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1. INTRODUCTION

Information on the space-time variability of regional
climate is important for basic climatological research
and numerous applications, such as the validation of
climate models, the construction of climate scenarios,
or the study of climate change impacts and planning.
In topographically and climatically complex regions
such as Switzerland, the construction of appropriate,
quantitative climatological data sets is particularly
challenging. Switzerland lies in the central part of the
European Alps, extends over an area of approximately
41 000 km2, and covers an elevation range from ca. 200

to over 4500 m above sea level (masl). It is located at a
latitude of 46 to 47.5° N, and at a distance of 600 to
800 km and a few hundreds of kilometers from the
North Atlantic and Mediterranean coasts, respec-
tively; thus its climate is shaped not only by a complex
physiography but also by the interplay of oceanic, con-
tinental and subtropical climatic influences (Schüepp
& Schirmer 1977, Schär et al. 1998, Wanner et al. 2000). 

A generally applicable data set that would appropri-
ately depict the large spatial, temporal and seasonal
variability of the Swiss climate should fulfil several
requirements: First, it should account for both radiative
and thermal effects, as well as hydrological effects, by
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considering at least the 2 primary variables, tempera-
ture and precipitation. Second, it should provide a high
spatial and temporal resolution. A spatial resolution of
a few kilometers or less is needed in order to resolve at
least the major mountain ranges and valleys found in
the study region; temporally, at least a monthly resolu-
tion is needed to capture the pronounced seasonality
of the Swiss climate. Third, in order to account for
the decadal-scale climate variability and any possible
long-term trends, a suitable data set should extend
over several decades. Fourth, in order to be univer-
sally applicable, and for ease of computerized data
handling, the data set should cover the entire Swiss
region and be defined on a regular grid. Fifth, the data
set's accuracy should be well documented in order to
enable users to estimate the reliability of any derived

results. Finally, the data set should be compared to any
other similar data sets in order to offer potential users a
basis for selection. 

An impressive collection of digital, gridded climate
data sets is already available for the Swiss region
(Table 1). However, none of these data sets satisfies all
the above requirements: several data sets consider
only 1 variable at a time, e.g. only temperature or only
precipitation; have an insufficient spatial extent (No. 9
in Table 1) or resolution (Nos. 2, 4, 5, 8, 10, 13, 14); do
not account for the temporal variability of climate
(Nos. 1, 2, 3, 5, 7, 11, 12); or cover periods of less than
30 yr (Nos. 4, 6, 11, 12). In most cases no detailed infor-
mation is available on the quality and precision of the
interpolated data sets over the Swiss region (excep-
tions are Nos. 7, 11 and 13). Moreover, only some of the
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Table 1. Overview of gridded climate data sets for Switzerland. T: temperature; P: precipitation; *approximate longitude-latitude resolution of
the grid in the vicinity of Switzerland; REP: regression using elevation as a predictor; IDW: inverse distance weighting; AURELHY: analysis
using relief for hydrometeorological applications. ADW: angular distance weighting; GW: Gauss weighting; PRISM: parameter-elevation 

regression on independent slope model; RSOI: reduced space optimal interpolation; SYMAP: Synagraphic mapping system

No. Variables Spatial extent, Temporal extent, Number of stations, Source
grid resolution resolution methods used

1 T Switzerland, 250 m 1931–1970, long-term 36, REP + IDW Bär (1989)
monthly means

2 T, P + Global land areas, 1930–1960, long-term Several thousands, REP (T only) + thin- Leemans &
cloudiness 0.5° (38 km × 56 km)* monthly means plate splines (Hutchinson & Bischof 1983) Cramer (1991)

3 P Switzerland, 1 km 1951–1980, long-term 400 (corrected for gauge biases), REP + Kirchhofer &
monthly means kriging Sevruk (1992)

4 P European Alps, 1971–1990, daily areal 6800, modified SYMAP (Shepard 1984, Frei & Schär (1998)
25 km averages Willmott et al. 1985)

5 T, P + 7 other Global land areas, 1961–1990, long-term 12 092 (T), 19 295 (P; Alps: ~320), New et al. (1999)
variables 0.5° (38 km × 56 km)* monthly means trivariate thin-plate spline surfaces as 

a function of longitude, latitude and 
elevation (Hutchinson 1995)

6 T, P + 3 other Switzerland, 1 km 1973–1992, daily means 165 (T + P ), REP (9 subregions, Menzel (1999),
variables allowance for discontinuities in elevation Menzel et al. (1999)

profiles) + IDW (Schulla 1997)

7 P Switzerland, 30’’ 1961–1994, long-term 306, AURELHY Neidhöfer (2000)
(640 m × 920 m)* annual and seasonal means (Benichou & Le Breton 1987)

8 T, P + 5 other Global land areas, 1901–1996, monthly Several thousands (time varying network; New et al. (2000)
variables 0.5° (38 km × 56 km)* mean anomalies Alps: 50–110), ADW

9 T, P + 5 other Switzerland, 1 km 1969–1998, daily means 100 (T ), 400 (P ), REP (3 subregions, up to Zierl (2000, 2001)
variables (10 605 forested 2 discontinuities in T-elevation profiles) 

locations only) + IDW

10 T European Alps, 1760–1998, monthly mean 120 (time-varying network, homogenized), Böhm et al. (2001)
1° (76 km × 111 km)* anomalies GW (2 elevation zones, no information 

transport across various subregions)

11 P European Alps, 1.25’’ 1971–1990, long-term 6090, PRISM (Daly et al. 1994) Schwarb (2001),
(1.6 km × 2.3 km) annual and monthly means Schwarb et al. (2001)

