (btn: Button): INTEGER;
 PROCEDURE OwnerWindow(btn: Button): Window;
 PROCEDURE SetButtonAttr(btn: Button; btnFrame: RectArea;
 btnAction: ButtonActionProc; drawButton: ButtonDrawProc);
 PROCEDURE GetButtonAttr(btn: Button; VAR btnFrame: RectArea;
 VAR btnAction: ButtonActionProc; VAR drawButton: ButtonDrawProc);
 PROCEDURE DrawTextButton (btnFrame: RectArea; butText: ARRAY OF CHAR);
 PROCEDURE DrawDefltButtonFrame (frame: RectArea);
 PROCEDURE AggregatePalette(palNr: INTEGER; fstBtn,lstBtn: Button; drawPalette: PaletteDrawProc);
 PROCEDURE DummyButtonDrawing(dummyBtn: Button; dummyBtnFrame: RectArea);
 PROCEDURE OwnerPalette(btn: Button): INTEGER;
 PROCEDURE GetPaletteDrawProc(palNr: INTEGER; VAR pdp: PaletteDrawProc; VAR done: BOOLEAN);
 PROCEDURE DisaggregatePalette(palNr: INTEGER);
 PROCEDURE RedrawAllButtons (w: Window);
 PROCEDURE DimmAllDisabledButtons (w: Window);
 PROCEDURE DoForAllButtonsOfWindow (w: Window; proc: ButtonActionProc);

(***************************** CellAutoOut *********************************)

 TYPE CellAutoID; Symbol = CHAR; UnderlayMode = (underlayWhite, dontUnderlay);
 CellProcess = PROCEDURE (INTEGER, INTEGER);

 VAR notExistingCA: CellAutoID;

 PROCEDURE DeclCellOutput(VAR caID: CellAutoID; VAR outWindow: Window; plotFrame: RectArea;
 numbX, numbY: INTEGER; withGridLines: BOOLEAN);
 PROCEDURE RemoveCellOutput(VAR caID: CellAutoID); PROCEDURE RemoveAllCellOutputs;
 PROCEDURE CellOutputExists(caID: CellAutoID): BOOLEAN;
 PROCEDURE SelectCellOutput(caID: CellAutoID); PROCEDURE GetCurCellOutput(VAR caID: CellAutoID);
 PROCEDURE ClearCell(x,y: INTEGER);
 PROCEDURE FillCell(x,y: INTEGER; pattern: Pattern; col: Color);
 PROCEDURE DrawInCell(x, y: INTEGER; sym: Symbol; underlay: UnderlayMode);
 PROCEDURE DoForAllCells(doCellProc: CellProcess);
 PROCEDURE CalcCellArea(x,y: INTEGER): RectArea;
 PROCEDURE CalcCellMiddle(x, y: INTEGER; VAR xCoord,yCoord: INTEGER);
 PROCEDURE GetPlotFrame(caID: CellAutoID): RectArea;

(***************************** Confidence *********************************)

 PROCEDURE FInvNormalStand(alfa: REAL): REAL; (* µ = 0, sigma = 1 *)
 PROCEDURE FInvNormal (mu,sigma,alfa: REAL): REAL;
 PROCEDURE FInvStudent (nu: INTEGER; alfa: REAL): REAL;
 PROCEDURE FInvChiSquare (nu: INTEGER; alfa: REAL): REAL;
 PROCEDURE FInvF (nu1,nu2: INTEGER; alfa: REAL): REAL;
 PROCEDURE FInvBinomial (k,N: INTEGER; alfa: REAL): REAL;
 PROCEDURE FInvPoisson (lambda: INTEGER; alfa: REAL): REAL;
 PROCEDURE FInvNegBinomial(mu,k: REAL; alfa: REAL): REAL;

(***************************** FileNameStrs *********************************)

 VAR extSeparator, pathSeparator, volSeparator: CHAR;

 PROCEDURE StripExt(fromName: ARRAY OF CHAR; VAR toName: ARRAY OF CHAR);
 PROCEDURE SetNewExt(fromName, newExt: ARRAY OF CHAR; VAR toName: ARRAY OF CHAR);
 PROCEDURE ExtractExt(pathAndFileName: ARRAY OF CHAR; VAR extension: ARRAY OF CHAR);
 PROCEDURE ExtractFileName(pathAndFileName: ARRAY OF CHAR; VAR fName: ARRAY OF CHAR);
 PROCEDURE ExtractPath(pathAndFileName: ARRAY OF CHAR; VAR path: ARRAY OF CHAR);
 PROCEDURE ExtractRelPath(fullPath, basePath : ARRAY OF CHAR; VAR relPath: ARRAY OF CHAR);
 PROCEDURE ExtractVolName(fullPath: ARRAY OF CHAR; VAR volName: ARRAY OF CHAR);
 PROCEDURE SplitPathFileName(pathAndFileName: ARRAY OF CHAR; VAR path,fName: ARRAY OF CHAR);
 PROCEDURE SplitVolPathFileName(fullPath: ARRAY OF CHAR; VAR volN, pathN, fileN: ARRAY OF CHAR);
 PROCEDURE CompletePath(basePath, relPath: ARRAY OF CHAR; VAR fullPath: ARRAY OF CHAR);

A 329

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 PROCEDURE CompletePathFileName (volN, pathN, fName: ARRAY OF CHAR; VAR fullPathAndFileName: ARRAY OF CHAR);

(***************************** Help *********************************)

 PROCEDURE ShowHelpWindow;
 PROCEDURE SetHelpFileName (fn: ARRAY OF CHAR); PROCEDURE SetResourceFileName(fn: ARRAY OF CHAR);
 PROCEDURE SetInstallationErrHandler(errMsg: PROC);
 PROCEDURE SetDebugMode(debugOn: BOOLEAN);
 PROCEDURE ResetHelp;

(***************************** Histograms *********************************)

 TYPE Histogram; HistoAct = PROCEDURE (Histogram);

 PROCEDURE DefineHistogram(w: Window; VAR h: Histogram; r: RectArea; fromClass,toClass: INTEGER;
 xLabel: ARRAY OF CHAR; maxFreqency: CARDINAL; freqNumbs: BOOLEAN;
 barCol: Color; barPat: Pattern);
 PROCEDURE SetYTickInterval(h: Histogram; interval: INTEGER);
 PROCEDURE ClearHistogram(h: Histogram); PROCEDURE DrawHistogram(h: Histogram);
 PROCEDURE MidTopPoint(h: Histogram; class: INTEGER; f: CARDINAL; VAR x,y: INTEGER);
 PROCEDURE PlotBar(h: Histogram; class: INTEGER; f: CARDINAL);
 PROCEDURE SetPlotBarMode(h: Histogram; wipeOut : BOOLEAN);
 PROCEDURE GetPlotBarMode(h: Histogram; VAR wipeOut, done : BOOLEAN);
 PROCEDURE RemoveHistogram(VAR h: Histogram); PROCEDURE DoForAllHistograms(p: HistoAct);

(***************************** IdentifyPars *********************************)

 TYPE RealFct = PROCEDURE (): REAL; MinMethod = (halfDouble, amoeba, price, random, brent, powell, simplex);
 PROCEDURE MarkParForIdentification(VAR p: REAL); PROCEDURE UnmarkParForIdentification(VAR p: REAL);
 PROCEDURE UnmarkAllParsForIdentification;
 PROCEDURE SetDefltMinim(meth: MinMethod; maxIter: INTEGER; convC: REAL);
 PROCEDURE GetDefltMinim(VAR meth: MinMethod; VAR maxIter: INTEGER; VAR convC: REAL);
 PROCEDURE MinimizeAfterDialog(func: RealFct);
 PROCEDURE Minimize(method: MinMethod; convC: REAL; maxIter: INTEGER; func: RealFct);

(***************************** Jacobi *********************************)

 CONST VecSize=40;

 TYPE Vector = ARRAY [1..VecSize] OF REAL; Matrix = ARRAY [1..VecSize] OF Vector;

 PROCEDURE Jacobi(VAR mat: Matrix; dim: INTEGER; VAR eigVals: Vector; VAR eigVecs: Matrix; VAR numRot: INTEGER);
 PROCEDURE EigSort(VAR eigVals: Vector; VAR eigVecs: Matrix; dim: INTEGER);

(***************************** JulianDays *********************************)

 CONST Jan = 1; Feb = 2; Mar = 3; Apr = 4; Mai = 5; Jun = 6;
 Jul = 7; Aug = 8; Sep = 9; Oct = 10; Nov = 11; Dec = 12;
 Sun = 1; Mon = 2; Tue = 3; Wed = 4; Thur = 5; Fri = 6; Sat = 7;

 TYPE Month = [Jan..Dec]; WeekDay = [Sun..Sat];
 DateAndTime = RECORD
 year: INTEGER; (* e.g. 1582,...,1994,...,2040 etc.*)
 month: Month; day: INTEGER; (* [1..31] (depends on month) *)
 hour, (* [0..23] *)
 min: INTEGER; sec: INTEGER; (* [0..59] *)
 dayOfWeek: WeekDay; (* e.g. Sun *)
 secFrac: REAL; (* fraction of a second, e.g. 0.13 for 13 hundredth of a second *)
 END;
 PROCEDURE DateTimeToJulDay(dt: DateAndTime): LONGREAL;
 PROCEDURE JulDayToDateTime(jd: LONGREAL; VAR dt: DateAndTime);
 PROCEDURE DateToJulDay(day,month,year: INTEGER): LONGINT;
 PROCEDURE JulDayToDate(jd: LONGINT; VAR day: INTEGER; VAR month: Month; VAR year: INTEGER; VAR dayOfWeek: WeekDay);
 PROCEDURE IsLeapYear(yr: INTEGER): BOOLEAN;
 PROCEDURE SetCalendarRange(firstYear,lastYear,firstSunday: INTEGER);

(***************************** Lists *********************************)

 TYPE List; SelectionMode = (single, multipleAdjacent, multipleDisconnected);
 DispListItemProc = PROCEDURE (ADDRESS, INTEGER, INTEGER);
 ItemSelection = (selected, notSelected, all);
 ListItemProc = PROCEDURE (ADDRESS); ListItemWhileProc = PROCEDURE (ADDRESS, VAR BOOLEAN);
 IsSuccessorProc = PROCEDURE (ADDRESS, ADDRESS): BOOLEAN;
 ConditionProc = PROCEDURE (ADDRESS): BOOLEAN;

 VAR noList: List; (* read only variable! *)

 PROCEDURE DeclList (VAR list: List; listName: ARRAY OF CHAR);
 PROCEDURE RemoveList(VAR list: List);
 PROCEDURE ListExists(list: List): BOOLEAN;
 PROCEDURE InsertInList (list: List; aListItem, beforeItem: ADDRESS);
 PROCEDURE DeleteFromList(list: List; VAR aListItem: ADDRESS);
 PROCEDURE ListItemExists(list: List; listItem: ADDRESS): BOOLEAN;
 PROCEDURE DoWithListItems (list: List; doWith: ItemSelection; doSomething: ListItemProc);
 PROCEDURE DoWithListItemsWhile(list: List; doWith: ItemSelection; doSomething: ListItemWhileProc);
 PROCEDURE SortList(list: List; isSuccessor: IsSuccessorProc);
 PROCEDURE InstallLISBox(list : List; window : Window; scrBFrame : RectArea; title : ARRAY OF CHAR;
 dispListItem : DispListItemProc; cellW, cellH : INTEGER; selMode : SelectionMode);
 PROCEDURE RemoveLISBox(list : List);
 PROCEDURE RedrawLISBox(list : List);
 PROCEDURE DeclLISBox (list : List; window : Window; scrBFrame : RectArea; title : ARRAY OF CHAR;
 dispListItem : DispListItemProc; cellW, cellH : INTEGER; selMode : SelectionMode);
 PROCEDURE SetLISBoxAttr(list: List; title : ARRAY OF CHAR; dispListItem : DispListItemProc;
 selMode : SelectionMode);
 PROCEDURE GetLISBoxAttr(list: List; VAR title : ARRAY OF CHAR; VAR dispListItem : DispListItemProc;
 VAR selMode : SelectionMode);
 PROCEDURE SetLISBoxFraming(li: List; boxFramed: BOOLEAN);
 PROCEDURE GetLISBoxFraming(li: List; VAR boxFramed: BOOLEAN);
 PROCEDURE SetScrollBarPlace(li: List; dx,dy,h: INTEGER);
 PROCEDURE GetScrollBarPlace(li: List; VAR dx,dy,h: INTEGER);
 PROCEDURE ScrollLISBox(li: List; by: INTEGER);
 PROCEDURE FlipLISBox(li: List; direction: BOOLEAN);
 PROCEDURE EnableLISBox (list: List);
 PROCEDURE DisableLISBox(list: List);
 PROCEDURE ToggleLISBoxItem(li: List; item: ADDRESS; shifted: BOOLEAN);
 PROCEDURE SetSelectionForAllIf (li: List; ifp: ConditionProc; isSelected: BOOLEAN);
 PROCEDURE SetSelectionForAll (li: List; isSelected: BOOLEAN);
 PROCEDURE JumpToLISBoxItem(list: List; item: ADDRESS);
 PROCEDURE TopLISBoxItem(list: List): ADDRESS;
 PROCEDURE BotLISBoxItem(list: List): ADDRESS;
 PROCEDURE NextLISBoxItem(list: List; item: ADDRESS): ADDRESS;
 PROCEDURE PrevLISBoxItem(list: List; item: ADDRESS): ADDRESS;
 PROCEDURE IsSelected(list: List; item: ADDRESS): BOOLEAN;
 PROCEDURE GetListItemSelection(list: List; VAR lis: ARRAY OF ADDRESS; VAR nSelected: INTEGER);
 PROCEDURE SetListItemSelection(list: List; VAR lis: ARRAY OF ADDRESS; nSelected: INTEGER);

A 330

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

(***************************** Matrices *********************************)

 TYPE Matrix; Cell = RECORD row, col: INTEGER; END(*Cell*);
 Selection = RECORD tople : Cell; botri : Cell; active: Cell; END(*Selection*);

(***************************** MatAccess *********************************)

 PROCEDURE SetMatrixEle(m: Matrix; row, col: INTEGER; val: REAL);
 PROCEDURE GetMatrixEle(m: Matrix; row, col: INTEGER; VAR val: REAL);
 PROCEDURE MEle(m: Matrix; row, col: INTEGER): REAL;
 PROCEDURE FillMatrix (m: Matrix; v : REAL);
 PROCEDURE SetMatrixRow(m: Matrix; nrRow : INTEGER; VAR rowArr : ARRAY OF REAL);
 PROCEDURE SetMatrixCol(m: Matrix; nrCol : INTEGER; VAR colArr : ARRAY OF REAL);
 PROCEDURE GetMatrixRow(m: Matrix; nrRow : INTEGER; VAR rowArr : ARRAY OF REAL);
 PROCEDURE GetMatrixCol(m: Matrix; nrCol : INTEGER; VAR colArr : ARRAY OF REAL);
 PROCEDURE SetIndexRangeChecking(doCheck: BOOLEAN);
 PROCEDURE GetIndexRangeChecking(VAR doCheck: BOOLEAN);
 PROCEDURE SetMatrixName(m: Matrix; VAR name: ARRAY OF CHAR);
 PROCEDURE GetMatrixName(m: Matrix; VAR name: ARRAY OF CHAR);

(***************************** MatCopy *********************************)

 VAR selOneOne : Selection; (* read only ! *)

 PROCEDURE AssignMatrix(VAR myMatrix: ARRAY OF BYTE; m,n: INTEGER; VAR mat: Matrix);
 PROCEDURE RetrieveMatrix(mat: Matrix; VAR myMatrix: ARRAY OF BYTE; m,n: INTEGER);
 PROCEDURE CopyMatrix(a: Matrix; VAR b: Matrix);
 PROCEDURE SelWholeMat(m: Matrix; VAR sel: Selection);
 PROCEDURE CopySelection (sourceMat: Matrix; area: Selection; destMat : Matrix; topLeft: Cell);
 PROCEDURE SwapSelections(mat1: Matrix; area: Selection; mat2 : Matrix; topLeft: Cell);
 PROCEDURE SwapRows(mat1: Matrix; row1: INTEGER; mat2: Matrix; row2: INTEGER);
 PROCEDURE SwapCols(mat1: Matrix; col1: INTEGER; mat2: Matrix; col2: INTEGER);
 PROCEDURE FillDown (mat: Matrix; area: Selection);
 PROCEDURE FillRight(mat: Matrix; area: Selection);

(***************************** MatDeclare *********************************)

 VAR notExistingMatrix: Matrix; (* read only variable! *)

 PROCEDURE DeclMatrix(VAR m: Matrix; nRows, nCols: INTEGER; name : ARRAY OF CHAR);
 PROCEDURE MatrixExists(m: Matrix): BOOLEAN;
 PROCEDURE RemoveMatrix(VAR m: Matrix);
 PROCEDURE SetMatrixDim(VAR m: Matrix; nRows, nCols: INTEGER);
 PROCEDURE GetMatrixDim(m: Matrix; VAR nRows, nCols: INTEGER);

(***************************** MatFile *********************************)

 TYPE MatFormOut = RECORD realF : RealFormat; len, dec : CARDINAL;
 separator: ARRAY[0..63] OF CHAR; crCol : INTEGER; eOM : ARRAY[0..63] OF CHAR; END(*RECORD*);
 MatFormIn = RECORD separator: ARRAY[0..63] OF CHAR; nCols : INTEGER;
 rowSep : ARRAY[0..63] OF CHAR; eOM : ARRAY[0..63] OF CHAR; END(*MatFormIn*);

 VAR standardO : MatFormOut; standardI : MatFormIn; matFileOk : BOOLEAN;

 PROCEDURE SetMatFormIn (mf: MatFormIn); PROCEDURE GetMatFormIn (VAR mf: MatFormIn);
 PROCEDURE SetMatFormOut(mf: MatFormOut); PROCEDURE GetMatFormOut(VAR mf: MatFormOut);
 PROCEDURE WriteMatrix(f : TextFile; m: Matrix);
 PROCEDURE WriteRow (f : TextFile; m: Matrix; rowNr : INTEGER);
 PROCEDURE WriteCol (f : TextFile; m: Matrix; colNr : INTEGER);
 PROCEDURE WriteEle (f : TextFile; m: Matrix; row,col: INTEGER);
 PROCEDURE ReadMatrix (f : TextFile; m: Matrix);
 PROCEDURE ReadRow (f : TextFile; m: Matrix; rowNr : INTEGER);
 PROCEDURE ReadCol (f : TextFile; m: Matrix; colNr : INTEGER);
 PROCEDURE ReadEle (f : TextFile; m: Matrix; row,col: INTEGER);

(***************************** MathProcs **********************************)

 PROCEDURE PowerI(x: REAL; iexp: INTEGER): REAL; PROCEDURE Power (x, exp: REAL): REAL;
 PROCEDURE Lg (x: REAL): REAL; PROCEDURE Fac (k: CARDINAL): CARDINAL;
 PROCEDURE Round (x: REAL): INTEGER; PROCEDURE Int (x: REAL): INTEGER;
 PROCEDURE Imax (i1,i2: INTEGER): INTEGER; PROCEDURE Imin (i1,i2: INTEGER): INTEGER;
 PROCEDURE Rmax (x1,x2: REAL): REAL; PROCEDURE Rmin (x1,x2: REAL): REAL;
 PROCEDURE Pi (): REAL; PROCEDURE Tan (x: REAL): REAL;
 PROCEDURE ArcSin(x: REAL): REAL; PROCEDURE ArcCos(x: REAL): REAL;