12 T + 8 other Switzerland, 250 m 1971–1990, long-term ~70, REP (2 subregions) + kriging + Z’graggen (2001)
variables monthly means for empirical adjustments for the effects of 

January, April, July aspect and cold-air ponds
and October

13 P European Alps, 1901–1990, 6800 (1971–1990), 140 (1901–1990), RSOI Schmidli et al. (2002)
25 km monthly mean anomalies (Kaplan et al. 1997, Schmidli et al. 2001)

14 T, P + 6 other Global land areas, 1961–1990, long-term 12 783 (T), 18 217 (P ), same method as in New et al. (2002)
variables 10’ (13 km × 19 km)* monthly means New et al. (1999)
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studies cover the World Meteorological Organization
standard period 1961–1990 (Nos. 5, 7, 8, 10, 13, 14), or
appear to make good use of the abundant station data
available for Switzerland (Nos. 3, 4, 7, 9, 11, 13). A few
studies (Nos. 4, 7, 10, 11, 13) provide comparisons
between selected data sets, but to my knowledge no
systematic comparison of all the available data sets has
been attempted so far. 

In this paper I present the derivation and validation
of a new 5 km × 5 km gridded monthly mean tempera-
ture and precipitation data set for Switzerland that
covers the 50 yr period 1951–2000 and accounts for the
complexity of the Alpine terrain. In order to meet the
need of many applications for site-specific data (see
e.g. Gyalistras et al. 1998), all interpolated gridpoint
data present point estimates. The chosen resolution of
5 km is not as high as in some existing data sets (which
provide a resolution of 1 km or less; Table 1), but it is
still much higher than the ≥25 km resolution of all
currently available long-term, time-dependent data
sets (Nos. 8, 10 and 13). The monthly resolution is also
coarser than the daily resolution of several existing
data sets, but again, either these extend only over
relatively short time periods (Nos. 6 and 9) or they
were produced without taking into account the
region’s complex physiography (No. 4). 

Several approaches can be envisaged for the devel-
opment of a gridded climate data set. These include
the interpolation of point or areal measurements
with the aid of topographic-statistical techniques (see
review in Section 2.2), simulations with physically
based models (e.g. Barros & Lettenmaier 1994), or
some combination of these approaches (e.g. Thompson
et al. 1997, Purves & Hulton 2000). Simulation models
have the advantage that they yield physically opti-
mally consistent results. However, their application
normally requires large amounts of input data for
model initialization, forcing and testing. Moreover,
the models also have huge computing requirements,
which renders their use for the production of high-
resolution, multi-decadal data sets impracticable.

Therefore, in the present work I focused on the sta-
tistical approach. This approach can in principle be
applied to any combination of in situ and remote-
sensed data (e.g. Vogt et al. 1997). However, the latter
are available only for the last 20 to 30 yr, so the present
study was based on in situ measurements only.

The production of the gridded data set was based on
the ‘anomaly’ approach, as used by New et al. (1999,
2000). This approach builds upon the fact that monthly
climate anomalies, which reflect the effects of large-
scale circulation patterns, are spatially less variable
and can thus be described by a less-extensive station
network than the mean climate, which is more strongly
tied to physiographic factors. Accordingly, below I

address the interpolation of (1) 1961–1990 monthly
long-term mean fields based on an extensive climate
station network; and (2) monthly anomaly fields for all
months in 1951–2000 based on a reduced set of long-
term stations. 

Most of the studies listed in Table 1 either did not
account for the influence of the relief or did so only in a
relatively simple manner. Exceptions are the works
by Neidhöfer (2000) and Schwarb (2001). Both authors
used sophisticated topographic-statistical methods to
interpolate long-term mean climate, which will be
discussed later in more detail. 

To my knowledge, such sophisticated methods have
not been applied to interpolate temporally varying
fields in the Swiss region until now. In particular, New
et al. (2000), Böhm et al. (2001) and Schmidli et al.
(2002) constructed anomaly fields that did not account
for any possible orographic effects. This approach ap-
pears justifiable in view of the relatively sparse station
networks and coarse spatial resolutions (≥25 km) con-
sidered in these studies. However, it may be expected
that with increasing spatial or temporal resolution the
role of relief becomes progressively more important. 

In the present work I investigate how relief informa-
tion can be used to improve not only the interpolation of
long-term mean fields, but also that of 5 km anomaly
fields. The interpolation procedure employed was
based on the method proposed by Benichou & Le
Breton (1987), which I extended in order to account for
orographic variability at different spatial scales, as well
as for regionally and seasonally varying relief-climate
relationships. The amount and detail of orographic in-
formation that entered the interpolations were adjusted
as a function of variable and station-network density. 

It is shown, firstly, that the newly proposed method
clearly improves the interpolation of long-term mean
precipitation and of autumn and winter temperature
anomalies compared with simpler methods. However,
with regard to spring or summer climate anomalies,
better results can be obtained from a simpler proce-
dure. Secondly, it is found that the quality of the inter-
polations shows distinct regional and seasonal patterns
that are quite independent of the interpolation method
employed and have plausible climatological explana-
tions. Finally, this work demonstrates that local climate
trends, in particular local temperature trends, may
show surprisingly high small-scale variability, which
cannot be easily captured by interpolation.

Section 2 describes the data and methods used to pro-
duce, test and analyze the gridded data sets. In Sections
3 and 4, the results are presented and discussed. These
include a brief 50 yr trend analysis of the Swiss tem-
perature and precipitation fields. The paper ends with
conclusions on the proposed interpolation method and
the accuracy and utility of the new data set (Section 5). 
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2. DATA AND METHODS

2.1. Data. Two kinds of data were used: point eleva-
tion data from 2 digital elevation models (DEM), cover-
ing the European and Swiss regions, respectively; and
monthly temperature and precipitation station data
from a large number of Swiss climate stations.

2.1.1. Elevation data: The European-scale DEM data
were downloaded from the Webpage of ‘The Global
Land One-km Base Elevation Project’ (GLOBE; Hast-
ings & Dunbar 1998; http://www.ngdc.noaa.gov/seg/
topo/globe.shtml, accessed on April 9, 2002). This
DEM has a resolution of 30 arc-sec, which in the Swiss
area corresponds to a longitude × latitude resolution of
640 m × 920 m. The root-mean-square error (RMSE) of
GLOBE over Europe should generally be below 20 m
(Hastings & Dunbar 1998). Comparison of the GLOBE-
DEM with the Swiss DHM25-DEM (see below) showed
a mean error over the Swiss region of –4 m and a
RMSE of ~150 m. About 10% of the ~53 000 data points
compared showed differences greater than 250 m.

The Swiss DEM was the ‘Digitales Höhenmodell’ of
the Swiss Federal Office of Topography (DHM25, qual-
ity level 1; Landestopographie 2001a), which has a
resolution of 25 m. The average error of the DHM25-
DEM in northern Switzerland (Swiss Plateau and Jura
mountains) is 1.5 m, in the Swiss Prealps and southern
Switzerland (Tessin) 2 m, and in the Alps 3 m.

For the present study I derived a new 1 km × 1 km
longitude-latitude DEM by merging the 2 data sets as
follows: First, every 40th point from the DHM25-DEM
was sampled to obtain a 1 km grid (one-fifth of the res-
olution of the 5 km target grid). Second, the GLOBE-
DEM was regridded to match the Swiss km coordinate
system (Landestopographie 2001b), again using a grid-
point distance of 1 km. Regridding was done by fitting
a partial quartic equation to the 9 closest gridpoints
of the original data set. The equation is such that the
resulting surface passes exactly through the 9 grid-
point elevations (Zevenbergen & Thorne 1987). Finally,
the 2 data sets were merged by using, wherever pos-
sible, the data from DHM25. 

The newly produced DEM was named DEM-A. It is
optimally precise within Switzerland at a 1 km resolu-
tion and less precise in the surrounding regions. Two
further DEMs with coarser resolution, which were
named DEM-B and DEM-C, were derived (1) by taking
spatial averages from DEM-A using sliding windows of
3 km × 3 km and 5 km × 5 km, and (2) by sampling
every third and fifth gridpoint, respectively, from the
smoothed data sets. 

2.1.2. Climatic data: Time series of monthly mean
daily mean temperatures (T) and of monthly precipita-
tion totals (P) were extracted for the years 1901–2000
from the database of the Swiss Meteorological Insti-

tute. Data prior to 1951 were extracted to calibrate
regression models that were used for the estimation of
missing values in 1951–2000 (see below). Homoge-
nized time series were used where available
(Aschwanden et al. 1996).

No further tests for data quality or homogeneity were
performed. Rather than performing the very costly task
of identifying and removing any inhomogeneities prior
to carrying out the interpolations, the present study
aimed at quantifying the inhomogeneities’ possible
effects with the aid of cross-validation. In cross-
validation, 1 data point is excluded at a time, and it is
then predicted from all the remaining data (see also
Section 2.3). The reasoning was as follows: the pre-
diction of an inhomogeneous data point at a given
location from the surrounding, homogeneous station
data should automatically lead to a relatively large
cross-validation error for that particular point; con-
versely, the use of that data point to predict all others
would be likely to distort the empirical climate-relief
relationship, thus increasing the cross-validation error
at the surrounding locations. Hence, any inhomo-
geneities should become documented implicitly in the
form of increased cross-validation errors. This issue
is discussed further in Section 4.2.

The SMI database contained data for 191 T stations
and 673 P stations, but only 56 and 313 stations, re-
spectively, fully covered 1961–1990. Therefore linear
regressions from neighboring climate stations were
used to predict missing station values and to generate
an extended data set. This simple approach appeared
justified because correlations between neighboring
stations were generally found to be very high (see
below). A square-root transformation was applied to
all P data prior to fitting the regressions, because P
was found to be positively skewed for most locations
and months. 

The ‘best’ neighbor station to estimate a missing
monthly value was determined according to the fol-
lowing algorithm:

• Step 1: Find for the given target variable and
month all stations with at least 20 years of data in
1901–2000.

• Step 2: Determine all stations that have at least
20 yr of common data with the target station.

• Step 3: Compute the linear regressions between
the target station and all these stations.

• Step 4: Select all stations for which the coefficient
of determination (r2) is larger than 0.5. (This value was
well above the threshold r2 value of ~0.2 that indicates
a correlation different from zero at the 95% signifi-
cance level [n = 20].)

• Step 5: If at least 1 such station exists, use for inter-
polation the station with the largest r2; otherwise retain
the missing value at the target station.
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Thanks to the availability of a dense original station
network, the average r2 values of the regressions
amounted to 96% for T and 92% for the square-root
transform of P. The procedure resulted in a new net-
work of 136 T stations and 515 P stations that fully
covered 1961–1990. The average distance between a
station and its closest neighbor (its closest 50 neigh-
bors) was 9.6 (61) km for T and 5.1 (27) km for P. 