(***************************** MsgFiles *********************************)

 CONST english = 0; german = 1; french = 2; italian = 3; myLanguage1 = 4; myLanguage2 = 5; undefMsgNr = -1;

 PROCEDURE SetMessageLanguage(l: INTEGER);
 PROCEDURE SetAsMessageFile(fn: ARRAY OF CHAR; VAR done: BOOLEAN);
 PROCEDURE GetMessage(msgnr: INTEGER; VAR msg: ARRAY OF CHAR);
 PROCEDURE GetNumberedMessage(msgnr: INTEGER; VAR msg: ARRAY OF CHAR);

(***************************** MultiNormal *********************************)

 TYPE MultiNDistr;

 VAR notDeclaredMultiNDistr: MultiNDistr; (* read only *)

 PROCEDURE DeclareMultiNDistr(VAR muVec : Vector; VAR sigVec : Vector; VAR corMat : Matrix;
 dim : INTEGER; VAR mnd : MultiNDistr);
 PROCEDURE MultiNDistrDeclared(mnd: MultiNDistr): BOOLEAN;
 PROCEDURE MultiN(mnd: MultiNDistr; VAR vals: Vector);
 PROCEDURE UndeclareMultiNDistr(VAR mnd: MultiNDistr);

(***************************** Queues *********************************)

 TYPE FIFOQueue; ItemAction = PROCEDURE (Transaction);

 VAR notExistingFIFOQueue: FIFOQueue; (* read only *)

 PROCEDURE CreateFIFOQueue (VAR q: FIFOQueue; maxLength: INTEGER);
 PROCEDURE EmptyFIFOQueue (q: FIFOQueue);
 PROCEDURE FileIntoFIFOQueue (q: FIFOQueue; ta: Transaction);
 PROCEDURE FirstInFIFOQueue (q: FIFOQueue): Transaction;
 PROCEDURE Take1stFromFIFOQueue(q: FIFOQueue): Transaction;
 PROCEDURE FIFOQueueLength (q: FIFOQueue): INTEGER;
 PROCEDURE IsFIFOQueueFull (fifoq: FIFOQueue): BOOLEAN;
 PROCEDURE IsFIFOQueueEmpty(fifoq: FIFOQueue): BOOLEAN;
 PROCEDURE DoForAllInFIFOQueue (q: FIFOQueue; ia: ItemAction);
 PROCEDURE FIFOQueueExists (q: FIFOQueue): BOOLEAN;
 PROCEDURE DiscardFIFOQueue(VAR q: FIFOQueue);

A 331

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

(***************************** RandGen *********************************)

 PROCEDURE SetSeeds(z0,z1,z2: INTEGER); (*defaults: z0=1, z1=10000, z2=3000*)
 PROCEDURE GetSeeds(VAR z0,z1,z2: INTEGER);
 PROCEDURE Randomize; PROCEDURE ResetSeeds;
 PROCEDURE U(): REAL; (*U~(0,1], cycle length >≈ 2.78 E13 ~ 220 years for 1000 U/sec*)

(***************************** RandGen0 *********************************)

 PROCEDURE J(): INTEGER; PROCEDURE Jp(min, max: INTEGER): INTEGER;
 PROCEDURE SetJPar(min,max: INTEGER); PROCEDURE GetJPar(VAR min,max: INTEGER);
 PROCEDURE R(): REAL; PROCEDURE Rp(min, max: REAL): REAL;
 PROCEDURE SetRPar(min,max: REAL); PROCEDURE GetRPar(VAR min,max: REAL);
 PROCEDURE NegExp(): REAL; PROCEDURE NegExpP(lambda: REAL): REAL;
 PROCEDURE SetNegExpPar(lambda: REAL); PROCEDURE GetNegExpPar(VAR lambda: REAL);

 TYPE URandGen = PROCEDURE(): REAL;
 PROCEDURE InstallU0(u0: URandGen); PROCEDURE InstallU1(u1: URandGen);

(***************************** RandGen1 *********************************)

 PROCEDURE Weibull(): REAL; PROCEDURE WeibullP(alpha,beta: REAL): REAL;
 PROCEDURE SetWeibullPars(alpha,beta: REAL);
 PROCEDURE GetWeibullPars(VAR alpha,beta: REAL);
 PROCEDURE Triang(): REAL; PROCEDURE TriangP(min,mode,max: REAL): REAL;
 PROCEDURE SetTriangPars(min,mode,max: REAL);
 PROCEDURE GetTriangPars(VAR min,mode,max: REAL);
 PROCEDURE VM(): REAL; PROCEDURE VMP(mean,kappa: REAL): REAL;
 PROCEDURE SetVMPars(mean,kappa: REAL);
 PROCEDURE GetVMPars(VAR mean,kappa: REAL);

 TYPE URandGen= PROCEDURE(): REAL;
 PROCEDURE InstallU0(u0: URandGen); PROCEDURE InstallU1(u1: URandGen);

(***************************** RandNormal *********************************)

 TYPE URandGen = PROCEDURE(): REAL;
 PROCEDURE InstallU(U: URandGen); (* do always call *)

 PROCEDURE N(): REAL; (* N~(µ,stdDev) *) PROCEDURE Np(mu,stdDev: REAL): REAL;
 PROCEDURE SetPars(mu,stdDev: REAL); (* defaults µ = 0, stdDev = 1 *)
 PROCEDURE GetPars(VAR mu,stdDev: REAL);
 PROCEDURE ResetN; (* call after SetSeeds for full reset of N *)

(***************************** ReadData *********************************)

 VAR dataF: TextFile; readingAborted: BOOLEAN;

 PROCEDURE OpenADataFile(VAR fn: ARRAY OF CHAR; VAR ok: BOOLEAN); (* always with dialog *)
 PROCEDURE OpenDataFile (VAR fn: ARRAY OF CHAR; VAR ok: BOOLEAN); (* normally no dialog *)
 PROCEDURE ReReadDataFile; (* performs a reset *)
 PROCEDURE CloseDataFile;

 PROCEDURE SkipHeaderLine;
 PROCEDURE ReadHeaderLine(VAR labels: ARRAY OF String; VAR nrVars: INTEGER);
 (* assign NIL to labels before first use! *)
 PROCEDURE ReadLn (VAR txt: ARRAY OF CHAR);
 PROCEDURE GetChars(VAR str: ARRAY OF CHAR);
 PROCEDURE GetStr (VAR str: String);
 PROCEDURE SkipGapOrComment; (* skips <= " " and "(* *)" *)
 PROCEDURE ReadCharsUnlessAComment(VAR string: ARRAY OF CHAR);
 PROCEDURE GetInt (desc : ARRAY OF CHAR; loc: INTEGER; VAR x: INTEGER; min, max: INTEGER);
 PROCEDURE GetReal(desc : ARRAY OF CHAR; loc: INTEGER; VAR x: REAL; min, max: REAL);
 PROCEDURE SetMissingValCode(missingValCode: CHAR); (* default "N"; used in dataF *)
 PROCEDURE GetMissingValCode(VAR missingValCode: CHAR);
 PROCEDURE SetMissingReal (missingReal: REAL); (* default 0.0; value used for a real *)
 PROCEDURE GetMissingReal (VAR missingReal: REAL);
 PROCEDURE SetMissingInt (missingInt: INTEGER); (* default 0; value used for an integer *)
 PROCEDURE GetMissingInt (VAR missingInt: INTEGER);
 PROCEDURE SetEOSCode(eosCode: CHAR); (* default ASCII us (unit seperator) 37C *)
 PROCEDURE GetEOSCode(VAR eosCode: CHAR);
 PROCEDURE FindSegment(segNr: CARDINAL; VAR found: BOOLEAN); (* first segNr = 1 *)
 PROCEDURE SkipToNextSegment(VAR done: BOOLEAN);
 PROCEDURE AtEOL(): BOOLEAN; PROCEDURE AtEOS(): BOOLEAN; PROCEDURE AtEOF(): BOOLEAN;
 PROCEDURE TestEOF; (* use only where you don't expect EOF (shows alert) *)

 TYPE Relation = (smaller, equal, greater);
 PROCEDURE Compare2Strings(a, b: ARRAY OF CHAR): Relation;

 CONST negLogDelta = 0.01; (*offset to plot log scale if values <= 0*)

 TYPE ErrorType = (NoInt, NoReal, TooBig, TooSmall, NotEqual, EndOfFile, FileNotFound, DataFNotOpen);
 NumbType = (Real, Integer);
 Error = RECORD
 errorType : ErrorType; strFound : ARRAY[0..63] OF CHAR;
 CASE numbType : NumbType OF
 Integer : minI, maxI: INTEGER
 | Real : minR, maxR: REAL
 ELSE END;
 desc :ARRAY [0..255] OF CHAR; loc :INTEGER
 END;
 ErrMsgProc = PROCEDURE(Error);

 PROCEDURE SetErrMsgP(errP: ErrMsgProc);
 PROCEDURE GetErrMsgP(VAR currErrP: ErrMsgProc);
 PROCEDURE UseDefaultErrMsg;

(**************************** StateEvents ***********************************)

 TYPE StateEvt;

 VAR unexpectedStateEvt: StateEvt; (* read only! *)

 PROCEDURE ExpectStateEvt(VAR evt: StateEvt; x: StateVar; theta1,theta2: REAL);
 PROCEDURE StateEvtExpected(evt: StateEvt): BOOLEAN;
 PROCEDURE IsStateEvt(evt: StateEvt; x: StateVar): BOOLEAN;
 PROCEDURE SetStateEvt(evt: StateEvt; x: StateVar; theta1,theta2: REAL);
 PROCEDURE GetStateEvt(evt: StateEvt; VAR theta1,theta2: REAL);
 PROCEDURE IgnoreStateEvt(VAR evt: StateEvt);

(**************************** StatLib ***********************************)

 TYPE FunctionXProc = PROCEDURE(REAL): REAL; InRangeProc = PROCEDURE(REAL, REAL, REAL): BOOLEAN;

 PROCEDURE MinX (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;

A 332

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 PROCEDURE MaxX (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE WSumX (VAR X: ARRAY OF REAL; N : CARDINAL; FX : FunctionXProc): REAL;
 PROCEDURE SumX (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE SumXY (VAR X, Y: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE SumX2 (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE SumX3 (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE SumX4 (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE WMeanX(VAR X: ARRAY OF REAL; N: CARDINAL; FX : FunctionXProc): REAL;
 PROCEDURE MeanX (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE VarX (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE SDevX (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE SkewX (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE KurtX (VAR X: ARRAY OF REAL; N: CARDINAL): REAL;
 PROCEDURE LinearReg (VAR X, Y: ARRAY OF REAL; N : CARDINAL; VAR a, b, r2 : REAL);
 PROCEDURE FuncX (VAR X, Y: ARRAY OF REAL; N : CARDINAL; FX : FunctionXProc);
 PROCEDURE CountX (VAR X : ARRAY OF REAL; N : CARDINAL; XLow, XHigh: REAL; InRangeX : InRangeProc): CARDINAL;
 PROCEDURE InsertX(VAR X : ARRAY OF REAL; N, j: CARDINAL; xValue : REAL);
 PROCEDURE DeleteX(VAR X : ARRAY OF REAL; N, j: CARDINAL);
 PROCEDURE ClearX (VAR X : ARRAY OF REAL; N : CARDINAL; xValue : REAL);
 PROCEDURE SortX (VAR X : ARRAY OF REAL; N : CARDINAL);
 PROCEDURE NormDist (z1, z2 : REAL): REAL;
 PROCEDURE Factorial (N: CARDINAL): REAL;
 PROCEDURE Combination (N, R : CARDINAL): REAL;
 PROCEDURE Permutation (N, R : CARDINAL): REAL;

(**************************** StochStat ***********************************)

 TYPE StatArray; Prob2Tail = (prob999, prob990, prob950, prob900, prob800); Str31 = ARRAY [0..31] OF CHAR;

 VAR notExistingStatArray: StatArray; (* read only *)

 PROCEDURE StatArrayExists(statArray: StatArray): BOOLEAN;
 PROCEDURE DeclStatArray(VAR statArray: StatArray; length: INTEGER);
 PROCEDURE RemoveStatArray(VAR statArray: StatArray); PROCEDURE RemoveAllStatArrays;
 PROCEDURE ClearStatArray(statArray: StatArray); PROCEDURE ClearAllStatArrays;
 PROCEDURE SetStatArray(statArray: StatArray; N, X, sumY, sumYSquare: ARRAY OF REAL);
 PROCEDURE SetUndefValue(undefVal: REAL); PROCEDURE GetUndefValue(VAR undefVal: REAL);
 PROCEDURE SetTolerance(tol: REAL); PROCEDURE GetTolerance(VAR tol: REAL);
 PROCEDURE PutValue(statArray: StatArray; index: INTEGER; x, y: REAL);
 PROCEDURE GetValue(statArray: StatArray; index: INTEGER; VAR count, x, sumY, sumYSquare: REAL);
 PROCEDURE GetSingleStatistics(statArray: StatArray; index: INTEGER;
 VAR count, x, sumY, sumYSquare, meansY, stdDevsY, confIntsY: REAL; confProb: Prob2Tail);
 PROCEDURE GetStatistics(statArray: StatArray; VAR N, X, sumY, sumYSquare, meansY, stdDevsY, confIntsY: ARRAY OF REAL;
 confProb: Prob2Tail; VAR length: INTEGER);
 PROCEDURE DeclDispMV(statArray: StatArray; mDepVar: Model; VAR mvDepVar: REAL; mIndepVar: Model; VAR mvIndepVar: REAL);
 PROCEDURE DisplayArray(statArray: StatArray; withErrBars: BOOLEAN; confProb: Prob2Tail);
 PROCEDURE DisplayAllArrays(withErrBars: BOOLEAN; confProb: Prob2Tail);
 TYPE RealFileFormat = RECORD rf:RealFormat; n, dec:CARDINAL; END;
 FileOutFormat = RECORD
 means, counts, sumsY, sumsYSquare, stdDevsY, confIntsY: BOOLEAN;
 indepsFormat,meansFormat, sumsYFormat, sumsYSquareFormat, stdDevsYFormat, confIntsYFormat: RealFileFormat;
 confProb: Prob2Tail; END;
 VAR (* read only! *) meansOnly, meansSDCI, allVals: FileOutFormat;

 PROCEDURE DumpStatArray (VAR f: TextFile; label: Str31; statArray: StatArray; fof: FileOutFormat);
 PROCEDURE DumpStatArrays(VAR f: TextFile; labels: ARRAY OF Str31;
 statArrays: ARRAY OF StatArray; fof: FileOutFormat; nArs: INTEGER);

(**************************** StructModAux ***********************************)

 TYPE StructModelSet = BITSET; BooleanFct = PROCEDURE (): BOOLEAN;

 VAR customM: Menu; chooseCmd: Command; (* may be used to install more commands *)

 PROCEDURE InstallCustomMenu(title, chooseCmdTxt, chooseAlChr: ARRAY OF CHAR);
 PROCEDURE AssignSubModel(VAR which: INTEGER; descr: ARRAY OF CHAR; act,deact: PROC; isact: BooleanFct);
 PROCEDURE ChooseModel;
 PROCEDURE InstallMyGlobPreferences(myPrefs: PROC);
 PROCEDURE SetSimEnv(sms: StructModelSet);

(******************************* TabFunc *************************************)

 TYPE TabFUNC; TabFProc = PROCEDURE(VAR TabFUNC);

 VAR notExistingTabF: TabFUNC; (* read only! *)

 PROCEDURE DeclTabF(VAR t: TabFUNC; xx, yy: ARRAY OF REAL; NValPairs: INTEGER; modifiable: BOOLEAN;
 tabName, xName, yName, xUnit, yUnit: ARRAY OF CHAR;
 xMin, xMax, yMin, yMax: REAL);
 PROCEDURE DeclTabFM(VAR t: TabFUNC; xyVecs: Matrix; modifiable: BOOLEAN;
 tabName, xName, yName, xUnit, yUnit: ARRAY OF CHAR;
 xMin, xMax, yMin, yMax: REAL);
 PROCEDURE SetTabF(t: TabFUNC; xx, yy: ARRAY OF REAL; NValPairs: INTEGER; modifiable: BOOLEAN;
 tabName, xName, yName, xUnit, yUnit: ARRAY OF CHAR;
 xMin, xMax, yMin, yMax: REAL);
 PROCEDURE GetTabF(t: TabFUNC; VAR xx, yy: ARRAY OF REAL; VAR NValPairs: INTEGER; VAR modifiable: BOOLEAN;
 VAR tabName, xName, yName, xUnit, yUnit: ARRAY OF CHAR;
 VAR xMin, xMax, yMin, yMax: REAL);
 PROCEDURE SetTabFM(t: TabFUNC; xyVecs: Matrix; modifiable: BOOLEAN;
 tabName, xName, yName, xUnit, yUnit: ARRAY OF CHAR;
 xMin, xMax, yMin, yMax: REAL);
 PROCEDURE GetTabFM(t: TabFUNC; VAR xyVecs: Matrix; VAR modifiable: BOOLEAN;
 VAR tabName, xName, yName, xUnit, yUnit: ARRAY OF CHAR;
 VAR xMin, xMax, yMin, yMax: REAL);
 PROCEDURE RemoveTabF(VAR t: TabFUNC);
 PROCEDURE EditTabF (t: TabFUNC);
 PROCEDURE ResetTabF (t: TabFUNC);
 PROCEDURE FreezeEditorGraphBounds (VAR t: TabFUNC; xMin, xMax, yMin, yMax : REAL);
 PROCEDURE UnfreezeEditorGraphBounds(VAR t: TabFUNC);

 TYPE ExtrapolMode = (lastSlope, horizontally); (* default lastSlope *)

 PROCEDURE DefineExtrapolationMode(VAR t:TabFUNC; extrapolation:ExtrapolMode);
 PROCEDURE ExtrapolationMode(t:TabFUNC): ExtrapolMode;
 PROCEDURE Yi (t: TabFUNC; x: REAL): REAL; (* interpolate only ELSE HALT *)
 PROCEDURE Yie(t: TabFUNC; x: REAL): REAL; (* inter- and extrapolate *)
 PROCEDURE DoForAllTabF(p: TabFProc);

(==================== P U B L I C D O M A I N M O D U L E S =====================)

(***************************** Curves3D **********************************)

 CONST nRun = 5; nVal =250;

A 333

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 TYPE ProjectionEnumerator = (xyPlane, xzPlane, yzPlane, spacial);
 Projections = [xyPlane..spacial]; ProjectionSet = SET OF ProjectionEnumerator;

 PROCEDURE SelectSymbol(theProjection: Projections; symbol: CHAR);
 PROCEDURE ClearUpdateStore;
 PROCEDURE StartNewCurve(projection:ProjectionSet; firstPoint: Point3D);
 PROCEDURE PlotTo3D(P: Point3D); PROCEDURE ReplotAll;
 PROCEDURE GetCurrentProjection():ProjectionSet;
 PROCEDURE StorageOff; PROCEDURE StorageOn;

(***************************** SortLib **********************************)

 PROCEDURE QuickSortX (VAR a: ARRAY OF REAL; n: CARDINAL);
 PROCEDURE QuickSortXY (VAR a, b: ARRAY OF REAL; n: CARDINAL);
 PROCEDURE BinarySortX (VAR a: ARRAY OF REAL; n: CARDINAL);
 PROCEDURE StrSelSortX (VAR a: ARRAY OF REAL; n: CARDINAL);
 PROCEDURE StrSelSortXY (VAR a, b: ARRAY OF REAL; n: CARDINAL);

(***************************** WriteDatTim **********************************)

 CONST
 Jan = 1; Feb = 2; Mar = 3; Apr = 4; Mai = 5; Jun = 6;
 Jul = 7; Aug = 8; Sep = 9; Oct = 10; Nov = 11; Dec = 12;
 Sun = 1; Mon = 2; Tue = 3; Wed = 4; Thur = 5; Fri = 6; Sat = 7;

 TYPE Months = INTEGER; WeekDays = INTEGER;
 DateAndTimeRec = RECORD
 year: INTEGER; (* 1904,1905,...2040 *) month: Months;
 day, (* 1,...31 *) hour, (* 0,...,23 *) minute, second: INTEGER; (* 0,...,59 *)
 dayOfWeek: WeekDays; END;
 WriteProc = PROCEDURE (CHAR);
 DateFormat = (brief, (* only numbers: e.g. 31/05/88 *)
 letMonth, (* month in letters: e.g. 31/Mai/1988 *)
 full); (* full in letters: e.g. 31st Mai 1988 *)
 TimeFormat = (brief24h, brief24hSecs, let24hSecs, full24hSecs, brief12h);
 (* the following procedures write information in English only *)
 PROCEDURE WriteDate(d: DateAndTimeRec; w: WriteProc; df: DateFormat);
 PROCEDURE WriteTime(d: DateAndTimeRec; w: WriteProc; tf: TimeFormat);

(== - E N D - ==)

The auxiliary library modules may be freely copied but not for profit!