Two further networks of climate stations resulted by
selecting from the SMI database all stations with at
least 45 yr of data available in 1951–2000. These were
35 stations for T and 147 stations for P. Here no time
interpolation of missing values was done. The average
distance between a station and its closest neighbor
(its closest 25 neighbors) amounted to 24 (95) km for T
and 10.5 (37) km for P. 

The climate stations’ distribution with elevation is
shown in Fig. 1. It can be seen that for all 4 station
networks only very few stations were available below
250 and above 2000 masl. The fraction of the Swiss area
that falls in the elevation zones 0–250, 250–1500,
1500–2000, 2000–2500 and ≥2500 masl is 1, 63, 13, 13
and 10%, respectively. The higher elevation regions
were therefore underrepresented in all station networks.

For all stations of the 2 extensive networks, the
1961–1990 monthly long-term mean values (T–– and P––)
were computed as an input for the interpolation of the
long-term mean fields. Monthly departures ∆T and ∆P
from the 1961–1990 means were computed for the 2
other networks and 1951–2000. They provided the
input for the interpolation of the monthly anomaly
fields. 

2.2. Interpolation method. The interpolation method
consisted of the following steps, which are typical
for most topographic-statistical interpolation studies:
(1) description of the relief by means of a set of pre-
dictor variables; (2) evaluation of these variables at
the climate station locations and at all target grid-
points; (3) establishment of a statistical model at the
climate stations to estimate the quantity of interest
from the orographic predictors; (4) application of this
model to the entire target grid. 

The following subsections address the choice and
implementation of the particular approach used in the
present study.

2.2.1. Choice of topographic predictors and inter-
polation method: Topography (vegetation, land use,
inland bodies of water, relief, etc.) influences the cli-
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Fig. 1. Numbers of climate stations that were available for interpolation as a function of station elevation (masl). T––: long-term
mean monthly mean temperature; P––: long-term mean monthly total precipitation; ∆T: monthly mean temperature anomaly; 

∆P : monthly precipitation anomaly

∆T — # Stations (1951–2000) ∆P — # Stations (1951–2000)
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mate in many ways, and there are no universal rules
to guide the choice of topographic predictor variables.
Longitude and latitude have been used in several stud-
ies in order to account for general spatial trends, for
instance, due to systematic variations in insolation or
due to the presence of large bodies of water or moun-
tains (e.g. Holdaway 1996, Kurtzman & Kadmon 1999).
Detailed descriptions of the relief can be obtained from
a DEM. Frequently used variables are point elevation
(e.g. Phillips et al. 1992, Dodson & Marks 1997), slope
and aspect, and the distance from large upwind oro-
graphic barriers (e.g. Basist et al. 1994, Carrega 1995).
All these variables can also be evaluated as a function
of direction (e.g. Prudhomme & Reed 1998, Agnew &
Palutikof 2000). 

In most topographic-statistical methods the topo-
graphic predictors and the target variable are linked to
each other by means of multiple linear regression. In
complex terrain it is appropriate to account for local
and regional changes in topographic regime, for in-
stance, by using regionally, or even continuously, vary-
ing relief-climate relationships. This can be done
based on a windowing (Daly et al. 1994, Schwarb 2001)
or distance weighting (Brunsdon et al. 2001) tech-
nique. Moreover, it may be appropriate to use season-
ally varying regression equations in order to account
for temporally varying lapse rates, prevailing wind
directions, etc. (e.g. Pepin 2001). 

Since in Switzerland no single factor (such as eleva-
tion) can be expected to determine the distribution of
climatic elements, it was decided to use a procedure
that allows for inclusion of sophisticated orographic
information. The following 3 candidate methods were
identified based on a literature review:

(1) AURELHY (analysis using relief for hydrometeo-
rological applications; Benichou & Le Breton 1987). A
principal component analysis (PCA, e.g. Preisendorfer
1988) is applied to a large number of elevation vectors
that represent small areas (e.g. 11 × 11 DEM grid-
points), which are sampled from the study domain. The
principal component (PC) loadings of the first few PCs
provide a description of the most important patterns of
orographic variability at a scale comparable to the size
of the small areas used for PCA. The PC scores are
used as orographic predictors. This method was used
by Neidhöfer (2000) to interpolate long-term mean
annual and seasonal precipitation fields for Switzer-
land. His work is discussed later in more detail.

(2) PRISM (parameter-elevation regression on inde-
pendent slope model; Daly et al. 1994). The relief is
described based on DEM-derived areal mean eleva-
tion and on the definition of so-called ‘facets’, i.e. con-
tiguous areas of more-or-less constant slope orienta-
tion at different DEM resolutions. Schwarb (2001)
successfully applied the PRISM method to produce

maps of long-term mean annual and monthly precipi-
tation in the European Alps at a ~2 km resolution. 

(3) PLUVIA (Drogue et al. 2002). The relief in the
vicinity of a given target location is described based on
a whole range of elevation statistics of neighboring
DEM gridpoints, such as the mean, standard deviation
and various quantiles. The statistics are evaluated
separately for 8 directions and for square areas of
1 × 1 to 29 × 29 km2. To my knowledge this method
has not been applied in the Swiss region until now. 

I decided to use the AURELHY method because it
provides an efficient and elegant representation of the
relief; it uses orthogonal predictors (the PC scores) as
inputs for the statistical prediction; and it requires
adjustment of only a relatively small number of para-
meters, which are mainly related to the set-up of the
PCA. Quite differently, the use of the PRISM method
would have required considerable time for tuning of
at least 16 parameters related to the definition of the
facets and the selection of appropriate neighboring
stations and their weights for fitting of the regression
equations (Schwarb 2001). This also made PRISM
appear less suitable for the automated interpolation of
a larger number of monthly, time-varying fields. The
PLUVIA method could have been a somewhat better
choice for the interpolation of precipitation fields than
the original AURELHY method (see comparison by
Humbert et al. 1997), but it was not used because it does
not account for slope aspect, which was assumed to be
important for the interpolation of the temperature fields.

2.2.2. Extensions of the AURELHY method: Two
main disadvantages of the original AURELHY method
are (1) that it considers only a single scale of oro-
graphic variablity, as defined by the size and geometry
of the small areas used for PCA and (2) that it assumes
a constant relief-predictand relationship throughout
the entire domain. I therefore attempted to improve
the method as described below.

The first problem was analyzed in detail by Neid-
höfer (2000). He found that the quality of the oro-
graphic regression models used to predict precipita-
tion depended sensitively on the definition (area size
and sampling region) of the elevation vectors used for
PCA, and that the optimal definitions varied strongly
with season and region. In order to alleviate this prob-
lem I subdivided the Swiss region into small subsectors
of 50 km × 50 km (Fig. 2) and to compute, for each of
the 40 subsectors, 3 different PCAs (PCA-A to -C) that
focused on 3 different space scales (Table 2).

With regard to the second problem, Neidhöfer (2000)
defined 7 subregions and used regionally varying re-
gressions. However, he found large discontinuities of the
interpolated precipitation fields at the subregion’s
boundaries, and this suggested that his approach did not
capture the spatial variability of the relief-precipitation
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relationship well enough. Therefore, in
the present study I used site-specific re-
gression equations, which were deter-
mined separately for every single tar-
get gridpoint of every interpolated
long-term mean or anomaly field. This
approach was adopted again for both
temperature and precipitation. 

The choice of using 3 PCAs per
Swiss subsector in the present study
was to some extent arbitrary. It pre-
sented a compromise between the
conflicting needs to accurately de-
scribe relief variability over a suffi-
ciently wide range of spatial scales, on
the one hand, and on the other hand,
to keep the total number of orographic
predictors small compared to the max-
imum number of 25 to 50 stations that
were used to fit the orographic re-
gressions (Table 3).

The sizes (S 2) of the quadratic areas
used to compute the 3 PCAs were cho-
sen based on the following considera-
tions: Initial experimentation with dif-
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Fig. 2. Elevation map of the study domain and definition of the different sectors used in the interpolation procedure. A, B, C: sec-
tors covered by the digital elevation model (DEM) data sets used; A: sector containing point elevation data; B, C: sectors
containing elevation data averaged over quadratic areas of size 3 × 3 km and 5 × 5 km, respectively; 1–5 and 1–8: row and column
numbers used to denote subsectors; 3.4: example for a selected subsector. For each subsector 3 different principal component
analyses (PCAs) for the 3 elevation data sets A–C were performed using data from surrounding areas of size 100 × 100 km (A),

150 × 150 km (B), and 250 × 250 km (C)

4°E 5°E 6°E 7°E 8°E 9°E 10°E 11°E 12°E 13°E

48.5°N

48°N

47.5°N

47°N

46.5°N
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45°N

44.5°N

Table 2. Characterization of the digital elevation models (DEM) used, and of
the principal component analyses (PCA) applied to the 3 DEM data sets in the 

surroundings of every Swiss subsector (see Fig. 2)

DEM-A DEM-B DEM-C

Spatial resolution 1 × 1 3 × 3 5 × 5
(km; longitude × latitude)

Meaning of gridpoint data Point elevation, Average of Average of
merged from the 3 × 3 gridpoints 5 × 5 gridpoints

‘DHM25’ and from DEM-A from DEM-A
‘GLOBE’ DEMs

PCA-A PCA-B PCA-C

Size of area used to sample 100 × 100 150 × 150 250 × 250
elevation vectors for PCA
(km; longitude × latitude)

Size of area represented by 11 × 11 63 × 63 125 × 125
each elevation vector used
for PCA (S2, km;
longitude × latitude)

Sampling interval for elevation 5/5 6/6 10/10
vectors used for PCA (km;
longitude/latitude)

Number of elements per ele- 112 = 121 212 = 441 252 = 625
vation vector used for PCA

Number of elevation vectors 192 = 361 162 = 256 142 = 196
used for PCA
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ferent PCAs showed that the loadings of the first and sec-
ond PCs corresponded in most cases either to an inclined
surface or to a single trough or ridge (Fig. 3a,b). For the
third PC loadings, a saddle point was typically obtained,
or a combination of a single trough and a ridge, i.e. an os-
cillating pattern with wavelength ≥S (not shown). Hence
the scale of orographic variability resolved by the first 2
and 3 PCs was found to be ~S and ≥S/2, respectively. In
order to ensure that a station network matches this res-
olution, it was concluded that S ≥ κD––s, with κ ranging be-
tween 1 and 2, and D––s is the average distance between
neighboring stations (i.e. each station sampled an area of
average size D––s).

This led to the following choices for S: For T–– and P––,
D––s = 9.6 and 5.1 km, respectively, such that for PCA-A,
S = 11 km. For ∆T and ∆P, D––s = 24 and 10.5 km. How-
ever, the individual distances between neighboring
stations in the 2 anomaly networks varied consider-
ably, between 6.2 and 68 km for ∆T, and between 2.3
and 38 km for ∆P. Therefore, for PCA-B, S = 63 km.
Whereas PCA-A and PCA-B accounted for the small-
and mesoscale variability of the relief, a further PCA,
PCA-C, was used to account for climate variations due
to large-scale topographic forcing: S = 125 km.