A 334

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

E.2 D IALOG MACHINE 1

For details on how to work with the "Dialog Machine" see part II Theory, chapter ModelWorks
Functions, section User Interface Customization and section Module structure of ModelWorks,
and this appendix section Research Sample Models. On the "Dialog Machine" exist separate
documentations (see Literature).

Dialog Machine Version 2.2 (19/Apr/96) (c) 1988-96 Andreas Fischlin, Systems Ecology, and Swiss Federal Institute of Technology Zurich ETHZ

(== K E R N E L ==)

(** DMConversions **)

 TYPE RealFormat = (FixedFormat, ScientificNotation);

 PROCEDURE StringToCard(str: ARRAY OF CHAR; VAR card: CARDINAL; VAR done: BOOLEAN);
 PROCEDURE CardToString(card: CARDINAL; VAR str: ARRAY OF CHAR; length: CARDINAL);
 PROCEDURE StringToLongCard(str: ARRAY OF CHAR; VAR lcard: LONGCARD; VAR done: BOOLEAN);
 PROCEDURE LongCardToString(lcard: LONGCARD; VAR str: ARRAY OF CHAR; length: CARDINAL);
 PROCEDURE StringToInt(str: ARRAY OF CHAR; VAR int: INTEGER; VAR done: BOOLEAN);
 PROCEDURE IntToString(int: INTEGER; VAR str: ARRAY OF CHAR; length: CARDINAL);
 PROCEDURE StringToLongInt(str: ARRAY OF CHAR; VAR lint: LONGINT; VAR done: BOOLEAN);
 PROCEDURE LongIntToString(lint: LONGINT; VAR str: ARRAY OF CHAR; length: CARDINAL);
 PROCEDURE StringToReal(str:ARRAY OF CHAR; VAR real: REAL; VAR done: BOOLEAN);
 PROCEDURE RealToString(real: REAL; VAR str: ARRAY OF CHAR; length, dec: CARDINAL; f: RealFormat);
 PROCEDURE StringToLongReal(Str:ARRAY OF CHAR; VAR longReal: LONGREAL; VAR done: BOOLEAN);
 PROCEDURE LongRealToString(longreal: LONGREAL; VAR str: ARRAY OF CHAR; length, dec: CARDINAL; f: RealFormat);
| PROCEDURE HexStringToBytes(hstr: ARRAY OF CHAR; VAR x: ARRAY OF BYTE; VAR done: BOOLEAN);
| PROCEDURE BytesToHexString(x: ARRAY OF BYTE; VAR hstr: ARRAY OF CHAR); PROCEDURE SetHexDigitsUpperCase(upperC: BOOLEAN);
| PROCEDURE IllegalSyntaxDetected(): BOOLEAN;

| PROCEDURE UndefREAL(): REAL; (* = NAN(017) *) PROCEDURE UndefLONGREAL(): LONGREAL; (* = NAN(017) *)
| PROCEDURE IsUndefREAL(x: REAL): BOOLEAN; PROCEDURE IsUndefLONGREAL(x: LONGREAL): BOOLEAN;

(** DMLanguage **)

 TYPE Language = (English, German, French, Italian, MyLanguage1, MyLanguage2);

 PROCEDURE SetLanguage(l: Language); PROCEDURE CurrentLanguage(): Language;
| PROCEDURE GetMsgString(msgNr: INTEGER; VAR str: ARRAY OF CHAR);

(** DMMaster **)

 TYPE MouseHandlers = (WindowContent, BringToFront, RemoveFromFront, RedefWindow, CloseWindow);
 MouseHandler = PROCEDURE (Window); KeyboardHandler = PROC; SubProgStatus = (normal, abnormal);

 VAR MasterDone: BOOLEAN;

| PROCEDURE AddSetupProc(sup: PROC; priority: INTEGER); PROCEDURE RemoveSetupProc(sup: PROC);
| PROCEDURE AddMouseHandler(which: MouseHandlers; mhp: MouseHandler; priority: INTEGER);
| PROCEDURE RemoveMouseHandler(which: MouseHandlers; mhp: MouseHandler);

| PROCEDURE AddKeyboardHandler(khP: KeyboardHandler; priority: INTEGER); PROCEDURE RemoveKeyboardHandler(khP: KeyboardHandler);

| PROCEDURE InspectKey(VAR ch: CHAR; VAR modifiers: BITSET); PROCEDURE KeyAccepted; PROCEDURE DoTillKeyReleased(p: PROC);
| PROCEDURE SetKeyboardHandlerMode(readGetsThem: BOOLEAN; maxPriority: INTEGER); PROCEDURE Read(VAR ch: CHAR);
| PROCEDURE GetKeyboardHandlerMode(VAR readGetsThem: BOOLEAN; VAR maxPriority: INTEGER); PROCEDURE BusyRead(VAR ch: CHAR);

 PROCEDURE ShowWaitSymbol; PROCEDURE HideWaitSymbol; PROCEDURE Wait(nrTicks: LONGCARD); (* 1 tick = 1/60 second *)
| PROCEDURE SoundBell; PROCEDURE PlayPredefinedMusic(fileName: ARRAY OF CHAR; musicID: INTEGER);

 PROCEDURE InitDialogMachine; PROCEDURE RunDialogMachine; PROCEDURE DialogMachineIsRunning(): BOOLEAN;
 PROCEDURE QuitDialogMachine; PROCEDURE AbortDialogMachine; PROCEDURE DialogMachineTask;
 PROCEDURE CallSubProg(module: ARRAY OF CHAR; VAR status: SubProgStatus);

(** DMMenus **)

 TYPE Menu; Command; AccessStatus = (enabled, disabled); Marking = (checked, unchecked); Separator = (line, blank);
 QuitProc = PROCEDURE(VAR BOOLEAN); SeparatorPosition = (beforeCmd, afterCmd);

| VAR MenusDone: BOOLEAN; notInstalledMenu: Menu; notInstalledCommand: Command;

 PROCEDURE InstallAbout(s: ARRAY OF CHAR; w,h: CARDINAL; p: PROC);
 PROCEDURE NoDeskAccessories;
 PROCEDURE InstallMenu(VAR m: Menu; menuText: ARRAY OF CHAR; ast: AccessStatus);
| PROCEDURE InstallSubMenu (inMenu: Menu; VAR subMenu: Menu; menuText: ARRAY OF CHAR; ast: AccessStatus);
 PROCEDURE InstallCommand(m: Menu; VAR c: Command; cmdText: ARRAY OF CHAR; p: PROC; ast: AccessStatus; chm: Marking);
 PROCEDURE InstallAliasChar(m: Menu; c: Command; ch: CHAR);
| PROCEDURE InstallSeparator(m: Menu; s: Separator); PROCEDURE RemoveSeparator(m: Menu; s: CARDINAL);
| PROCEDURE RemoveSeparatorAtCommand(m: Menu; cmd: Command; sp: SeparatorPosition);

 PROCEDURE InstallQuitCommand(s: ARRAY OF CHAR; p: QuitProc; aliasChar: CHAR);
| PROCEDURE HideSubQuit(onLevel: CARDINAL); PROCEDURE ShowSubQuit(onLevel: CARDINAL);
 PROCEDURE UseMenu(m: Menu); PROCEDURE UseMenuBar;
 PROCEDURE RemoveMenu(VAR m: Menu); PROCEDURE RemoveMenuBar;
| PROCEDURE RemoveCommand(m: Menu; cmd: Command);
 PROCEDURE EnableDeskAccessories; PROCEDURE DisableDeskAccessories;
 PROCEDURE EnableMenu(m: Menu); PROCEDURE DisableMenu(m: Menu);
 PROCEDURE EnableCommand(m: Menu; c: Command); PROCEDURE DisableCommand(m: Menu; c: Command);
 PROCEDURE CheckCommand(m: Menu; c: Command); PROCEDURE UncheckCommand(m: Menu; c: Command);
| PROCEDURE SetCheckSym(m: Menu; c: Command; ch: CHAR); PROCEDURE IsCommandChecked(m: Menu; c: Command): BOOLEAN;
| PROCEDURE ChangeCommand(m: Menu; c: Command; p: PROC); PROCEDURE ChangeCommandText(m: Menu; c: Command;
 newCmdText: ARRAY OF CHAR);
| PROCEDURE ChangeAliasChar(m: Menu; c: Command; newCh: CHAR); PROCEDURE ChangeQuitAliasChar(onLevel: CARDINAL; newAliasCh: CHAR);
| PROCEDURE ExecuteCommand(m: Menu; c: Command); PROCEDURE ExecuteAbout;

1For availability and installation see the separate booklet "Installation Guide and Technical Reference of the
RAMSES software".

A 335

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE MenuExists(m: Menu): BOOLEAN; PROCEDURE CommandExists(m: Menu; c: Command): BOOLEAN;
| PROCEDURE MenuLevel(m: Menu): CARDINAL; PROCEDURE CommandLevel(m: Menu; c: Command): CARDINAL;
| PROCEDURE GetMenuAttributes(m: Menu; VAR menuNr: CARDINAL; VAR menuText: ARRAY OF CHAR; VAR ast: AccessStatus;
 VAR isSubMenu: BOOLEAN; VAR parentMenu: Menu);
| PROCEDURE GetCommandAttributes(m: Menu; c: Command; VAR cmdNr: CARDINAL; VAR cmdText: ARRAY OF CHAR; VAR p: PROC;
 VAR ast: AccessStatus; VAR chm: Marking; VAR chmCh, aliasCh: CHAR);

| PROCEDURE InstallPredefinedMenu (fileName: ARRAY OF CHAR; menuID: INTEGER; VAR m: Menu);
| PROCEDURE InstallPredefinedSubMenu (fileName: ARRAY OF CHAR; menuID: INTEGER; inMenu: Menu; VAR subMenu: Menu);
| PROCEDURE InstallPredefinedCommand (fileName: ARRAY OF CHAR; menuID, itemNr: INTEGER; m: Menu; VAR c: Command; p: PROC);
| PROCEDURE InstallPredefinedSeparator (fileName: ARRAY OF CHAR; menuID, itemNr: INTEGER; m: Menu);
| PROCEDURE SaveAsPredefinedMenu (fileName: ARRAY OF CHAR; menuID: INTEGER; m: Menu);
| PROCEDURE SaveAsPredefinedMenuSection (fileName: ARRAY OF CHAR; menuID: INTEGER; m: Menu; maxItemNr: INTEGER);

(** DMMessages **)

| CONST LNBREAK = 15C; undefMsgNr = -1; toScreen = 0; toJournalFile = 1;

| TYPE MsgRetrieveProc = PROCEDURE (INTEGER , VAR ARRAY OF CHAR);
| MsgDevice = [toScreen..toJournalFile]; MsgWriteProc = PROCEDURE (CHAR); MsgWriteLnProc = PROC;

| PROCEDURE Ask(question: ARRAY OF CHAR; butTexts: ARRAY OF CHAR; butWidth: CARDINAL; VAR answer: INTEGER);
| PROCEDURE DisplayBusyMessage(msg: ARRAY OF CHAR); PROCEDURE DiscardBusyMessage;
| PROCEDURE Inform (paragraph1, paragraph2, paragraph3: ARRAY OF CHAR);
| PROCEDURE DoInform (msgnr: INTEGER; modIdent, locDescr, insertions: ARRAY OF CHAR);
| PROCEDURE Warn (paragraph1, paragraph2, paragraph3: ARRAY OF CHAR);
| PROCEDURE DoWarn (msgnr: INTEGER; modIdent, locDescr, insertions: ARRAY OF CHAR);
| PROCEDURE Abort (paragraph1, paragraph2, paragraph3: ARRAY OF CHAR);
| PROCEDURE DoAbort (msgnr: INTEGER; modIdent, locDescr, insertions: ARRAY OF CHAR);

| PROCEDURE SetMsgRetrieveProc(rp: MsgRetrieveProc); PROCEDURE GetMsgRetrieveProc(VAR rp: MsgRetrieveProc);
| PROCEDURE UseForMsgJournaling(wp: MsgWriteProc; wlnp: MsgWriteLnProc);
| PROCEDURE SetMaxMsgs (max: INTEGER);
| PROCEDURE SetMsgDevice (forAsk,forInform,forWarn,forAbort: MsgDevice);
| PROCEDURE GetMsgDevice (VAR forAsk,forInform,forWarn,forAbort: MsgDevice);
| PROCEDURE AskPredefinedQuestion(fileName: ARRAY OF CHAR; alertID: INTEGER;
 str1,str2,str3,str4: ARRAY OF CHAR; VAR answer: INTEGER);

(** DMStorage **)

| PROCEDURE Allocate(VAR p: ADDRESS; size: LONGINT); PROCEDURE AllocateOnLevel(VAR adr: ADDRESS; size: LONGINT; onLevel: INTEGER);
| PROCEDURE Deallocate(VAR p: ADDRESS); PROCEDURE DeallocateOnLevel(VAR p: ADDRESS; onLevel: INTEGER);

(* IBM PC compatibility: *)
| PROCEDURE ALLOCATE(VAR p: ADDRESS; size: CARDINAL); PROCEDURE DEALLOCATE(VAR p: ADDRESS; size: CARDINAL);

(** DMStrings **)

 TYPE String; StringRelation = (smaller, equal, greater);

| VAR notAllocatedStr: String; ResourceStringsDone: BOOLEAN;

| PROCEDURE AllocateStr(VAR strRef: String; s: ARRAY OF CHAR); PROCEDURE DeallocateStr(VAR strRef: String);
| PROCEDURE SetStr(VAR strRef: String; s: ARRAY OF CHAR); PROCEDURE GetStr(strRef: String; VAR s: ARRAY OF CHAR);
| PROCEDURE StrLevel(strRef: String): CARDINAL; PROCEDURE StrLength(strRef: String): INTEGER;
 PROCEDURE Length(VAR string: ARRAY OF CHAR): INTEGER;
 PROCEDURE AssignString(source: ARRAY OF CHAR; VAR d: ARRAY OF CHAR);
| PROCEDURE Append(VAR dest: ARRAY OF CHAR; source: ARRAY OF CHAR); PROCEDURE AppendCh(VAR dest: ARRAY OF CHAR; ch: CHAR);
| PROCEDURE AppendStr(VAR strRef: String; s: ARRAY OF CHAR); PROCEDURE AppendChr(VAR strRef: String; ch: CHAR);
| PROCEDURE Concatenate(first,second: ARRAY OF CHAR; VAR result: ARRAY OF CHAR);
| PROCEDURE CopyString (VAR from: ARRAY OF CHAR; i1,nrChs: INTEGER; VAR to: ARRAY OF CHAR; VAR i2: INTEGER);
| PROCEDURE Copy(from: ARRAY OF CHAR; startIndex, nrOfChars: INTEGER; VAR to: ARRAY OF CHAR);
| PROCEDURE ExtractSubString(VAR curPosInSrcS: INTEGER; VAR srcS,destS: ARRAY OF CHAR; delimiter: CHAR);
| PROCEDURE FindInString (VAR theString: ARRAY OF CHAR; searchStr: ARRAY OF CHAR; VAR firstCh,lastCh: INTEGER): BOOLEAN;
| PROCEDURE CompareStrings(s1,s2: ARRAY OF CHAR): StringRelation;
| PROCEDURE CompVarStrings(VAR a, b: ARRAY OF CHAR): StringRelation;
| PROCEDURE CompStr(VAR a: ARRAY OF CHAR; bS: String): StringRelation;
 PROCEDURE LoadString(fileName: ARRAY OF CHAR; stringID: INTEGER; VAR string: ARRAY OF CHAR);
 PROCEDURE StoreString(fileName: ARRAY OF CHAR; VAR stringID: INTEGER; string: ARRAY OF CHAR);
 PROCEDURE GetRString(stringID: INTEGER; VAR str: ARRAY OF CHAR);
| PROCEDURE SetRStringName (fileName: ARRAY OF CHAR; stringID: INTEGER; name: ARRAY OF CHAR);
| PROCEDURE GetRStringName (fileName: ARRAY OF CHAR; stringID: INTEGER; VAR name: ARRAY OF CHAR);
 PROCEDURE NewString(VAR s: ARRAY OF CHAR): String; PROCEDURE PutString(VAR strRef: String; VAR s: ARRAY OF CHAR);

(** DMSystem **)

 CONST startUpLevel = 1; maxLevel = 5;

 PROCEDURE CurrentDMLevel(): CARDINAL; PROCEDURE LevelisDMLevel(l: CARDINAL): BOOLEAN;
| PROCEDURE TopDMLevel(): CARDINAL; PROCEDURE DoOnSubProgLevel(l: CARDINAL; p: PROC);
| PROCEDURE ForceDMLevel(extraLevel: CARDINAL); PROCEDURE ResumeDMLevel(normalLevel: CARDINAL);

| PROCEDURE InstallInitProc(ip: PROC; VAR done: BOOLEAN); PROCEDURE ExecuteInitProcs;
| PROCEDURE InstallTermProc(tp: PROC; VAR done: BOOLEAN); PROCEDURE ExecuteTermProcs;

| PROCEDURE GetDMVersion(VAR vers,lastModifDate: ARRAY OF CHAR); PROCEDURE SystemVersion(): REAL;
| PROCEDURE GetComputerName(VAR name: ARRAY OF CHAR);
| PROCEDURE GetCPUName(VAR name: ARRAY OF CHAR); PROCEDURE GetFPUName(VAR name: ARRAY OF CHAR);
| PROCEDURE FPUPresent(): BOOLEAN; PROCEDURE GetROMName(VAR name: ARRAY OF CHAR);