As an example, results of the 3 PCA analyses for the
subsector 3.4 (Fig. 2) are shown in Fig. 3. The first PC
loading of PCA-A described variations in the aspect
(northwest for positive and southeast for negative PC
scores; Fig. 3a), whereas the loading of the second PC
provided a measure of the terrain curvature in the sur-
roundings of a location (trough-like relief for positive
and ridge-like relief for negative PC scores; Fig. 3b).
The first PC loading maps from both PCA-B and PCA-
C again provided a measure of aspect, but on progres-
sively larger spatial scales (Fig. 3a). The second arc-
shaped PC loadings accounted for the position of a
target location relative to the entire Alpine range
(Fig. 3b). Similar results were obtained for the other
subsectors, but the orientation, shape and order of the
patterns varied considerably between subsectors (not
shown).

2.2.3. Set-up of the interpolation
procedure: The predictors used to
fit the orographic regressions were:
(1) point elevation; (2) areal mean
elevation; and (3) a varying num-
ber of PC scores from PCA-A to -C
(Table 3). These variables were
computed as follows: 

For fitting of the regression
models the point elevations (h(x,y),
where x and y denote the space
coordinates) were given by the sta-
tion elevations; for model applica-
tion at the station locations or the

target gridpoints they were determined from DEM-A.
Areal mean elevation (g(x,y )) was determined at a 1 km
resolution by applying a 5 km × 5 km sliding window to
DEM-A. The PC scores (sXi(x,y), X = A–C, i = 1 … NPCA-X;
see Table 3) for a given target gridpoint were obtained
by projecting the respective PC loadings map (p→Xi)
onto an elevation anomaly vector (a→X(x,y)), which was
derived from an elevation vector (h

→
X(x,y)) that was cen-

tered over the target location (x,y). The anomalies
were taken relative to the mean (m→ X) of all elevation
vectors used to perform the respective PCA (Table 2):

sXi(x,y) =  a→ T
X(x,y) · p→Xi = (h

→
X(x,y) – m→X)T · p→Xi (1)

(The superscript T denotes the transpose of a vector.)
The predictor variables at the climate station locations
(which normally did not coincide with a gridpoint of
the target grid) were estimated with the aid of a partial
quartic equation (Zevenbergen & Thorne 1987) using
the 9 closest gridpoints from the respective DEM or
gridded PC scores data set.

The spatial distributions of selected PC scores sXi(x,y)

for subsector 3.4 are shown in Fig. 3c,d.
The quantity of interest at a given target location

(x,y) was estimated according to:

(2)

Here the ^ denotes an estimate, and F = T––, P––, ∆T(t) or
∆P(t), where t denotes time; a, b, c and dXi are site-
specific (and in the case of the anomaly fields also
time-varying) regression parameters that were esti-
mated using data from the climate stations surround-
ing the target location (see below); and the summation
over X depended on the variable considered (Table 3).

Note that the present study considered only a pos-
sible orographic signal, i.e. no interpolation of the
residuals from the regression according to Eq. (2) was
employed. The only post-processing consisted in
limiting all interpolated precipitation values to ≥0.

The first 3 PCs from each PCA were always used for
the interpolation of T–– and P––. This number was deter-
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Table 3. Parameters of the interpolation procedure. T––: long-term mean monthly
mean temperature; ∆T: monthly mean temperature anomaly; P––: long-term mean
monthly total precipitation; ∆P : monthly precipitation anomaly. PC: principal 

component; PCA: principal component analysis

T–– ∆T P–– ∆P

Use point elevation/ Yes/Yes Yes/Yes Yes/Yes Yes/Yes
Use areal mean elevation

Number of PCs from 3/3/3 0/1/1 3/3/3 0/2/2
PCA-A/PCA-B/PCA-C (NPCA-X)

Maximum number of climate stations 50 25 50 50

Maximum radius of influence of 100 150 50 75
climate stations (R; km)
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mined by inspecting the eigenvalue spectra of the vari-
ous PCAs, which in most cases levelled off after the third
PC. The first 3 PCs typically explained up to 95% of the
total variance of the elevation data set used for PCA.
Smaller numbers of PCs were used for the interpolation
of ∆T and ∆P , and only those from PCA-B and PCA-C, in
order to account for the less-extensive station networks. 

The data for the fitting of the linear regressions at a
given target location were taken either from all sta-
tions found within a given radius of influence (R )
around this location or from a maximum number of sta-

tions found at a distance ≤R, whichever criterion was
satisfied first (Table 3). All stations found were consid-
ered in the regression with the same weight. 

The value of R used for the interpolation of (P––) was
set to 50 km. Schwarb (2001) found that the semi-
variogram of annual mean P–– from 6000 Alpine stations
can be described by an exponential function with a
range of 1.3° (approx. 100 to 150 km). In the present
study a smaller value was used in order to account for
the higher spatial variability of the monthly P–– fields.
For the interpolation of T––, which after detrending
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Fig. 3. Results of the 3 principal component analyses (PCA-A to -C) for subsector 3.4 (see Fig. 2 and the 50 × 50 km boxes in panels c and d. 
(a,b) Loadings maps of the first and second PCs, respectively; (c,d) scores of the first and second PCs. Loadings are given in m; scores are

arbitrary units. Percentages in (a) and (b) give the proportions of the total variance explained by each PC
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for elevation showed a smoother behavior than P––,
R = 100 km was used (Table 3).

In order to determine R for the interpolation of ∆T
and ∆P, the variances (V, in %) that are explained by
simple linear regression between 2 stations were
investigated as a function of distance (D, in km). For
annual mean ∆T and the distance range 0–250 km, V =
89 – 0.07D. Hence, stations up to a distance of several
hundred kilometers from a target location could have
been used. However, I chose R = 150 km for all months,
because a much stronger decay of correlation with
distance was found for October to December, when
regional temperature inversions occur quite frequently
in some valleys and parts of the Swiss Plateau. For
annual mean ∆P and the distance range 0–150 km, V =
72 – 0.29D. Stronger decreases in correlation with dis-
tance were found for April to July, probably due to the
more frequent occurrence of convective conditions
during these months. However, for the sake of simplic-
ity, R = 75 km was always used, i.e. the distance at
which V dropped to 50% for annual mean ∆P. 

2.3. Alternative interpolation methods. For T–– and P––

the newly proposed interpolation method was com-
pared to a much simpler method, which used only local
elevation as a predictor (REP in Table 1). The corre-
sponding regression model was given by the first 2
terms on the right-hand side of Eq. (2).

With regard to ∆T and ∆P, an inverse distance weight-
ing (IDW) procedure was considered. IDW does not ac-
count for any orographic effects and computes the target
quantity as a weighted mean of the measured values at
the surrounding stations. The weights used for each sta-
tion are proportional to (1/d )α, where d is the station’s
distance from the target location. Values of 0.5 (i.e. dis-
tant stations receive a relatively large weight), 1.0, and
2.0 (rapid decay of a station’s influence with distance)
were considered for the parameter α.

The climate stations used by the 2 alternative proce-
dures were selected in the same manner as reported
in Table 3. 

2.4. Validation. The performance of all interpolation
procedures was assessed by means of cross-validation,
which was performed for every single interpolated
monthly long-term mean or anomaly field as follows:
each climate station was excluded once from the given
station network, and the target quantity of interest was
then predicted at this station using the data from all
remaining stations. The predicted and measured val-
ues were compared using a series of statistics that are
summarized in Table 4. 

Note that the ME, MAE, MRE and MARE statistics
(Table 4) gave the same weight to all errors, whereas
the RMSE and RMSRE statistics gave higher weight to
larger errors compared to smaller ones. Note also that
COR and PEV do not carry physical dimensions. They

were used to measure the pattern similarity between
the interpolated and observed data fields. 

COR varies between +1 and –1 and does not account
for any systematic errors in the mean or the variance. It
measures the degree to which a linear transformation
of the interpolated data could be used to reproduce the
measurements, with values of ±1 indicating the possi-
bility of a perfect fit.

The PEV statistic assumes values between –∞ and +1.
Values <0 indicate very poor performance of the inter-
polation procedure; a value of zero suggests that the in-
terpolation is no better than using the mean; and values
> 0 suggest a useful result in the sense that the error vari-
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Table 4. Statistics used to analyze the station data and to assess the ac-
curacy of the interpolations. xi: i th measured value; yi: i th predicted
value from the cross-validation procedure; N: number of samples con-
sidered; x–: mean of all measured values;y–: mean of all predicted values

Statistic Identifier Definition

Mean MEAN

Standard deviation SD

Mean absolute deviation MAD

Trend TREND Slope of linear 
regression from time

Error E yi – xi

Absolute error AE |yi – xi |

Relative error RE

Absolute relative error ARE

Mean error ME

Mean absolute error MAE

Root-mean-square error RMSE

Mean relative error MRE

Mean absolute relative error MARE

Root-mean-square relative error RMSRE

Correlation coefficient COR

Proportion of explained variance PEV
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ance is smaller than the variance of the original data set. 
The various statistics were evaluated either for all

climate stations (or all stations within a given elevation
zone) or across all time points. Hereafter the kind of
summation used to derive a statistic will be indi-
cated by the subscripts ‘s’ for space and ‘t’ for time,
respectively. For example, MEANs(E), which is identi-
cal to MEs, denotes the spatial mean error, whereas
CORs(TRENDt) denotes the spatial correlation between
the cross-validated and observed temporal trends.

3. RESULTS

3.1. Temperature

3.1.1. Cross-validation results and analyses of 
station data

Fig. 4a shows the spatial distribution of the cross-
validated errors obtained for the annual mean T–– (T––Ann),
as computed from the monthly values. It can be seen
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that 90% of all errors were less than 1°C. Fig. 4b shows
the spatial distribution of the PEVt statistic for the
cross-validated annually averaged ∆T. Here a north-
south gradient can be discerned. The average value
from all stations was 89%; the smallest value (41%)
was obtained for Lugano in southern Switzerland.

The errors for T––Ann depended only weakly on eleva-
tion (Fig. 5a). MEs was generally below 0.3°C, except
for the lowest and highest elevation zones, where it
amounted to +1.66 and +0.44°C, respectively. Note,
however, that for these elevation zones only 1 and 3
stations, respectively, were available (Fig. 1). MAEs

and RMSEs were both generally well below 1°C, and
for elevations above 250 masl always smaller than
MADs and SDs, respectively, of the measured data. 