 PROCEDURE ScreenWidth(): INTEGER; PROCEDURE ScreenHeight(): INTEGER;
| PROCEDURE MainScreen(): INTEGER;
| PROCEDURE SuperScreen(VAR whichScreen, x,y,w,h, nrOfColors: INTEGER; colorPriority: BOOLEAN);

 (* low level routines *)
 PROCEDURE MenuBarHeight(): INTEGER; PROCEDURE TitleBarHeight(): INTEGER; PROCEDURE ScrollBarWidth(): INTEGER;
| PROCEDURE GrowIconSize(): INTEGER;
 PROCEDURE NumberOfColors(): INTEGER; (* supported by DM regardless of currently used screen *)
| PROCEDURE HowManyScreens(): INTEGER; PROCEDURE GetScreenSize(screen: INTEGER; VAR x,y,w,h: INTEGER);
| PROCEDURE NumberOfColorsOnScreen(screen: INTEGER): INTEGER;

 CONST unknown = 0;
| Mac512KE = 3; MacSE30 = 9; MacLC = 19; MacPowerBook140 = 25; SUN = 101; IBMPC = 201;
| MacPlus = 4; MacPortable = 10; MacQuadra900 = 20; MacLCII = 19; SUN3 = 102; IBMAT = 202;
| MacSE = 5; MacIIci = 11; MacPowerBook170 = 21; MacQuadra950 = 26; SUNSparc = 103; IBMPS2 = 203;
| MacII = 6; MacIIfx = 13; MacQuadra700 = 22; IBMRisc6000 = 300;
| MacIIx = 7; MacClassic = 17; MacClassicII = 23;
| MacIIcx = 8; MacIIsi = 18; MacPowerBook100 = 24;
 PROCEDURE ComputerSystem(): INTEGER;

 CONST CPU68000 = 1; CPU8088 = 201; CPU80186 = 203; FPU68881 = 1;
 CPU68010 = 2; CPU8086 = 202; CPU80286 = 204; FPU68882 = 2;
 CPU68020 = 3; CPU80386 = 205; FPU68040 = 3;
| CPU68030 = 4; CPU80486 = 206;
| CPU68040 = 5;

A 336

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE CPUType(): INTEGER; PROCEDURE FPUType(): INTEGER;

| CONST MacKeyboard = 1; AExtendKbd = 4; PortableISOKbd = 7; ADBKbdII = 10; PwrBkISOKbd = 13;
| MacKbdAndPad = 2; ADBKeyboard = 5; EastwoodISOKbd = 8; ADBISOKbdII = 11;
| MacPlusKbd = 3; PortableKbd = 6; SaratogaISOKbd = 9; PwrBkADBKbd = 12;
 PROCEDURE Keyboard(): INTEGER;

| CONST ROM64k = 1; ROM128k = 2; ROM256k = 3; ROM512k = 4; ROM1024k = 5; (* ROM types *)
| PROCEDURE ROMType(): INTEGER; PROCEDURE ROMVersionNr(): INTEGER; PROCEDURE QuickDrawVersion(): REAL;

(** DMWindIO **************************************)

 TYPE MouseModifiers = (ordinary, cmded, opted, shifted, capsLock, controlled); ClickKind = SET OF MouseModifiers;
 DragProc = PROCEDURE (INTEGER, INTEGER);

 VAR WindowIODone: BOOLEAN;

 PROCEDURE PointClicked(x,y: INTEGER; maxDist: INTEGER): BOOLEAN;
 PROCEDURE RectClicked(rect: RectArea): BOOLEAN;
 PROCEDURE PointDoubleClicked(x,y: INTEGER; maxDist: INTEGER): BOOLEAN;
 PROCEDURE RectDoubleClicked(rect: RectArea): BOOLEAN;
| PROCEDURE GetLastClick(VAR x,y: INTEGER; VAR click: ClickKind): BOOLEAN;
| PROCEDURE GetLastDoubleClick(VAR x,y: INTEGER; VAR click: ClickKind): BOOLEAN;
 PROCEDURE GetCurMousePos(VAR x,y: INTEGER);
 PROCEDURE GetLastMouseClick(VAR x,y: INTEGER; VAR click: ClickKind);
 PROCEDURE DoTillMButReleased(p: PROC);
 PROCEDURE Drag(duringDragP,afterDragP: DragProc);
 PROCEDURE SetContSize(u: Window; contentRect: RectArea); PROCEDURE GetContSize(u: Window; VAR contentRect: RectArea);
 PROCEDURE SetScrollStep(u: Window; xStep,yStep: INTEGER); PROCEDURE GetScrollStep(u: Window; VAR xStep, yStep: INTEGER);
 PROCEDURE GetScrollBoxPos(u: Window; VAR posX,posY: INTEGER);
| PROCEDURE SetScrollBoxPos(u: Window; posX,posY: INTEGER);
 PROCEDURE GetScrollBoxChange(u: Window; VAR changeX,changeY: INTEGER);
 PROCEDURE AutoScrollProc(u: Window);
 PROCEDURE SetScrollProc(u: Window; scrollP: RestoreProc); PROCEDURE GetScrollProc(u: Window; VAR scrollP: RestoreProc);
 PROCEDURE ScrollContent(u: Window; dx,dy: INTEGER); PROCEDURE MoveOriginTo(u: Window; x0,y0: INTEGER);
 PROCEDURE SelectForOutput(u: Window); PROCEDURE CurrentOutputWindow(): Window;

 TYPE PaintMode = (replace, paint, invert, erase);
 Hue = [0..359]; GreyContent = (light, lightGrey, grey, darkGrey, dark); Saturation = [0..100];
 Color = RECORD hue: Hue; greyContent: GreyContent; saturation: Saturation; END;
 PatLine = BYTE; Pattern = ARRAY [0..7] OF PatLine;

 VAR pat: ARRAY [light..dark] OF Pattern; black, white, red, green, blue, cyan, magenta, yellow: Color;

 PROCEDURE SetMode(mode: PaintMode); PROCEDURE GetMode(VAR mode: PaintMode);
 PROCEDURE SetBackground(c: Color; pat: Pattern); PROCEDURE GetBackground(VAR c: Color; VAR pat: Pattern);
 PROCEDURE SetColor(c: Color); PROCEDURE GetColor(VAR c: Color);
 PROCEDURE SetPattern(p: Pattern); PROCEDURE GetPattern(VAR p: Pattern);
 PROCEDURE IdentifyPos(x,y: INTEGER; VAR line,col: CARDINAL);
 PROCEDURE IdentifyPoint(line,col: CARDINAL; VAR x,y: INTEGER);
 PROCEDURE MaxCol(): CARDINAL; PROCEDURE MaxLn(): CARDINAL;
 PROCEDURE CellWidth(): INTEGER; PROCEDURE CellHeight(): INTEGER;
| PROCEDURE StringArea (s: ARRAY OF CHAR; VAR a: RectArea; VAR baseLine,sepSpace: INTEGER);
| PROCEDURE StringWidth (VAR s: ARRAY OF CHAR): INTEGER;
 PROCEDURE BackgroundWidth(): INTEGER; PROCEDURE BackgroundHeight(): INTEGER;
 PROCEDURE SetEOWAction(u: Window; action: PROC); PROCEDURE GetEOWAction(u: Window; VAR action: PROC);
 PROCEDURE EraseContent; PROCEDURE RedrawContent;
 PROCEDURE SetClipping(cr: RectArea); PROCEDURE GetClipping(VAR cr: RectArea);
 PROCEDURE RemoveClipping;

 TYPE WindowFont = (Chicago, Monaco, Geneva, NewYork); FontStyles = (bold, italic, underline);
| LaserFont = (Times, Helvetica, Courier, Symbol); FontStyle = SET OF FontStyles;

 PROCEDURE SetWindowFont(wf: WindowFont; size: CARDINAL; style: FontStyle);
 PROCEDURE GetWindowFont(VAR wf: WindowFont; VAR size: CARDINAL; VAR style: FontStyle);
| PROCEDURE SetLaserFont(lf: LaserFont; size: CARDINAL; style: FontStyle);
| PROCEDURE GetLaserFont(VAR lf: LaserFont; VAR size: CARDINAL; VAR style: FontStyle);
 PROCEDURE SetPos(line,col: CARDINAL); PROCEDURE GetPos(VAR line,col: CARDINAL);
 PROCEDURE ShowCaret(on: BOOLEAN); PROCEDURE Invert(on: BOOLEAN);
 PROCEDURE Write(ch: CHAR); PROCEDURE WriteString(s: ARRAY OF CHAR);
| PROCEDURE WriteLn; PROCEDURE WriteVarString(VAR s: ARRAY OF CHAR);
| PROCEDURE WriteCard(c,n: CARDINAL); PROCEDURE WriteLongCard(lc: LONGCARD; n: CARDINAL);
| PROCEDURE WriteInt(c: INTEGER; n: CARDINAL); PROCEDURE WriteLongInt(li: LONGINT; n: CARDINAL);
 PROCEDURE WriteReal(r: REAL; n,dec: CARDINAL); PROCEDURE WriteRealSci(r: REAL; n,dec: CARDINAL);
| PROCEDURE WriteLongReal(lr:LONGREAL; n,dec:CARDINAL); PROCEDURE WriteLongRealSci(lr: LONGREAL; n,dec: CARDINAL);
 PROCEDURE SetPen(x,y: INTEGER); PROCEDURE GetPen(VAR x,y: INTEGER);
| PROCEDURE SetBrushSize(width,height: INTEGER); PROCEDURE GetBrushSize(VAR width,height: INTEGER);
 PROCEDURE Dot(x,y: INTEGER); PROCEDURE LineTo(x,y: INTEGER);
 PROCEDURE Circle(x,y: INTEGER; radius: CARDINAL; filled: BOOLEAN; fillpat: Pattern);
 PROCEDURE Area(r: RectArea; pat: Pattern); PROCEDURE CopyArea(sourceArea: RectArea; dx,dy: INTEGER);
 PROCEDURE MapArea(sourceArea,destArea: RectArea);
 PROCEDURE DisplayPredefinedPicture (fileName: ARRAY OF CHAR; pictureID: INTEGER; f: RectArea);
| PROCEDURE GetPredefinedPictureFrame(fileName: ARRAY OF CHAR; pictureID: INTEGER; VAR f: RectArea);
 PROCEDURE StartPolygon; PROCEDURE CloseAndFillPolygon(pat: Pattern);
| PROCEDURE DrawAndFillPoly(nPoints: CARDINAL; VAR x, y: ARRAY OF INTEGER; VAR withEdge: ARRAY OF BOOLEAN;
 VAR edgeColors: ARRAY OF Color; isFilled: BOOLEAN; fillColor: Color; fillPattern: Pattern);

 TYPE QDVHSelect = (v,h); QDVHSelectR = [v..h];
 QDPoint = RECORD CASE:INTEGER OF 0: v,h: INTEGER; | 1: vh: ARRAY QDVHSelectR OF INTEGER; END; END;
 QDRect = RECORD CASE:INTEGER OF 0: top,left,bottom,right: INTEGER; | 1: topLeft,botRight: QDPoint; END; END;

 PROCEDURE XYToQDPoint(x,y: INTEGER; VAR p: QDPoint); PROCEDURE RectAreaToQDRect(r: RectArea; VAR qdr: QDRect);
 PROCEDURE SelectRestoreCopy(u: Window); PROCEDURE SetRestoreCopy(u: Window; rcp: ADDRESS);
 PROCEDURE Turn(angle: INTEGER); PROCEDURE TurnTo(angle: INTEGER); PROCEDURE MoveBy(distance: CARDINAL);
 PROCEDURE ScaleUC(r: RectArea; xmin,xmax,ymin,ymax: REAL); PROCEDURE GetUC(VAR r: RectArea; VAR xmin,xmax,ymin,ymax: REAL);
 PROCEDURE ConvertPointToUC(x,y: INTEGER; VAR xUC,yUC: REAL); PROCEDURE ConvertUCToPoint(xUC,yUC: REAL; VAR x,y: INTEGER);
 PROCEDURE UCFrame; PROCEDURE EraseUCFrame; PROCEDURE EraseUCFrameContent;
 PROCEDURE SetUCPen(xUC,yUC: REAL); PROCEDURE GetUCPen(VAR xUC,yUC: REAL);
 PROCEDURE UCDot(xUC,yUC: REAL); PROCEDURE UCLineTo(xUC,yUC: REAL);
 PROCEDURE DrawSym(ch: CHAR);

(** DMWindows **)

 TYPE Window;
| WindowKind = (GrowOrShrinkOrDrag, FixedSize, FixedLocation, FixedLocTitleBar);
| ModalWindowKind = (DoubleFrame, SingleFrameShadowed);
 ScrollBars = (WithVerticalScrollBar, WithHorizontalScrollBar, WithBothScrollBars, WithoutScrollBars);
 CloseAttr = (WithCloseBox, WithoutCloseBox); ZoomAttr = (WithZoomBox, WithoutZoomBox);
 RectArea = RECORD x,y,w,h: INTEGER END; WindowFrame = RectArea;
 WFFixPoint = (bottomLeft, topLeft); RestoreProc = PROCEDURE (Window);
 WindowProc = PROCEDURE (Window);
| WindowHandlers = (clickedInContent, broughtToFront, removedFromFront,
 redefined, onlyMoved, disappeared, reappeared, closing);

| VAR background: Window; WindowsDone: BOOLEAN; notExistingWindow: Window;

A 337

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE NoBackground; PROCEDURE ReshowBackground;
 PROCEDURE OuterWindowFrame(innerf: WindowFrame; wk: WindowKind; s: ScrollBars; VAR outerf: RectArea);
 PROCEDURE InnerWindowFrame(outerf: WindowFrame; wk: WindowKind; s: ScrollBars; VAR innerf: RectArea);
 PROCEDURE CreateWindow(VAR u: Window; wk: WindowKind; s: ScrollBars; c: CloseAttr; z: ZoomAttr;
 fixPoint: WFFixPoint; f: WindowFrame; title: ARRAY OF CHAR; Repaint: RestoreProc);
| PROCEDURE CreateModalWindow(VAR u: Window; wk: ModalWindowKind; s: ScrollBars; f: WindowFrame; Repaint: RestoreProc);
 PROCEDURE UsePredefinedWindow(VAR u: Window; fileName: ARRAY OF CHAR; windowID: INTEGER;
 fixPoint: WFFixPoint; Repaint: RestoreProc);
| PROCEDURE CreateTitledModalWindow(VAR u: Window; title: ARRAY OF CHAR; f: WindowFrame); CONST DoubleFrameTitled = 3;
 PROCEDURE RedefineWindow(u: Window; f: WindowFrame); PROCEDURE RedrawTitle(u: Window; title: ARRAY OF CHAR);
| PROCEDURE MakeWindowInvisible(u: Window); PROCEDURE MakeWindowVisible(u: Window);
| PROCEDURE IsNowVisible(u: Window): BOOLEAN;
| PROCEDURE WindowLevel(u: Window): CARDINAL;
| PROCEDURE GetWindowCharacteristics(u: Window; VAR wk: INTEGER; VAR modalKind: BOOLEAN; VAR s: ScrollBars; VAR c: CloseAttr;
 VAR z: ZoomAttr; VAR fixPoint: WFFixPoint; VAR f: WindowFrame; VAR title: ARRAY OF CHAR);
 PROCEDURE DummyRestoreProc(u: Window); PROCEDURE AutoRestoreProc(u: Window);
 PROCEDURE SetRestoreProc(u: Window; r: RestoreProc); PROCEDURE GetRestoreProc(u: Window; VAR r: RestoreProc);
 PROCEDURE StartAutoRestoring(u:Window; r: RectArea); PROCEDURE StopAutoRestoring(u: Window);
 PROCEDURE AutoRestoring(u: Window): BOOLEAN; PROCEDURE GetHiddenBitMapSize(u: Window; VAR r: RectArea);
 PROCEDURE UpdateWindow(u: Window); PROCEDURE InvalidateContent(u: Window);
| PROCEDURE UpdateAllWindows;
| PROCEDURE AddWindowHandler(u: Window; wh: WindowHandlers; wpp: WindowProc; prio: INTEGER);
| PROCEDURE RemoveWindowHandler(u: Window; wh: WindowHandlers; wpp: WindowProc);
 PROCEDURE GetWindowFrame(u: Window; VAR f: WindowFrame); PROCEDURE GetWFFixPoint(u: Window; VAR loc: WFFixPoint);
 PROCEDURE DoForAllWindows(action: WindowProc);
| PROCEDURE UseWindowModally(u: Window; VAR terminateModalDialog, cancelModalDialog: BOOLEAN);
 PROCEDURE PutOnTop(u: Window); PROCEDURE FrontWindow(): Window;
 PROCEDURE RemoveWindow(VAR u: Window); PROCEDURE RemoveAllWindows;
 PROCEDURE WindowExists(u: Window): BOOLEAN; PROCEDURE RedrawBackground;
| PROCEDURE AttachWindowObject(u: Window; obj: ADDRESS); PROCEDURE WindowObject(u: Window): ADDRESS;

(== O P T I O N A L M O D U L E S ==)

(** DM2DGraphs **)

 TYPE Graph; Curve;
 LabelString = ARRAY[0..255] OF CHAR; GridFlag = (withGrid, withoutGrid);
 ScalingType = (lin, log, negLog); PlottingStyle = (solid, slash, slashDot, dots, hidden, wipeout);
 Range = RECORD min,max: REAL END; GraphProc = PROCEDURE(Graph);
 AxisType = RECORD range: Range; scale: ScalingType; dec: CARDINAL; tickD: REAL; label: LabelString; END;

| VAR DM2DGraphsDone: BOOLEAN; notExistingGraph: Graph; notExistingCurve: Curve;

 PROCEDURE DefGraph(VAR g: Graph; u: Window; r: RectArea; xAxis, yAxis: AxisType; grid: GridFlag);
 PROCEDURE DefCurve(g: Graph; VAR c: Curve; col: Color; style: PlottingStyle; sym: CHAR);
 PROCEDURE RedefGraph(g: Graph; r: RectArea; xAxis,yAxis:AxisType; grid: GridFlag);
 PROCEDURE RedefCurve(c: Curve; col: Color; style: PlottingStyle; sym: CHAR);
 PROCEDURE ClearGraph(g: Graph); PROCEDURE DrawGraph(g: Graph);
 PROCEDURE DrawLegend(c: Curve; x,y: INTEGER; comment: ARRAY OF CHAR);
 PROCEDURE RemoveGraph(VAR g: Graph); PROCEDURE RemoveAllGraphs(u: Window);
 PROCEDURE RemoveCurve(VAR c: Curve);
 PROCEDURE GraphExists(g: Graph): BOOLEAN; PROCEDURE CurveExists(g: Graph; c: Curve): BOOLEAN;
 PROCEDURE DoForAllGraphs(u: Window; gp: GraphProc);
 PROCEDURE SetNegLogMin(nlm: REAL); PROCEDURE SetGapSym(ch: CHAR); PROCEDURE GetGapSym(VAR ch: CHAR);

 PROCEDURE Move(c: Curve; x,y: REAL); PROCEDURE Plot(curve: Curve; newX,newY: REAL);
 PROCEDURE PlotSym(g: Graph; x,y: REAL; sym: CHAR); PROCEDURE PlotCurve(c: Curve; nrOfPoints: CARDINAL; x,y: ARRAY OF REAL);
 PROCEDURE GraphToWindowPoint(g: Graph; xReal,yReal: REAL; VAR xInt,yInt: INTEGER);
 PROCEDURE WindowToGraphPoint(g: Graph; xInt,yInt: INTEGER; VAR xReal,yReal: REAL);

(** DMAlerts **)

 PROCEDURE WriteMessage(line,col: CARDINAL; msg: ARRAY OF CHAR);
 PROCEDURE ShowAlert(height,width: CARDINAL; WriteMessages: PROC);
 PROCEDURE ShowPredefinedAlert(fileName: ARRAY OF CHAR; alertID: INTEGER; str1,str2,str3,str4: ARRAY OF CHAR);

(** DMClipboard **)

 TYPE EditCommands = (undo, cut, copy, paste, clear);

| VAR ClipboardDone: BOOLEAN;

 PROCEDURE InstallEditMenu(UndoProc, CutProc, CopyProc, PasteProc, ClearProc: PROC);
| PROCEDURE RemoveEditMenu; PROCEDURE UseEditMenu;
 PROCEDURE EnableEditMenu; PROCEDURE DisableEditMenu;
 PROCEDURE EnableEditCommand(whichone: EditCommands); PROCEDURE DisableEditCommand(whichone: EditCommands);

| PROCEDURE PutPictureIntoClipboard;
| PROCEDURE GetPictureFromClipboard(simultaneousDisplay: BOOLEAN; destRect: RectArea);
| PROCEDURE PutTextIntoClipboard;
| PROCEDURE GetTextFromClipboard(simultaneousDisplay: BOOLEAN; destRect: RectArea; fromLine: LONGINT);

(** DMClock **)

| CONST Jan = 1; Feb = 2; Mar = 3; Apr = 4; Mai = 5; Jun = 6; Jul = 7; Aug = 8; Sep = 9; Oct =10; Nov =11; Dec = 12;
| Sun = 1; Mon = 2; Tue = 3; Wed = 4; Thu = 5; Fri = 6; Sat = 7;

| PROCEDURE Today(VAR year, month, day, dayOfWeek: INTEGER); PROCEDURE Now(VAR hour, minute, second: INTEGER);
| PROCEDURE NowInSeconds(): LONGINT;
| PROCEDURE InterpreteSeconds(secs: LONGINT; VAR year, month, day, hour, minute, second, dayOfWeek: INTEGER);
| PROCEDURE ConvertDateToSeconds(year, month, day, hour, minute, second: INTEGER; VAR secs: LONGINT);

(** DMEditFields **)

 TYPE EditItem; RadioBut; EditHandler = PROCEDURE(EditItem);
 ItemType = (charField, stringField, textField, cardField, intField, realField,
 pushButton, radioButtonSet, checkBox, scrollBar); Direction = (horizontal, vertical);

| VAR EditFieldsDone: BOOLEAN; notInstalledEditItem: EditItem; notInstalledRadioBut: RadioBut;

| PROCEDURE MakeCharField(u: Window; VAR ei: EditItem; x,y: INTEGER; ch: CHAR; charset: ARRAY OF CHAR);
| PROCEDURE MakeStringField(u: Window; VAR ei: EditItem; x,y: INTEGER; fw: CARDINAL; string: ARRAY OF CHAR);
| PROCEDURE MakeTextField(u: Window; VAR ei: EditItem; x,y: INTEGER; fw,lines: CARDINAL; string: ARRAY OF CHAR);
| PROCEDURE MakeCardField(u: Window; VAR ei: EditItem; x,y: INTEGER; fw: CARDINAL; card: CARDINAL; minCard,maxCard: CARDINAL);
| PROCEDURE MakeLongCardField(u: Window; VAR ei: EditItem; x,y: INTEGER; fw: CARDINAL;
 card: LONGCARD; minCard,maxCard: LONGCARD);
| PROCEDURE MakeIntField(u: Window; VAR ei: EditItem; x,y: INTEGER; fw: CARDINAL; int: INTEGER; minInt,maxInt: INTEGER);
| PROCEDURE MakeLongIntField(u: Window; VAR ei: EditItem; x,y: INTEGER; fw: CARDINAL;
 int: LONGINT; minInt,maxInt: LONGINT);
| PROCEDURE MakeRealField(u: Window; VAR ei: EditItem; x,y: INTEGER; fw: CARDINAL; real: REAL; minReal,maxReal: REAL);
| PROCEDURE MakeLongRealField(u: Window; VAR ei: EditItem; x,y: INTEGER; fw: CARDINAL;
 real: LONGREAL; minReal,maxReal: LONGREAL);

A 338

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE MakePushButton(u: Window; VAR ei: EditItem; x,y: INTEGER;
 buttonWidth: CARDINAL; buttonText: ARRAY OF CHAR; pushButtonAction: PROC);
| PROCEDURE UseAsDefaultButton(pushButton: EditItem);
 PROCEDURE BeginRadioButtonSet(u: Window; VAR ei: EditItem);
| PROCEDURE AddRadioButton(VAR radButt: RadioBut; x,y: INTEGER; text: ARRAY OF CHAR);
 PROCEDURE EndRadioButtonSet(checkedRadioButton: RadioBut);
| PROCEDURE MakeCheckBox(u: Window; VAR ei: EditItem; x,y: INTEGER; text: ARRAY OF CHAR; boxChecked: BOOLEAN);
| PROCEDURE MakeScrollBar(u: Window; VAR ei: EditItem; x, y, length: INTEGER; sbd: Direction; minVal,maxVal: REAL;
 smallStep, bigStep: REAL; curVal: REAL; actionProc: PROC);

 PROCEDURE SetChar(ei: EditItem; newCh:CHAR); PROCEDURE SetString(ei: EditItem; newStr: ARRAY OF CHAR);
| PROCEDURE SetText(ei: EditItem; VAR text: ARRAY OF CHAR);
| PROCEDURE SetCardinal(ei: EditItem; newValue: CARDINAL); PROCEDURE SetLongCardinal(ei: EditItem; newValue: LONGCARD);
| PROCEDURE SetInteger(ei: EditItem; newValue: INTEGER); PROCEDURE SetLongInteger(ei: EditItem; newValue: LONGINT);
| PROCEDURE SetReal(ei: EditItem; newValue: REAL); PROCEDURE SetLongReal(ei: EditItem; newValue: LONGREAL);
 PROCEDURE SetRadioButtonSet(ei: EditItem; checkedRadioButton: RadioBut);
 PROCEDURE SetCheckBox(ei: EditItem; boxChecked: BOOLEAN);
| PROCEDURE SetScrollBar(ei: EditItem; newValue: REAL);

 PROCEDURE IsChar(ei: EditItem; VAR ch:CHAR): BOOLEAN; PROCEDURE GetString(ei: EditItem; VAR str: ARRAY OF CHAR);
| PROCEDURE GetText(ei: EditItem; VAR text: ARRAY OF CHAR);
| PROCEDURE IsCardinal(ei: EditItem; VAR c: CARDINAL): BOOLEAN; PROCEDURE IsLongCardinal(ei: EditItem; VAR c: LONGCARD): BOOLEAN;
| PROCEDURE IsInteger(ei: EditItem; VAR i: INTEGER): BOOLEAN; PROCEDURE IsLongInteger(ei: EditItem; VAR i: LONGINT): BOOLEAN;
| PROCEDURE IsReal(ei: EditItem; VAR r: REAL): BOOLEAN; PROCEDURE IsLongReal(ei: EditItem; VAR r: LONGREAL): BOOLEAN;
 PROCEDURE GetRadioButtonSet(ei: EditItem; VAR checkedRadioButton: RadioBut);
 PROCEDURE GetCheckBox(ei: EditItem; VAR boxChecked: BOOLEAN);
| PROCEDURE GetScrollBar(ei: EditItem; VAR r: REAL);

| PROCEDURE InstallEditHandler(u: Window; eh: EditHandler); PROCEDURE GetEditHandler(u: Window; VAR eh: EditHandler);
| PROCEDURE SelectField(ei: EditItem); PROCEDURE ClearFieldSelection (u: Window);

| PROCEDURE EnableItem(ei: EditItem); PROCEDURE DisableItem(ei: EditItem); PROCEDURE IsEnabled(ei: EditItem): BOOLEAN;

 PROCEDURE EditItemExists(ei: EditItem): BOOLEAN; PROCEDURE GetEditItemType(ei: EditItem; VAR it: ItemType);
| PROCEDURE RadioButtonExists(rb: RadioBut): BOOLEAN;
| PROCEDURE EditItemLevel(ei: EditItem): CARDINAL; PROCEDURE RadioButtonLevel(rb: RadioBut): CARDINAL;
 PROCEDURE RemoveEditItem(VAR ei: EditItem); PROCEDURE RemoveAllEditItems(u: Window);
| PROCEDURE AttachEditFieldObject(ei: EditItem; obj: ADDRESS); PROCEDURE EditFieldObject(ei: EditItem): ADDRESS;

(** DMEntryForms **)

 TYPE FormFrame = RECORD x,y: INTEGER; lines,columns: CARDINAL END; DefltUse = (useAsDeflt, noDeflt); RadioButtonID;

| VAR FieldInstalled: BOOLEAN; notInstalledRadioButton: RadioButtonID;

 PROCEDURE WriteLabel(line,col: CARDINAL; text: ARRAY OF CHAR);
 PROCEDURE CharField(line,col: CARDINAL; VAR ch: CHAR; du: DefltUse; charset: ARRAY OF CHAR);
 PROCEDURE StringField(line,col: CARDINAL; fw: CARDINAL; VAR string: ARRAY OF CHAR; du: DefltUse);
 PROCEDURE CardField(line,col: CARDINAL; fw: CARDINAL; VAR card: CARDINAL; du: DefltUse; minCard,maxCard: CARDINAL);
| PROCEDURE LongCardField (line,col: CARDINAL; fw: CARDINAL; VAR longCard: LONGCARD; du: DefltUse; minLCard,maxLCard: LONGCARD);
 PROCEDURE IntField(line,col: CARDINAL; fw: CARDINAL; VAR int: INTEGER; du: DefltUse; minInt,maxInt: INTEGER);
| PROCEDURE LongIntField (line,col: CARDINAL; fw: CARDINAL; VAR longInt: LONGINT; du: DefltUse; minLInt,maxLInt: LONGINT);
 PROCEDURE RealField(line,col: CARDINAL; fw: CARDINAL; VAR real: REAL; du: DefltUse; minReal,maxReal: REAL);
| PROCEDURE LongRealField (line,col: CARDINAL; fw,dig: CARDINAL; fmt: RealFormat; VAR longReal: LONGREAL; du: DefltUse;
 minLReal,maxLReal: LONGREAL);
 PROCEDURE PushButton(line,col: CARDINAL; buttonText: ARRAY OF CHAR; buttonWidth: CARDINAL; pushButtonAction: PROC);
 PROCEDURE DefineRadioButtonSet(VAR radioButtonVar: RadioButtonID);
 PROCEDURE RadioButton(VAR radButt: RadioButtonID; line,col: CARDINAL; text: ARRAY OF CHAR);
 PROCEDURE CheckBox(line,col: CARDINAL; text: ARRAY OF CHAR; VAR checkBoxVar: BOOLEAN);
 PROCEDURE UseEntryForm(bf: FormFrame; VAR ok: BOOLEAN);

(** DMFiles **)

 CONST EOL = 36C;

 TYPE Response = (done, filenotfound, volnotfound, cancelled, unknownfile, toomanyfiles, diskfull, memfull,
 alreadyopened, isbusy, locked, notdone);
 HiddenFileInfo; IOMode = (reading, writing);
 TextFile = RECORD
 res: Response;
 filename: ARRAY [0..255] OF CHAR;
 path: ARRAY [0..63] OF CHAR;
 curIOMode: IOMode;
 curChar: CHAR;
 fhint: HiddenFileInfo;
 END;

 VAR
| legalNum: BOOLEAN; (* read only *) PROCEDURE LastResultCode(): INTEGER;
 neverOpenedFile: TextFile; (* read only *)

 PROCEDURE GetExistingFile(VAR f: TextFile; prompt: ARRAY OF CHAR);
 PROCEDURE CreateNewFile(VAR f: TextFile; prompt, defaultName: ARRAY OF CHAR);
 PROCEDURE Lookup(VAR f: TextFile; pathAndFileName: ARRAY OF CHAR; new: BOOLEAN);
| PROCEDURE ReadOnlyLookup(VAR f: TextFile; pathAndFileName: ARRAY OF CHAR);
| PROCEDURE Close(VAR f: TextFile); PROCEDURE IsOpen(VAR f: TextFile): BOOLEAN;
| PROCEDURE FileExists(VAR f: TextFile): BOOLEAN; PROCEDURE FileLevel(VAR f: TextFile): CARDINAL;

 PROCEDURE Delete(VAR f: TextFile); PROCEDURE Rename(VAR f: TextFile; filename: ARRAY OF CHAR);
 PROCEDURE Reset(VAR f: TextFile); PROCEDURE Rewrite(VAR f: TextFile);
| PROCEDURE AppendAtEOF(VAR f: TextFile); PROCEDURE FileSize(VAR f: TextFile): LONGINT;

 PROCEDURE EOF(VAR f: TextFile): BOOLEAN;
 PROCEDURE ReadByte(VAR f: TextFile; VAR b: BYTE); PROCEDURE WriteByte(VAR f: TextFile; b: BYTE);
 PROCEDURE ReadChar(VAR f: TextFile; VAR ch: CHAR); PROCEDURE WriteChar(VAR f: TextFile; ch: CHAR);
 PROCEDURE ReadChars(VAR f: TextFile; VAR string: ARRAY OF CHAR); PROCEDURE WriteChars(VAR f: TextFile; string: ARRAY OF CHAR);
| PROCEDURE WriteEOL(VAR f: TextFile); PROCEDURE WriteVarChars(VAR f: TextFile; VAR string: ARRAY OF CHAR);
 PROCEDURE SkipGap(VAR f: TextFile); PROCEDURE Again(VAR f: TextFile);
 PROCEDURE GetCardinal(VAR f: TextFile; VAR c: CARDINAL); PROCEDURE GetLongCard(VAR f: TextFile; VAR c: LONGCARD);
 PROCEDURE PutCardinal(VAR f:TextFile; c:CARDINAL; n:CARDINAL); PROCEDURE PutLongCard(VAR f: TextFile; lc: LONGCARD;
 n: CARDINAL);
 PROCEDURE GetInteger(VAR f: TextFile; VAR i: INTEGER); PROCEDURE GetLongInt(VAR f: TextFile; VAR i: LONGINT);
 PROCEDURE PutInteger(VAR f: TextFile; i: INTEGER; n: CARDINAL); PROCEDURE PutLongInt(VAR f: TextFile; li: LONGINT;
 n:CARDINAL);
 PROCEDURE GetReal(VAR f: TextFile; VAR x: REAL); PROCEDURE GetLongReal(VAR f: TextFile; VAR x: LONGREAL);
 PROCEDURE PutReal(VAR f: TextFile; x: REAL; n, dec: CARDINAL); PROCEDURE PutRealSci(VAR f: TextFile; x: REAL; n: CARDINAL);
 PROCEDURE PutLongReal(VAR f: TextFile; lr: LONGREAL; n,dec: CARDINAL);
 PROCEDURE PutLongRealSci(VAR f: TextFile; lr: LONGREAL; n,dec: CARDINAL);

| PROCEDURE AlterIOMode (VAR f: TextFile; newMode: IOMode);
| PROCEDURE SetFilePos(VAR f: TextFile; pos: LONGINT); PROCEDURE GetFilePos(VAR f: TextFile; VAR pos: LONGINT);
| PROCEDURE ReadByteBlock (VAR f: TextFile; VAR buf: ARRAY OF BYTE; VAR count: LONGINT);
| PROCEDURE WriteByteBlock(VAR f: TextFile; VAR buf: ARRAY OF BYTE; VAR count: LONGINT);

| PROCEDURE SetFileFilter(f1,f2,f3,f4: ARRAY OF CHAR); PROCEDURE GetFileFilter(VAR f1,f2,f3,f4: ARRAY OF CHAR);

A 339

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE UseAsTypeAndCreator(filetype,creator: ARRAY OF CHAR); PROCEDURE UsedTypeAndCreator(VAR filetype,creator: ARRAY OF CHAR);
| PROCEDURE HasTypeAndCreator(VAR f: TextFile; VAR filetype,creator: ARRAY OF CHAR);

(** DMFloatEnv **)

 CONST invalid = 0; underflow = 1; overflow = 2; divideByZero = 3; inexact = 4;
 haltIfInvalid = 0; haltIfUnderflow = 1; haltIfOverflow = 2; haltIfDivideByZero = 3; haltIfInexact = 4;
 flagIfInvalid = 8; flagIfUnderflow = 9; flagIfOverflow = 10; flagIfDivideByZero = 11; flagIfInexact = 12;
 IEEEFloatDefaultEnv = ; DMFloatDefaultEnv = haltIfInvalid, haltIfOverflow, haltIfDivideByZero;

 TYPE Exception = [invalid..inexact]; FloatEnvironment = BITSET;
 RoundDir = (toNearest, upward, downward, towardZero); RoundPre = (extPrecision, dblPrecision, sglPrecision);

 PROCEDURE HaltEnabled(which: Exception): BOOLEAN;
 PROCEDURE EnableHalt(which: Exception); PROCEDURE DisableHalt(which: Exception);
 PROCEDURE ExceptionPending(which: Exception): BOOLEAN;
 PROCEDURE RaiseException(which: Exception); PROCEDURE ClearException(which: Exception);
 PROCEDURE SetPrecision(p: RoundPre); PROCEDURE GetPrecision(VAR p: RoundPre);
 PROCEDURE SetRound(r: RoundDir); PROCEDURE GetRound(VAR r: RoundDir);
 PROCEDURE GetEnvironment(VAR e: FloatEnvironment); PROCEDURE SetEnvironment(e: FloatEnvironment);
 PROCEDURE ProcEntry(VAR savedEnv: FloatEnvironment); PROCEDURE ProcExit(savedEnv: FloatEnvironment);

(** DMKeyChars **)

| CONST mouse=0; command=1; alt=1; option=2; shift=3; capslock=4; control=5;
| VAR cursorUp, cursorDown, cursorLeft, cursorRight, homeKey, endKey, pageUp, pageDown, helpKey, enter, return, delete,
| backspace, tab, esc, hardBlank: CHAR; (* READ ONLY! *)

| VAR BestCH: PROCEDURE(CHAR): CHAR; (* READ ONLY! *)
| TYPE ComputerPlatform=(Mac, IBMPCCompatible, UNIXMachine); PROCEDURE ProgrammedOn(c: ComputerPlatform);

| PROCEDURE PCCHAR(macCh: CHAR): CHAR; PROCEDURE MacCHAR(pcCh: CHAR): CHAR;
| PROCEDURE PCASCII(pcCh: CHAR): CHAR; PROCEDURE MacASCII(macCh: CHAR): CHAR;

(** DMMathLib/DMMathLF **)

| VAR undefREAL: REAL; undefLONGREAL: LONGREAL; (* read only *)

 PROCEDURE Sqrt (x: REAL): REAL;
 PROCEDURE Exp (x: REAL): REAL; PROCEDURE Ln (x: REAL): REAL;
 PROCEDURE Sin (x: REAL): REAL; PROCEDURE Cos (x: REAL): REAL; PROCEDURE ArcTan(x: REAL): REAL;
 PROCEDURE Real (x: INTEGER): REAL; PROCEDURE Entier(x: REAL): INTEGER;
| PROCEDURE Randomize; PROCEDURE RandomInt(upperBound: INTEGER): INTEGER; PROCEDURE RandomReal(): REAL;

(** DMOpSys **)

| CONST noError = 0; notDone = -2; inexistent = -1; notOpen = 0; readOnly = 1; alreadyWrite = 2; (* codes returned by CurrentFileUse*)

| TYPE ProgStatus = (regular, moduleNotFound, fileNotFound, illegalKey, readError, badSyntax, noMemory, alreadyLoaded,
| killed, tooManyPrograms, continue, noApplication);
| DirectoryProc = PROCEDURE (INTEGER, ARRAY OF CHAR, BOOLEAN, VAR BOOLEAN);
| MessageResponder = PROCEDURE (ARRAY OF CHAR, ARRAY OF CHAR, INTEGER);
| InitDocuHandlingProc = PROCEDURE (INTEGER); DocuHandler = PROCEDURE (INTEGER, ARRAY OF CHAR, ARRAY OF CHAR, VAR BOOLEAN);

| VAR profileFName: ARRAY [0..127] OF CHAR;

| PROCEDURE CurWorkDirectory(VAR path: ARRAY OF CHAR); PROCEDURE GetLastResultCode(): INTEGER;
| PROCEDURE CreateDir(path, dirN: ARRAY OF CHAR; VAR done: BOOLEAN);
| PROCEDURE DeleteDir(path, dirN: ARRAY OF CHAR; VAR done: BOOLEAN);
| PROCEDURE RenameDir(path, oldDirN, newDirN: ARRAY OF CHAR; VAR done: BOOLEAN);
| PROCEDURE DirInfo(path, dirN: ARRAY OF CHAR; VAR dirExists, containsFiles : BOOLEAN);
| PROCEDURE DoForAllFilesInDirectory(path: ARRAY OF CHAR; dp: DirectoryProc);
| PROCEDURE CurrentFileUse (path,fileName: ARRAY OF CHAR): INTEGER;
| PROCEDURE GetFileDialog(prompt,fileTypes: ARRAY OF CHAR; VAR path,fileName: ARRAY OF CHAR): BOOLEAN;
| PROCEDURE GetApplication(VAR path, applName: ARRAY OF CHAR): BOOLEAN;
| PROCEDURE GetFileTypeAndCreator(path,fn: ARRAY OF CHAR; VAR type,creator: ARRAY OF CHAR);
| PROCEDURE SetFileTypeAndCreator(path,fn: ARRAY OF CHAR; type,creator: ARRAY OF CHAR);
| PROCEDURE GetFileDates(path,fn: ARRAY OF CHAR; VAR creationDate,modificationDate: LONGINT);
| PROCEDURE SetFileDates(path,fn: ARRAY OF CHAR; creationDate,modificationDate: LONGINT);
| PROCEDURE NowSeconds(): LONGINT; PROCEDURE TouchFileDate(path,fn: ARRAY OF CHAR);
| PROCEDURE CopyResourceFork(sourcePath,sourceFn, destPath, destFn: ARRAY OF CHAR; VAR done: BOOLEAN);
| PROCEDURE CopyDataFork (sourcePath,sourceFn, destPath, destFn: ARRAY OF CHAR; VAR done: BOOLEAN);
| PROCEDURE InstallInitDocuOpening (idhp: InitDocuHandlingProc); PROCEDURE InstallOpenDocuHandler (dh: DocuHandler);
| PROCEDURE InstallInitDocuPrinting(idhp: InitDocuHandlingProc); PROCEDURE InstallPrintDocuHandler(dh: DocuHandler);
| PROCEDURE SubLaunch(path, prog: ARRAY OF CHAR); PROCEDURE Transfer(path, prog: ARRAY OF CHAR);
| PROCEDURE IsForegroundProgram(): BOOLEAN;
| PROCEDURE SetMessageResponder(mr: MessageResponder); PROCEDURE GetMessageResponder(VAR mr: MessageResponder);
| PROCEDURE SignalMessageToApplication(creatorOfAppl, eventClass, eventID: ARRAY OF CHAR;
 msgVal: INTEGER; VAR resultCode: INTEGER);
| PROCEDURE EmulateKeyPress(ch: CHAR; modifier: BITSET); PROCEDURE EmulateMenuSelection(aliasChar: CHAR);
| PROCEDURE EmulateMouseDown(x,y: INTEGER; modifier: BITSET);
| PROCEDURE TurnMachineOff; PROCEDURE RestartMachine;

| PROCEDURE SetNewPaths; PROCEDURE EmulateMacMETHCopyProtection;
| PROCEDURE CallDMSubProg(prog: ARRAY OF CHAR; leaveLoaded: BOOLEAN; VAR st: ProgStatus);
| PROCEDURE CallM2SubProg(prog: ARRAY OF CHAR; leaveLoaded: BOOLEAN; VAR st: ProgStatus);
| PROCEDURE IncludeLibModules(prog: ARRAY OF CHAR; VAR st: ProgStatus);
| PROCEDURE UnLoadM2Progs; PROCEDURE AbortM2Prog(st: ProgStatus);
| PROCEDURE SetCompilerFileTypes(creator, sbmType, obmType, rfmType: ARRAY OF CHAR);
| PROCEDURE GetCompilerFileTypes(VAR creator, sbmType, obmType, rfmType: ARRAY OF CHAR);

(** DMPortab **)

| PROCEDURE SameProc(p1, p2: ARRAY OF BYTE): BOOLEAN;
| PROCEDURE LongTRUNC(x: LONGREAL): LONGINT; PROCEDURE LongFLOAT(x: LONGINT): LONGREAL;
| PROCEDURE LONGINTConst(str: ARRAY OF CHAR): LONGINT; PROCEDURE LONGREALConst(str: ARRAY OF CHAR): LONGREAL;

(** DMPrinting **)

| TYPE PrinterFont = (chicago, newYork, geneva, monaco, times, helvetica, courier, symbol);

| VAR PrintingDone: BOOLEAN;

 PROCEDURE PageSetup; PROCEDURE SetHeaderText(h: ARRAY OF CHAR);
 PROCEDURE SetSubHeaderText(sh: ARRAY OF CHAR); PROCEDURE SetFooterText(f: ARRAY OF CHAR);
 PROCEDURE PrintPicture;
| PROCEDURE PrintText(font: PrinterFont; fontSize: INTEGER; tabwidth: INTEGER);

(** DMPTFiles **)

| VAR PTFileDone: BOOLEAN;

| PROCEDURE DumpPicture(VAR f: TextFile);
| PROCEDURE LoadPicture (VAR f: TextFile; simulDisplay: BOOLEAN; destRect: RectArea);

A 340

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE DumpText(VAR f: TextFile);
| PROCEDURE LoadText (VAR f: TextFile; simulDisplay: BOOLEAN; destRect: RectArea; fromLine: LONGINT);

(** DMResources **)

| CONST nulCh = 21C;

| TYPE ResourcePointer = POINTER TO Resource; Resource = ARRAY [0..32000] OF CHAR; Padding = (noPadding, padToEven, padToOdd);

| VAR theResource: ResourcePointer; ResourcesDone: BOOLEAN;

| PROCEDURE StartResourceComposition; PROCEDURE CurPosition(): INTEGER;
| PROCEDURE AddBoolean(b: BOOLEAN);
| PROCEDURE AddInt(int: INTEGER); PROCEDURE AddLongInt(lint: LONGINT);
| PROCEDURE AddHexInt(int: INTEGER); PROCEDURE AddHexLongInt (lint: LONGINT);
| PROCEDURE AddBinInt(int: INTEGER); PROCEDURE AddBinLongInt(lint: LONGINT);
| PROCEDURE AddReal(r: REAL); PROCEDURE AddLongReal(lr: LONGREAL);
| PROCEDURE AddHexReal(r: REAL); PROCEDURE AddHexLongReal(lr: LONGREAL);
| PROCEDURE AddBinReal(r: REAL); PROCEDURE AddBinLongReal(lr: LONGREAL);
| PROCEDURE AddChar(ch: CHAR); PROCEDURE AddString(s: ARRAY OF CHAR);
| PROCEDURE AddString255(s: ARRAY OF CHAR; pad: Padding);
| PROCEDURE OverWriteAtPos (VAR x: ARRAY OF BYTE; VAR theResource: ARRAY OF CHAR; VAR curPos: INTEGER);
| PROCEDURE StoreResource(filename: ARRAY OF CHAR; resID: INTEGER);

| PROCEDURE RetrieveResource(filename: ARRAY OF CHAR; resID: INTEGER);
| PROCEDURE FetchBoolean(VAR b: BOOLEAN);
| PROCEDURE FetchInt(VAR int: INTEGER); PROCEDURE FetchLongInt(VAR lint: LONGINT);
| PROCEDURE FetchHexInt(VAR int: INTEGER); PROCEDURE FetchHexLongInt(VAR lint: LONGINT);
| PROCEDURE FetchBinInt(VAR int: INTEGER); PROCEDURE FetchBinLongInt(VAR lint: LONGINT);
| PROCEDURE FetchReal(VAR r: REAL); PROCEDURE FetchLongReal(VAR lr: LONGREAL);
| PROCEDURE FetchHexReal(VAR r: REAL); PROCEDURE FetchHexLongReal(VAR lr: LONGREAL);
| PROCEDURE FetchBinReal(VAR r: REAL); PROCEDURE FetchBinLongReal(VAR lr: LONGREAL);
| PROCEDURE FetchChar(VAR ch: CHAR); PROCEDURE FetchString(VAR s: ARRAY OF CHAR);
| PROCEDURE FetchString255(VAR s: ARRAY OF CHAR; pad: Padding);

| PROCEDURE DeleteResource(filename: ARRAY OF CHAR; resID: INTEGER);
| PROCEDURE SetResourceName(fileName: ARRAY OF CHAR; resID: INTEGER; name: ARRAY OF CHAR);
| PROCEDURE GetResourceName(fileName: ARRAY OF CHAR; resID: INTEGER; VAR name: ARRAY OF CHAR);
| PROCEDURE SetResourceType(type: ARRAY OF CHAR);
| PROCEDURE GetResourceType(VAR type: ARRAY OF CHAR);

(** DMTextFields **)

| TYPE TextPointer = POINTER TO TextSegment; TextSegment = ARRAY [0..32000] OF CHAR;

| PROCEDURE RedefineTextField(textField: EditItem; wf: WindowFrame; withFrame: BOOLEAN);
| PROCEDURE WrapText(textField: EditItem; wrap: BOOLEAN);
| PROCEDURE CopyWTextIntoTextField(textField: EditItem; VAR done: BOOLEAN);
| PROCEDURE CopyTextFromFieldToWText(textField: EditItem);

| PROCEDURE SetSelection(textField: EditItem; beforeCh,afterCh: INTEGER);
| PROCEDURE GetSelection(textField: EditItem; VAR beforeCh,afterCh: INTEGER);
| PROCEDURE GetSelectedChars(textField: EditItem; VAR text: ARRAY OF CHAR);
| PROCEDURE DeleteSelection(textField: EditItem);
| PROCEDURE InsertBeforeCh(textField: EditItem; VAR text: ARRAY OF CHAR; beforeCh: INTEGER);

| PROCEDURE GetTextSizes(textField: EditItem; VAR curTextLength, nrLns, charHeight, firstLnVis,lastLnVis: INTEGER);
| PROCEDURE GrabText(textField: EditItem; VAR txtbeg: TextPointer; VAR curTextLength: INTEGER);
| PROCEDURE ReleaseText(textField: EditItem);
| PROCEDURE FindInText(textField: EditItem; stringToFind: ARRAY OF CHAR; VAR firstCh,lastCh: INTEGER): BOOLEAN;
| PROCEDURE ScrollText(textField: EditItem; dcols,dlines: INTEGER);
| PROCEDURE ScrollTextWithWindowScrollBars(textField: EditItem);
| PROCEDURE AddScrollBarsToText(textField: EditItem; withVerticalScrollBar, withHorizontalScrollBar: BOOLEAN);

(** DMWPictIO **)

| VAR PictIODone: BOOLEAN;

 PROCEDURE StartPictureSave; PROCEDURE StopPictureSave;
 PROCEDURE PausePictureSave; PROCEDURE ResumePictureSave;
| PROCEDURE DisplayPicture(ownerWindow: Window; destRect: RectArea); PROCEDURE DiscardPicture;

 PROCEDURE SetPictureArea(r: RectArea); PROCEDURE GetPictureArea(VAR r: RectArea);
| PROCEDURE SetHairLineWidth(f: REAL); PROCEDURE GetHairLineWidth(VAR f: REAL);

(** DMWTextIO **)

| VAR TextIODone: BOOLEAN;

| PROCEDURE StartTextSave; PROCEDURE StopTextSave;
| PROCEDURE PauseTextSave; PROCEDURE ResumeTextSave;
| PROCEDURE DisplayText(ownerWindow: Window; destRect: RectArea; fromLine: LONGINT); PROCEDURE DiscardText;

| PROCEDURE GrabWText(VAR txtbeg: ADDRESS; VAR curTextLength: LONGINT); PROCEDURE ReleaseWText;
| PROCEDURE AppendWText(txtbeg: ADDRESS; length: LONGINT); PROCEDURE SetWTextSize(newTextLength: LONGINT);

(=== - E N D - ==)

The Dialog Machine may be freely copied but not for profit! | Different from Version 1.

A 341

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

E.3 M ODEL W ORKS CLIENT INTERFACE

The following listing of the client interface is identical for all ModelWorks versions (V2.2,
V2.0/Reflex, V1.1/PC, V2.2/PC, and V2.2/II). For a detailed description see part III Reference
the chapter Client Interface.

ModelWorks Version 2.2 (April 1996)
© 1989 - 1996 Andreas Fischlin, Dimitrios Gyalistras, Olivier Roth, Markus Ulrich,
Juerg Thoeny, Thomas Nemecek, Harald Bugmann & Frank Thommen

Swiss Federal Institute of Technology Zurich ETHZ, Switzerland.

(=================== C L I E N T I N T E R F A C E M O D U L E S =====================)

(***************************** SimBase ***********************************)

 (* Declaration of models and model objects: *)
 (* --------------------------------------- *)

 TYPE
 Model;
| StateVar = REAL; Derivative = REAL; NewState = REAL;
| AuxVar = REAL; Parameter = REAL;
| InVar = REAL; OutVar = REAL;

 IntegrationMethod = (Euler, Heun, RungeKutta4, RungeKutta45Var, stiff, discreteTime, discreteEvent);
 RTCType = (rtc, noRtc);
 StashFiling = (writeOnFile, notOnFile);
 Tabulation = (writeInTable, notInTable);
 Graphing = (isX, isY, isZ, notInGraph);

| VAR notDeclaredModel: Model; (* read only variable *)

 PROCEDURE DeclM(VAR m: Model; defaultMethod: IntegrationMethod; initialize, input, output, dynamic, terminate: PROC;
 declModelObjects: PROC; descriptor, identifier: ARRAY OF CHAR; about: PROC);
 PROCEDURE DeclSV(VAR s: StateVar; VAR ds: Derivative (*or NewState*); defaultInitial, minCurInit, maxCurInit: REAL;
 descriptor, identifier, unit: ARRAY OF CHAR);
 PROCEDURE DeclP(VAR p: Parameter; defaultVal, minCurVal, maxCurVal: REAL; runTimeChange: RTCType;
 descriptor, identifier, unit: ARRAY OF CHAR);
 PROCEDURE DeclMV(VAR mv: REAL; defaultScaleMin, defaultScaleMax: REAL; descriptor, identifier, unit: ARRAY OF CHAR;
 defaultSF: StashFiling; defaultT: Tabulation; defaultG: Graphing);

| PROCEDURE CurCalcM(): Model;
| PROCEDURE CurAboutM(): Model;
 PROCEDURE SelectM (m: Model; VAR done: BOOLEAN);

 PROCEDURE NoInitialize; PROCEDURE NoInput; PROCEDURE NoOutput; PROCEDURE NoDynamic; PROCEDURE NoTerminate;
 PROCEDURE NoModelObjects; PROCEDURE NoAbout; PROCEDURE DoNothing;

 (* Modifying of models and model objects: *)
 (* ------------------------------------- *)

 PROCEDURE GetDefltM (VAR m: Model; VAR defaultMethod: IntegrationMethod;
 VAR initialize, input, output, dynamic, terminate: PROC;
 VAR descriptor, identifier: ARRAY OF CHAR; VAR about: PROC);
 PROCEDURE SetDefltM (VAR m: Model; defaultMethod: IntegrationMethod;
 initialize, input, output, dynamic, terminate: PROC;
 descriptor, identifier: ARRAY OF CHAR; about: PROC);
 PROCEDURE GetDefltSV (m: Model; VAR s: StateVar; VAR defaultInit, minCurInit, maxCurInit: REAL;
 VAR descriptor, identifier, unit: ARRAY OF CHAR);
 PROCEDURE SetDefltSV (m: Model; VAR s: StateVar; defaultInit, minCurInit, maxCurInit: REAL;
 descriptor, identifier, unit: ARRAY OF CHAR);
 PROCEDURE GetDefltP (m: Model; VAR p: Parameter; VAR defaultVal, minVal, maxVal: REAL;
 VAR runTimeChange: RTCType;
 VAR descriptor, identifier, unit: ARRAY OF CHAR);
 PROCEDURE SetDefltP (m: Model; VAR p: Parameter; defaultVal, minVal, maxVal: REAL;
 runTimeChange: RTCType;
 descriptor, identifier, unit: ARRAY OF CHAR);
 PROCEDURE GetDefltMV (m: Model; VAR mv: REAL; VAR defaultScaleMin, defaultScaleMax: REAL;
 VAR descriptor, identifier, unit: ARRAY OF CHAR;
 VAR defaultSF: StashFiling; VAR defaultT: Tabulation;
 VAR defaultG: Graphing);
 PROCEDURE SetDefltMV (m: Model; VAR mv: REAL; defaultScaleMin, defaultScaleMax: REAL;
 descriptor, identifier, unit: ARRAY OF CHAR;
 defaultSF: StashFiling; defaultT: Tabulation;
 defaultG: Graphing);

 PROCEDURE GetM (VAR m: Model; VAR curMethod: IntegrationMethod);
 PROCEDURE SetM (VAR m: Model; curMethod: IntegrationMethod);
 PROCEDURE GetSV (m: Model; VAR s: StateVar; VAR curInit: REAL);
 PROCEDURE SetSV (m: Model; VAR s: StateVar; curInit: REAL);
 PROCEDURE GetP (m: Model; VAR p: Parameter; VAR curVal: REAL);
 PROCEDURE SetP (m: Model; VAR p: Parameter; curVal: REAL);
 PROCEDURE GetMV (m: Model; VAR mv: REAL; VAR curScaleMin, curScaleMax: REAL;
 VAR curSF: StashFiling; VAR curT: Tabulation; VAR curG: Graphing);
 PROCEDURE SetMV (m: Model; VAR mv: REAL; curScaleMin, curScaleMax: REAL;
 curSF: StashFiling; curT: Tabulation; curG: Graphing);

| PROCEDURE ResetAllIntegrationMethods;
| PROCEDURE ResetAllInitialValues;
| PROCEDURE ResetAllParameters;
| PROCEDURE ResetAllStashFiling;
| PROCEDURE ResetAllTabulation;
| PROCEDURE ResetAllGraphing;
| PROCEDURE ResetAllScaling;

 (* Model attributes: *)
 (* ---------------- *)

| TYPE Attribute = INTEGER; CONST noAttr = MIN(Attribute);
| PROCEDURE SetModelAttr(m: Model; val: Attribute);

A 342

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE GetModelAttr(m: Model): Attribute;
| PROCEDURE SetObjAttr(m: Model; VAR o: REAL; val: Attribute);
| PROCEDURE GetObjAttr(m: Model; VAR o: REAL): Attribute;

 (* Access helps for all models and all model objects: *)
 (* -- *)

| PROCEDURE MDeclared(m: Model): BOOLEAN;
| PROCEDURE SVDeclared(m: Model; VAR sv: StateVar): BOOLEAN;
| PROCEDURE PDeclared(m: Model; VAR p: Parameter): BOOLEAN;
| PROCEDURE MVDeclared(m: Model; VAR mv: REAL): BOOLEAN;

| TYPE ModelProc = PROCEDURE(VAR Model, VAR Attribute); ModelObjectProc = PROCEDURE(Model, VAR REAL, VAR Attribute);

| PROCEDURE DoForAllModels(p: ModelProc);
| PROCEDURE DoForAllSVs (m: Model; p: ModelObjectProc);
| PROCEDURE DoForAllPs (m: Model; p: ModelObjectProc);
| PROCEDURE DoForAllMVs (m: Model; p: ModelObjectProc);

 (* Removing of models and model objects: *)
 (* ------------------------------------- *)

 PROCEDURE RemoveM (VAR m: Model);
 PROCEDURE RemoveSV (m: Model; VAR s : StateVar);
 PROCEDURE RemoveMV (m: Model; VAR mv: REAL);
 PROCEDURE RemoveP (m: Model; VAR p : Parameter);
 PROCEDURE RemoveAllModels;

 (* Global simulation parameters and project description: *)
 (* -- *)

 PROCEDURE SetDefltGlobSimPars(t0, tend, h, er, c, hm: REAL);
 PROCEDURE GetDefltGlobSimPars(VAR t0, tend, h, er, c, hm: REAL);

 PROCEDURE SetDefltProjDescrs(title,remark,footer: ARRAY OF CHAR;
 wtitle,wremark,autofooter,
 recM, recSV, recP, recMV, recG: BOOLEAN);
 PROCEDURE GetDefltProjDescrs(VAR title,remark,footer: ARRAY OF CHAR;
 VAR wtitle,wremark,autofooter,
 recM, recSV, recP, recMV, recG: BOOLEAN);
| PROCEDURE SetDefltTabFuncRecording(recTF: BOOLEAN);
| PROCEDURE GetDefltTabFuncRecording(VAR recTF: BOOLEAN);

 PROCEDURE SetDefltIndepVarIdent(descr,ident,unit: ARRAY OF CHAR);
| PROCEDURE GetDefltIndepVarIdent(VAR descr,ident,unit: ARRAY OF CHAR);

 PROCEDURE SetGlobSimPars(t0, tend, h, er, c, hm: REAL);
 PROCEDURE GetGlobSimPars(VAR t0, tend, h, er, c, hm: REAL);
 PROCEDURE SetProjDescrs(title,remark,footer: ARRAY OF CHAR;
 wtitle,wremark,autofooter,
 recM, recSV, recP, recMV, recG: BOOLEAN);
 PROCEDURE GetProjDescrs(VAR title,remark,footer: ARRAY OF CHAR;
 VAR wtitle,wremark,autofooter,
 recM, recSV, recP, recMV, recG: BOOLEAN);
| PROCEDURE SetTabFuncRecording(recTF: BOOLEAN);
| PROCEDURE GetTabFuncRecording(VAR recTF: BOOLEAN);

 PROCEDURE SetIndepVarIdent(descr,ident,unit: ARRAY OF CHAR);
| PROCEDURE GetIndepVarIdent(VAR descr,ident,unit: ARRAY OF CHAR);

| PROCEDURE ResetGlobSimPars;
| PROCEDURE ResetProjDescrs;

 PROCEDURE SetMonInterval(hm: REAL); (* only for upward compatibility *)
 PROCEDURE SetIntegrationStep(h: REAL); (* only for upward compatibility *)
 PROCEDURE SetSimTime(t0,tend: REAL); (* only for upward compatibility *)

 (* Control of Display and Monitoring: *)
 (* --------------------------------- *)

 PROCEDURE TileWindows;
 PROCEDURE StackWindows;

| PROCEDURE InstallTileWindowsHandler(doAtTile:PROC);
| PROCEDURE InstallStackWindowsHandler(doAtStack:PROC);

 TYPE MWWindow = (MIOW, SVIOW, PIOW, MVIOW, TableW, GraphW, AboutMW, TimeW);

 PROCEDURE SetWindowPlace(mww: MWWindow; x,y,w,h: INTEGER);
 PROCEDURE GetWindowPlace(mww: MWWindow; VAR x,y,w,h: INTEGER; VAR isOpen : BOOLEAN);
 PROCEDURE SetDefltWindowPlace(mww: MWWindow; x,y,w,h: INTEGER);
 PROCEDURE GetDefltWindowPlace(mww: MWWindow; VAR x,y,w,h: INTEGER; VAR enabled: BOOLEAN);
 PROCEDURE CloseWindow(w: MWWindow);

 TYPE
 IOWColsDisplay = RECORD
 descrCol, identCol : BOOLEAN;
 CASE iow: MWWindow OF
 MIOW : m : RECORD
 integMethCol: BOOLEAN;
 END(*RECORD*);
 | SVIOW : sv: RECORD
 unitCol, sVInitCol: BOOLEAN;
 fw,dec: INTEGER;
 END(*RECORD*);
 | PIOW : p : RECORD
 unitCol, pValCol, pRtcCol: BOOLEAN;
 fw,dec: INTEGER;
 END(*RECORD*);
 | MVIOW : mv: RECORD
 unitCol, scaleMinCol, scaleMaxCol, mVMonSetCol: BOOLEAN;
 fw,dec: INTEGER;
 END(*RECORD*);
 END(*CASE*)
 END(*RECORD*);

 PROCEDURE SetIOWColDisplay (mww: MWWindow; wd: IOWColsDisplay);
 PROCEDURE GetIOWColDisplay (mww: MWWindow; VAR wd: IOWColsDisplay);
 PROCEDURE SetDefltIOWColDisplay(mww: MWWindow; wd: IOWColsDisplay);
 PROCEDURE GetDefltIOWColDisplay(mww: MWWindow; VAR wd: IOWColsDisplay);

A 343

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 PROCEDURE DisableWindow(w: MWWindow);
 PROCEDURE EnableWindow (w: MWWindow);

| TYPE MWWindowArrangement = (current, stacked, tiled);
| PROCEDURE SetDefltWindowArrangement(a: MWWindowArrangement);
| PROCEDURE ResetWindows;

 PROCEDURE SuppressMonitoring;
 PROCEDURE ResumeMonitoring;
 PROCEDURE InstallClientMonitoring(initClientMon, doClientMon, termClientMon: PROC);

| PROCEDURE SetStashFileName (sfn: ARRAY OF CHAR);
| PROCEDURE GetStashFileName (VAR sfn: ARRAY OF CHAR);
| PROCEDURE SetDefltStashFileName(dsfn: ARRAY OF CHAR);
| PROCEDURE GetDefltStashFileName(VAR dsfn: ARRAY OF CHAR);
| PROCEDURE SetStashFileType (filetype, creator: ARRAY OF CHAR);
| PROCEDURE GetStashFileType (VAR filetype, creator: ARRAY OF CHAR);
| PROCEDURE SetDefltStashFileType(dFiletype,dCreator: ARRAY OF CHAR);
| PROCEDURE GetDefltStashFileType(VAR dFiletype,dCreator: ARRAY OF CHAR);
 PROCEDURE SwitchStashFile (newsfn: ARRAY OF CHAR);
| PROCEDURE ResetStashFile;

 PROCEDURE Message(m: ARRAY OF CHAR);

 TYPE
 Stain = (coal, snow, ruby, emerald, sapphire, turquoise, pink, gold, autoDefCol);
 LineStyle = (unbroken, broken, dashSpotted, spotted, invisible, purge, autoDefStyle);

 CONST autoDefSym = 200C;

 PROCEDURE SetCurveAttrForMV(m: Model; VAR mv: REAL;
 st: Stain; ls: LineStyle; sym: CHAR);
 PROCEDURE GetCurveAttrForMV(m: Model; VAR mv: REAL;
 VAR st: Stain; VAR ls: LineStyle; VAR sym: CHAR);
 PROCEDURE SetDefltCurveAttrForMV(m: Model; VAR mv: REAL;
 st: Stain; ls: LineStyle; sym: CHAR);
 PROCEDURE GetDefltCurveAttrForMV(m: Model; VAR mv: REAL;
 VAR st: Stain; VAR ls: LineStyle; VAR sym: CHAR);

| PROCEDURE ResetAllCurveAttributes;

| PROCEDURE ClearTable;
 PROCEDURE ClearGraph;
 PROCEDURE DumpGraph;

 (* Assignment of predefined values to global default *)
 (* values and resetting of all current values *)
 (* --- *)

| PROCEDURE SetPredefinitions;
| PROCEDURE ResetAll;

 (* Preferences and simulation environment modes: *)
 (* -- *)

 PROCEDURE SetDocumentRunAlwaysMode(dra: BOOLEAN);
 PROCEDURE GetDocumentRunAlwaysMode(VAR dra: BOOLEAN);
| PROCEDURE SetAskStashFileTypeMode(asft: BOOLEAN);
| PROCEDURE GetAskStashFileTypeMode(VAR asft: BOOLEAN);

 PROCEDURE SetRedrawTableAlwaysMode(rta: BOOLEAN);
 PROCEDURE GetRedrawTableAlwaysMode(VAR rta: BOOLEAN);
 PROCEDURE SetCommonPageUpRows(rows: CARDINAL);
 PROCEDURE GetCommonPageUpRows(VAR rows: CARDINAL);

 PROCEDURE SetRedrawGraphAlwaysMode(rga: BOOLEAN);
 PROCEDURE GetRedrawGraphAlwaysMode(VAR rga: BOOLEAN);
 PROCEDURE SetColorVectorGraphSaveMode(cvgs: BOOLEAN);
 PROCEDURE GetColorVectorGraphSaveMode(VAR cvgs: BOOLEAN);

 (* Customization of keyboard shortcuts for menu commands *)
 (* -- *)

 TYPE
| MWMenuCommand = (pageSetUpCmd, printGraphCmd, preferencesCmd, customizeCmd,

| (*core commands*) setGlobSimParsCmd, setProjDescrCmd, selectStashFileCmd,

| resetGlobSimParsCmd, resetProjDescrCmd, resetStashFileCmd,
| resetWindowsCmd, resetAllIntegrMethodsCmd, resetAllInitialValuesCmd,
| resetAllParametersCmd, resetAllStashFilingCmd, resetAllTabulationCmd,
| resetAllGraphingCmd, resetAllScalingCmd, resetAllCurveAttrsCmd,
| resetAllCmd, defineSimEnvCmd,

| (*core commands*) tileWindowsCmd, stackWindowsCmd, modelsCmd, stateVarsCmd,
| (*core commands*) modelParamsCmd, monitorableVarsCmd, tableCmd, clearTableCmd,
| (*core commands*) graphCmd, clearGraphCmd,

| (*core commands*) startRunCmd, haltOrResumeRunCmd, stopCmd, startExperimentCmd);

| PROCEDURE SetMenuCmdAliasChar(cmd: MWMenuCommand; alias: CHAR);
| PROCEDURE GetMenuCmdAliasChar(cmd: MWMenuCommand; VAR alias: CHAR);

| PROCEDURE ResetCoreMenuCmdsAliasChars;
| PROCEDURE ResetAllMenuCmdsAliasChars;

(***************************** SimMaster *********************************)

 (* Running of the standard interactive simulation environment *)
 (* -- *)

| PROCEDURE RunSimEnvironment(initSimEnv: PROC);
| PROCEDURE SimEnvRunning(progLevel: CARDINAL):BOOLEAN;
| PROCEDURE InstallDefSimEnv(defineSimEnv: PROC);
| PROCEDURE ExecuteDefSimEnv;

 (* States of the simulation environment *)
 (* ------------------------------------ *)

A 344

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

 TYPE
 MWState = (noSimulation, simulating, pause, noModel);
 MWSubState = (noRun, running, noSubState, stopped);

 PROCEDURE GetMWState (VAR s: MWState);
 PROCEDURE GetMWSubState(VAR ss: MWSubState);
| PROCEDURE InstallStateChangeSignaling(doAtStateChange: PROC);

 (* Simulation run conditions *)
 (* ------------------------- *)

 TYPE TerminateConditionProcedure = PROCEDURE(): BOOLEAN;
 StartConsistencyProcedure = PROCEDURE(): BOOLEAN;

| PROCEDURE InstallStartConsistency (startAllowed: StartConsistencyProcedure);
| PROCEDURE InstallTerminateCondition(isAtEnd: TerminateConditionProcedure);

 (* Control of elementary and structured simulation runs *)
 (* -- *)

 PROCEDURE SimRun;
 PROCEDURE PauseRun;
| PROCEDURE ResumeRun;
| PROCEDURE StopRun;

 PROCEDURE InstallExperiment(doExperiment: PROC);
| PROCEDURE SimExperiment;
| PROCEDURE StopExperiment;

 PROCEDURE ExperimentRunning(): BOOLEAN;
 PROCEDURE ExperimentAborted(): BOOLEAN;
 PROCEDURE CurrentSimNr(): INTEGER;

 PROCEDURE CurrentTime(): REAL;
 PROCEDURE CurrentStep(): INTEGER;
 PROCEDURE LastCoincidenceTime(): REAL;

(============= O P T I O N A L C L I E N T I N T E R F A C E M O D U L E S =============)

(*************************************** SimEvents **)

 CONST minEventClass=0; maxEventClass=3000; unknownEventClass= maxEventClass; always = MIN(REAL); never = MAX(REAL);

 TYPE EventClass=[minEventClass.. maxEventClass]; Transaction= ADDRESS;
 StateTransitionFunction= PROCEDURE(Transaction); StateTransition= RECORD ec: EventClass; fct: StateTransitionFunction; END;
 VAR
 nilTransaction: Transaction; (* read only! *)
 noStateTransition: ARRAY[0..0] OF StateTransition; (* read only! *)
 dummyDEVChg: REAL; (* read only! *) schedulingDone: BOOLEAN;

 PROCEDURE EventClassExists(ec: EventClass): BOOLEAN;
 PROCEDURE AsTransaction(VAR d: ARRAY OF BYTE): Transaction;

 PROCEDURE DeclDEVM (VAR m: Model; initialize, input, output: PROC;
 statetransfct: ARRAY OF StateTransition; terminate, declModelObjects: PROC;
 descriptor, identifier: ARRAY OF CHAR; about: PROC);
 PROCEDURE GetDefltDEVM(VAR m: Model; VAR initialize, input, output: PROC;
 VAR statetransfct: ARRAY OF StateTransition; terminate: PROC;
 VAR descriptor, identifier: ARRAY OF CHAR; about: PROC);
 PROCEDURE SetDefltDEVM(VAR m: Model; initialize, input, output: PROC;
 statetransfct: ARRAY OF StateTransition; terminate: PROC;
 descriptor, identifier: ARRAY OF CHAR; about: PROC);

 PROCEDURE InitEventScheduler;
 PROCEDURE ScheduleEvent(ec: EventClass; tau: REAL; alfa: Transaction);
 PROCEDURE NextEventAt(): REAL;
 PROCEDURE ProbeNextPendingEvent(VAR ec: EventClass; VAR when: REAL; VAR alfa: Transaction);
 PROCEDURE GetNextPendingEvent (VAR ec: EventClass; VAR when: REAL; VAR alfa: Transaction);
 PROCEDURE PendingEvents(): INTEGER;
 PROCEDURE SchedulingOnlyAfter(tmin: REAL);
 PROCEDURE DiscardEventsAfter(ec: EventClass; aftert: REAL; alfa: Transaction);
 PROCEDURE DiscardEventsBefore(beforet: REAL);

(***************************** SimObjects **********************************)

 FROM SYSTEM IMPORT ADDRESS; FROM DMStrings IMPORT String; FROM SimBase IMPORT Model;

| TYPE RefAttr;

| VAR aDetachedRefAttr: RefAttr;

| PROCEDURE AttachRefAttrToModel (m: Model; VAR a: RefAttr; val: ADDRESS);
| PROCEDURE DetachRefAttrFromModel(m: Model; VAR a: RefAttr);
| PROCEDURE AttachRefAttrToObject (m: Model; VAR o: REAL; VAR a: RefAttr; val: ADDRESS);
| PROCEDURE DetachRefAttrFromObject(m: Model; VAR o: REAL; VAR a: RefAttr);
| PROCEDURE FindModelRefAttr (m: Model; VAR a: RefAttr);
| PROCEDURE FindObjectRefAttr(m: Model; VAR o: REAL; VAR a: RefAttr);
| PROCEDURE SetRefAttr(a: RefAttr; val: ADDRESS);
| PROCEDURE GetRefAttr(a: RefAttr): ADDRESS;

| PROCEDURE CurCalcMRefAttr(): ADDRESS;
| PROCEDURE CurAboutMRefAttr(): ADDRESS;

| PROCEDURE ModelLevel (m: Model):CARDINAL;
| PROCEDURE ObjectLevel(m: Model; VAR o: REAL):CARDINAL;

 TYPE
| MWObj = (Mo, SV, Pa, MV, AV);
| ExportObjectType = (stateVar, modParam, outAuxVar);
| RealPtr = POINTER TO REAL;
| PtrToClientObject = ADDRESS;
| ObjPtr = POINTER TO ObjectHeader;
| ObjectHeader = RECORD
| ident : String;
| descr : String;
| unit : String;
| varAdr : RealPtr; min, max : REAL;
| nrAttr : INTEGER;
| refAttr : PtrToClientObject;
| chAttr : CHAR;
| kind : MWObj;
| parentM : Model;

A 345

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| next : ObjPtr;
| prev : ObjPtr;
| END;

| PROCEDURE FirstModel(): ObjPtr;
| PROCEDURE FirstSV(m: Model): ObjPtr;
| PROCEDURE FirstP (m: Model): ObjPtr;
| PROCEDURE FirstMV(m: Model): ObjPtr;
| PROCEDURE LastModel(): ObjPtr;
| PROCEDURE LastSV(m: Model): ObjPtr;
| PROCEDURE LastP (m: Model): ObjPtr;
| PROCEDURE LastMV(m: Model): ObjPtr;

| PROCEDURE AllowForRAMSESExport (owner: Model; VAR obj: REAL; ident: ARRAY OF CHAR; eot: ExportObjectType);

(***************************** SimDeltaCalc *********************************)

| TYPE DeltaVar; DeltaProc = PROCEDURE ((*ySim~*)REAL, (*yData*)REAL): REAL;

| VAR defaultDelta: DeltaProc;

| PROCEDURE InstallDeltaProc(VAR mvDepVar: REAL; compDelta: DeltaProc);
| PROCEDURE InitDeltaStat(VAR mvDepVar: REAL; xSim, ySim: REAL; VAR dv: DeltaVar);
| PROCEDURE AccuDelta(dv: DeltaVar; xSim, ySim: REAL);
| PROCEDURE GetDeltaStat(VAR mvDepVar: REAL; VAR sumY, sumY2, sumAbsY: REAL; VAR count: INTEGER);
| PROCEDURE SetDeltaStat(VAR mvDepVar: REAL; sumY, sumY2, sumAbsY: REAL; count: INTEGER);
| PROCEDURE WriteDeltaStatMsg(VAR mvDepVar: REAL);

(***************************** SimGraphUtils *********************************)

 FROM SimBase IMPORT MWWindowArrangement, Model, Stain, LineStyle, Graphing;
 FROM DMWindIO IMPORT Color;
 FROM Matrices IMPORT Matrix;

 TYPE Curve; VAR nonexistent : Curve; (* read only! *)

 PROCEDURE PlaceGraphOnSuperScreen(defltwa: MWWindowArrangement);
 PROCEDURE SelectForOutputGraph;
 PROCEDURE DefineCurve(VAR c: Curve; st: Stain; style: LineStyle; sym: CHAR);
 PROCEDURE RemoveCurve(VAR c: Curve);
 PROCEDURE DrawLegend(c: Curve; x, y: INTEGER; comment: ARRAY OF CHAR);
 PROCEDURE Plot(c: Curve; newX, newY: REAL);
 PROCEDURE Move(c: Curve; newX, newY: REAL);
 PROCEDURE PlotSym(x, y: REAL; sym: CHAR);
 PROCEDURE PlotCurve(c: Curve; nrOfPoints: CARDINAL; x, y: ARRAY OF REAL);
 PROCEDURE GraphToWindowPoint(xReal, yReal: REAL; VAR xInt, yInt: INTEGER);
 PROCEDURE WindowToGraphPoint(xInt, yInt: INTEGER; VAR xReal, yReal: REAL);

 TYPE Abscissa = RECORD isMV: POINTER TO REAL; xMin,xMax: REAL END;

 VAR timeIsIndep: REAL;

 PROCEDURE InstallGraphClickHandler(gch: PROC);
 PROCEDURE MVValToPoint(val: REAL; m: Model; VAR mv: REAL; VAR curG: Graphing): INTEGER;
 PROCEDURE PointToMVVal(xInt,yInt: INTEGER; m: Model; VAR mv: REAL; VAR curG: Graphing): REAL;
 PROCEDURE CurrentAbscissa(VAR a: Abscissa);
 PROCEDURE TimeIsX() : BOOLEAN;

 PROCEDURE StainToColor(stain: Stain; VAR color: Color);
 PROCEDURE ColorToStain(color: Color; VAR stain: Stain);

 TYPE DisplayTime = (showAtInit, showAtTerm, noAutoShow);
 DispDataProc = PROCEDURE(Model, VAR REAL);
 PROCEDURE DeclDispData(mDepVar : Model; VAR mvDepVar : REAL;
 mIndepVar : Model; VAR mvIndepVar: REAL;
 x, v,
 vLo, vUp : ARRAY OF REAL;
 n : INTEGER;
 withErrBars: BOOLEAN;
 dispTime : DisplayTime);
 PROCEDURE DisplayDataNow(mDepVar : Model; VAR mvDepVar : REAL);
 PROCEDURE DisplayAllDataNow;
 PROCEDURE DoForAllDispData(p: DispDataProc);
 PROCEDURE RemoveDispData(mDepVar : Model; VAR mvDepVar : REAL);

 PROCEDURE DeclDispDataM(mDepVar : Model; VAR mvDepVar : REAL;
 mIndepVar : Model; VAR mvIndepVar: REAL;
 data : Matrix;
 withErrBars: BOOLEAN;
 dispTime : DisplayTime);
 PROCEDURE SetDispDataM(mDepVar: Model; VAR mvDepVar: REAL; data: Matrix);
 PROCEDURE GetDispDataM(mDepVar: Model; VAR mvDepVar: REAL; VAR data: Matrix);

(***************************** SimIntegrate *********************************)

 PROCEDURE Integrate (m: Model; from, till: REAL);

(== - E N D - ==)

ModelWorks may be freely copied but not for profit!

A 346

Index

Symbols coupling of models 44, 47, 48, 209, 224,
243

«Mini RAMSES Shell» viii, 20, 32, 35 current value 14, 22, 58, 59, 107, 133

«RAMSES Shell» 20 curve attribute 24, 25, 120, 148, 149

A
automatic definition 24, 62, 120,

121, 149
in legend 150

application see stand-alone
application customization 98

DAsk for stash file type 97, 104

auxiliary library 89, 90
declaration of

auxiliary variable 14, 69, 71, 131 experiment 143
AuxVar 131 model 30, 58, 125

model during a simulation 73availability of menu commands 82
model object 29, 34, 71, 128

B model parameter 28, 30, 130
monitorable variable 28, 30, 131

button 84 state variable 28, 29, 128
table function 323button palette 84

DeclM 126
C DeclMV 131

calculation order of procedures 49, 50,
66, 126

DeclP 130

DeclSV 129
callee 71, 72

default value vi, 13, 14, 59, 105, 133
client see modeler

Derivative 128
client interface vi, 12, 53, 89, 90, 122

derivative of state variable 13, 14, 29, 44,
68, 69, 70, 127, 129auxiliary library 90, 123

mandatory 273
derivative vector 41mandatory part 89, 90, 122, 342
DESS 40optional client interface 122

optional part 89, 90
DEVS 41, 42, 162, 273

client monitoring 78
"Dialog Machine" vi, 17, 54, 90, 91, 124calling sequence 79
difference equation 12, 13, 40, 41termination 79

client procedure 66, 68, 71, 72 difference equation system v

coincidence interval 46, 47, 50, 101 differential equation 12, 13, 26, 40, 127

coincidence point 46, 47 differential equation system v

consistency check see start
consistency check

discrete event 12, 13, 41, 42, 126, 162
external 42

continuous time 13, 40, 41, 43, 44, 45,
46, 47, 135, 224

internal 42
discrete event formalism v

core menu commands 98 discrete event model viii

347

ModelWorks V2.2 - Index

discrete time 13, 41, 43, 45, 46, 47, 126,
224

input variable 131

installing procedure 71
discrete time step 41, 42, 46 instantaneous state transition function

13, 40, 41, 42, 162E
integration method 26, 51, 59, 68, 112,

126event class 41, 42

event input 41 integration step 26, 50, 59, 69
event output 40, 41, 46 interactive simulation environment 106

external 45 internal event 46
event scheduling viii, 42 InVar 131

by DESS 40
IO-window 21, 82, 107, 109, 144, 145by DEVS 41
IO-window default action 110, 112, 114,

116, 119
by SQM 41

existence of model objects 71

Kexperiment 195, see structured
simulation

keyboard shortcut 94, 98, 109, 110, 111,
112, 114, 116, 117, 118, 119, 121

external event 45, 46

F L
first order difference equation 14

Mfirst order differential equation 14

full reset 62 MacMETH vi

function vector 41 mixed model 14, 43, 46, 47, 224

G model 13, 40-43, 59, 110

model attributes 139
global parameters 53

model base 53, 73
global simulation parameter 62, 101,

133, 134 model definition program 12, 15, 16, 28,
32, 87-88, 90, 94, 124

graph 36, 76, 78, 79, 96, 108, 118, 119,
123, 132, 148, 150 model development 12, 32-87

model object 13, 59, 70, 71, 82graphing 119
model parameter 13, 14, 41, 59, 70, 114

H model validation 278
hardware requirements vi modeller 12, 71
hierarchical system 43, 49 ModelWorks window 146

I modifying current value
automatic curve attribute definition

121independent variable 46, 68, 78, 117,
118, 134, 136 curve attribute 24, 120

initial events 41 discrete time step 101
global simulation parameter 101,

135, 136initial value 13, 14, 15, 40, 41, 59, 70,
105, 113, 127, 129 graphing 118, 119

input 40, 41, 42, 49, 68, 69, 127 initial value 23, 113, 114, 139

348

ModelWorks V2.2 - Index

integration method 26, 112, 139 NewState 128
integration step 26, 101

No run see substate of simulation
environment

model parameter 23, 114, 116, 139
run time change 26, 30, 81, 108, 115,

130 No simulation see state of
simulation environmentmonitorable variable 23, 24-25, 116,

139

Omonitoring interval 25, 101, 136
project description 136

object see model objectrecording flags 103, 136
object selection see selection of

object
scaling 23, 119, 139
simulation start time 101, 136
simulation stop time 101, 136 operand 84
stash filing 117

operator 84table function 139
output 40, 41, 42, 49, 68, 69, 127tabulation 118

user defined curve attributes 121
output variable 131

modifying default value
output-input coupling 44, 45global simulation parameters 135
OutVar 131initial value 138

integration method 34, 138
Pintegration step 136

model 138
page up 78, 97, 150model parameter 138
parallel model v, 48, 243run time change 138

monitorable variables 138 parameter see model parameter
monitoring interval 136

parameter identification 89, 278project description 135
Pause see state of simulation

environment
recording flags 135
scaling 138
simulation start time 136

performance index 278simulation stop time 136
personal computer vistate variable 138

Modula-2 vi, 16 predefined defaults 62

modular modeling 88, 209 predefinitions 62

module structure of ModelWorks 90 preferences see simulation
environment modemonitorable variable 13, 14, 23, 24, 59,

70, 76, 116 program control 73

monitoring 23, 68, 76-79, 116-121, 146-
151

program stack 80, 94
conditional reset 82

monitoring interval 59, 70, 76, 101 global simulation parameters 82
quitting subprogram level 81

monitoring time 76
pseudo random number generator 195

Monte-Carlo simulation 205

QMS DOS vi, 272

N quitting of a program level 80

Rnew state 68

new value of state variable 13, 14, 29,
45, 70, 127, 129

RAMSES v

349

ModelWorks V2.2 - Index

availability 272 source see model definition
programrecommended preferences 97

SQM see sequential machineremoving of

standard interactive simulation
environment 124

model 58, 125, 141
model object 58, 141

reset 14, 59, 60, 62, 101, 105 standard user interface 54, 79
run see simulation run states 82

start consistency check 66, 142run time change see modifying
current value: model parameter start time 46

run-time system 54 stash file 26, 76, 77, 96, 103, 104, 105,
134, 148, 150Running see substate of simulation

environment recording flags 103, 134, 136
renaming 75RunSimEnvironment 94
switching 75

S state discontinuity 42

state of simulation environment 55, 56,
81, 82, 143

sample model 154

scaling 13, 23, 78 EmptySimEnvironment 54
Scope All 84 No model 55, 81, 82

No simulation 54, 55, 56, 81, 82selection of model 83
Pause 26, 54, 55, 56, 81, 82

selection of object 22, 83 Simulating 54, 55, 56, 81, 82, 108
selection scope 83 state variable 13, 14, 68, 69, 70, 113

selectionscope 83 state vector 41
sensitivity analysis 89-183, 278 StateVar 128

sequential machine 41, 42 stochastic simulation 195

SimDeltaCalc 278 structured model 40, 43, 48, 51, 88, 224

SimEvents 273 structured simulation 56, 65, 67, 88, 89,
109, 141, 143, see experimentSimGraphUtils 281

structured simulation run 195SimIntegrate 288
submodel 40, 43, 49, 50, 51SimObjects 290
subprogram 94Simulating see state of simulation

environment subprogram level 80
simulation environment 15, 16, 31, 53 subrun 75
simulation environment mode 96, 97,

104, 148, 150
subrun break 75

subsequent monitoring 146
simulation run 22, 53, 65, 66, 67, 108,

141 substate of simulation environment 55,
56, 143

simulation session 53, 63 No run 56
simulation time 22, 31, 40, 69, 101, 134,

135
Running 56

system
simulationist 12 continuous time 40

discrete event 40solving models simultaneously 80
discrete time 40

350

ModelWorks V2.2 - Index

system specification
continuous time 40
discrete event 41, 162
discrete time 41

T
table 25, 76, 78, 107, 150

table function 176, 320, 323, 326

table function editor 320, 321

terminate condition 66, 142

time see continuous or discrete time

transaction 41

TYPE ExtrapolMode = (lastSlope,
horizontally) 326

U
user see simulationist

user interface 12, 53, 94

user interface customization 84
additional menus 85
disable functions 84
initialization (InstallDefSimEnv) 85
nonstandard user

interface(MySimEnv) 85
override predefined settings 84

V
versions of ModelWorks of

ModelWorks 272

W
work object 20

X

Y

Z

351

352

BERICHTE DER FACHGRUPPE SYSTEMÖKOLOGIE
SYSTEMS ECOLOGY REPORTS

ETH ZÜRICH

Nr./No.

1 FISCHLIN, A., BLANKE, T., GYALISTRAS, D., BALTENSWEILER, M., NEMECEK, T., ROTH, O.
& ULRICH, M. (1991, erw. und korr. Aufl. 1993): Unterrichtsprogramm "Weltmodell2"

2 FISCHLIN, A. & ULRICH, M. (1990): Unterrichtsprogramm "Stabilität"

3 FISCHLIN, A. & ULRICH, M. (1990): Unterrichtsprogramm "Drosophila"

4 ROTH, O. (1990): Maisreife - das Konzept der physiologischen Zeit

5 FISCHLIN, A., ROTH, O., BLANKE, T., BUGMANN, H., GYALISTRAS, D. & THOMMEN, F.
(1990): Fallstudie interdisziplinäre Modellierung eines terrestrischen Ökosystems unter
Einfluss des Treibhauseffektes

6 FISCHLIN, A. (1990): On Daisyworlds: The Reconstruction of a Model on the Gaia Hypothesis

7 * GYALISTRAS, D. (1990): Implementing a One-Dimensional Energy Balance Climatic Model on a Microcomputer (out of print)

8 * FISCHLIN, A., & ROTH, O., GYALISTRAS, D., ULRICH, M. UND NEMECEK, T. (1990): ModelWorks - An Interactive Simulation
Environment for Personal Computers and Workstations (out of printÆ for new edition see title 14)

9 FISCHLIN, A. (1990): Interactive Modeling and Simulation of Environmental Systems on
Workstations

10 ROTH, O., DERRON, J., FISCHLIN, A., NEMECEK, T. & ULRICH, M. (1992): Implementation
and Parameter Adaptation of a Potato Crop Simulation Model Combined with a Soil Water
Subsystem

1 1* NEMECEK, T., FISCHLIN, A., ROTH, O. & DERRON, J. (1993): Quantifying Behaviour Sequences of Winged Aphids on Potato
Plants for Virus Epidemic Models

12 FISCHLIN, A. (1991): Modellierung und Computersimulationen in den Umweltnaturwissen-
schaften

13 FISCHLIN, A. & BUGMANN, H. (1992): Think Globally, Act Locally! A Small Country Case
Study in Reducing Net CO2 Emissions by Carbon Fixation Policies

14 FISCHLIN, A., GYALISTRAS, D., ROTH, O., ULRICH, M., THÖNY, J., NEMECEK, T.,
BUGMANN, H. & THOMMEN, F. (1994): ModelWorks 2.2 – An Interactive Simulation
Environment for Personal Computers and Workstations

15 FISCHLIN, A., BUGMANN, H. & GYALISTRAS, D. (1992): Sensitivity of a Forest Ecosystem
Model to Climate Parametrization Schemes

16 FISCHLIN, A. & BUGMANN, H. (1993): Comparing the Behaviour of Mountainous Forest
Succession Models in a Changing Climate

17 GYALISTRAS, D., STORCH, H. v., FISCHLIN, A., BENISTON, M. (1994): Linking GCM-
Simulated Climatic Changes to Ecosystem Models: Case Studies of Statistical Down-
scaling in the Alps

18 NEMECEK, T., FISCHLIN, A., DERRON, J. & ROTH, O. (1993): Distance and Direction of
Trivial Flights of Aphids in a Potato Field

19 PERRUCHOUD, D. & FISCHLIN, A. (1994): The Response of the Carbon Cycle in Undisturbed
Forest Ecosystems to Climate Change: A Review of Plant–Soil Models

20 THÖNY, J. (1994): Practical considerations on portable Modula 2 code

21 THÖNY, J., FISCHLIN, A. & GYALISTRAS, D. (1994): Introducing RASS - The RAMSES
Simulation Server

* Out of print

Erhältlich bei / Download from
http://www.ito.umnw.ethz.ch/SysEcol/Reports.html

Diese Berichte können in gedruckter Form auch bei folgender Adresse zum Selbstkostenpreis bezogen werden /
Order any of the listed reports against printing costs and minimal handling charge from the following address:

SYSTEMS ECOLOGY ETHZ, INSTITUTE OF TERRESTRIAL ECOLOGY
GRABENSTRASSE 3, CH-8952 SCHLIEREN/ZURICH, SWITZERLAND

22 GYALISTRAS, D. & FISCHLIN, A. (1996): Derivation of climate change scenarios for
mountainous ecosystems: A GCM-based method and the case study of Valais, Switzerland

23 LÖFFLER, T.J. (1996): How To Write Fast Programs

24 LÖFFLER, T.J., FISCHLIN, A., LISCHKE, H. & ULRICH, M. (1996): Benchmark Experiments on
Workstations

25 FISCHLIN, A., LISCHKE, H. & BUGMANN, H. (1995): The Fate of Forests In a Changing
Climate: Model Validation and Simulation Results From the Alps

26 LISCHKE, H., LÖFFLER, T.J., FISCHLIN, A. (1996): Calculating temperature dependence over
long time periods: Derivation of methods

27 LISCHKE, H., LÖFFLER, T.J., FISCHLIN, A. (1996): Calculating temperature dependence over
long time periods: A comparison of methods

28 LISCHKE, H., LÖFFLER, T.J., FISCHLIN, A. (1996): Aggregation of Individual Trees and Patches
in Forest Succession Models: Capturing Variability with Height Structured Random
Dispersions

29 FISCHLIN, A., BUCHTER, B., MATILE, L., AMMON, K., HEPPERLE, E., LEIFELD, J. &
FUHRER, J. (2003): Bestandesaufnahme zum Thema Senken in der Schweiz. Verfasst im Auftrag
des BUWAL

30 KELLER, D., 2003. Introduction to the Dialog Machine, 2nd ed. Price,B (editor of 2nd ed)

http://www.ito.umnw.ethz.ch/SysEcol/Reports.html