Fig. 5b shows selected error statistics for T–– as a func-
tion of month. MEs was close to zero for all months.
MAEs and RMSEs showed a distinct annual cycle, with
high values in the winter half-year and lower values
in the summer half-year. Mean MAEs for October to
March was 0.67°C, whereas the average value for the
remaining months was 0.48°C. Annually averaged
RMSEs for T–– was 0.75°C.

Fig. 5c refers to the interpolation of ∆T. Annually
averaged monthly PEVt showed a slight decrease with
elevation. The annual mean SDt was underestimated
for all elevations zones below 2500 masl, by on aver-
age –0.1°C or –4%, and it was overestimated at the
one available location above 2500 masl (Jungfraujoch,
3580 masl), by 0.37°C or 20%. MEs for annual mean
TRENDt was below 0.3°C per 50 yr for all elevation
zones, and generally it was much smaller than the
observed average trends. 

The monthly cross-validation statistics for ∆T are
shown in Fig. 5d. Monthly PEVt values were mostly
above 87%, except for November to January (82 to
85%). For SDt the annual mean MEs and MREs

amounted to –0.05°C and –2%, respectively. The ab-
solute errors (not shown) were generally smaller for
the summer half-year compared with the winter half-
year: April to September mean MAEs (MAREs)
amounted to 0.09°C (6.3%), whereas for the remaining
months it was 0.2°C (10.6%). Annual mean MEs for
TRENDt was 0.1°C. The errors showed the largest spa-
tial variability for January, February and May (90%
range: ~2°C). Annual mean MAEs amounted to 0.43°C.

The MEANs and the 5 and 95% percentiles of T–– from
136 climate stations are shown in Fig. 5e. The long-
term mean temperatures varied between 2.3°C (Janu-
ary) and 15.2°C (July). Annual mean SDs of T–– was
3.4°C. Areal mean SDt and its spatial variability also
showed a clear seasonal signal: both were smallest
during spring and summer. Quite differently, the 50 yr
areal mean trends showed a very jagged annual cycle.
The largest trends were on the order of the mean SDt.
They occurred for January (+1.84°C per 50 yr), fol-
lowed by August (+1.76°C per 50 yr) and February
(+1.71°C per 50 yr). Negative mean trends were
obtained for April (–0.29°C per 50 yr) and June
(–0.13°C per 50 yr).

Fig. 5f shows how the spatial variability of the mea-
sured statistics relates to the amplitudes of the cross-
validated errors. With regard to T––, large positive
values were obtained for both measures of spatial
coherence used, CORs and PEVs. The T–– pattern was
better reproduced from March to September (PEVs =
0.81 to 0.86) than from the remaining months (PEVs =
0.58 to 0.75). The PEVs statistics for monthly SDt and
TRENDt were generally below zero. However, CORs

was positive in several cases, thus indicating some
similarity in the spatial pattern of the observed and
cross-validated data.

3.1.2. Comparison of interpolation methods

The use of a simple linear regression to predict T––

from elevation yielded practically the same results
(Fig. 5a,b,f) as the newly proposed method (compari-
son not shown).

The cross-validation results of the newly proposed
method and of the IDW method are compared in Fig. 6.
The results shown for IDW are only for the case α = 2.0,
which gave the best average performance for all months.

It can be seen that the local temporal variability of ∆T
was reproduced roughly equally well by both proce-
dures, except for October to December, for which time
the new procedure yielded somewhat better results
(Fig. 6a). The spatial variability of the ∆T anomaly
fields was better reproduced by the new procedure for
September to February, but IDW proved to be superior
from April to June (Fig. 6b).

67

Fig. 5. Cross-validation statistics for the interpolated temperatures and comparison with corresponding statistics derived from the
climate station data (OBS). T––Ann: long-term mean annual mean temperature;  T––: long-term mean monthly mean temperature (n =
136 climate stations, data refer to 1961–1990); ∆T: monthly temperature anomaly (n = 35 climate stations, data refer to
1951–2000). (a,b) Results for the interpolation of T–– as a function of elevation and month; (c,d) results for the interpolation of ∆T as
a function of elevation and month; (e) observed monthly statistics; (f) monthly pattern similarities between the station data and
the cross-validation results. For the abbreviations used to denote the various error and data statistics see Table 4; subscripts s 

and t denote space and time, respectively
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3.1.3. Interpolation results

Fig. 7 shows the results obtained from the newly pro-
posed interpolation procedure for seasonal mean T––

(Fig. 7, left-hand panels) and the seasonal mean SDt

(Fig. 7, right-hand panels), which was computed from
the monthly ∆T fields. As could be expected (Fig. 5e)
both parameters showed a distinct annual cycle, and
the mean temperatures showed a strong influence of
the relief (cf. Fig. 2). 

Fig. 8 compares the measured seasonal mean tem-
perature trends for 1951–2000 with the trends that
were derived from the monthly interpolated ∆T fields.

The station data (Fig. 8, left-hand panels) generally
showed positive trends, which were largest for winter
and summer (cf. Fig. 5e). However, no clear spatial pat-
tern can be discerned, except perhaps for a tendency
towards stronger warming in the eastern part of
Switzerland in winter. Negative seasonal mean trends
were found at a few isolated locations for spring, sum-
mer and autumn. For all seasons there were cases
where the trends between neighboring sites just a few
tens of km apart differed by more than 1 to 2°C per
50 yr (cf. the wide 90% range shown in Fig. 5e).

The interpolated trend maps (Fig. 8, right-hand
panels) reflected the general characteristics of the sta-
tion data. However, the interpolated fields showed
smoother horizontal gradients compared with the mea-
surements, and they displayed a clearer orographic sig-
nal. For example, for all seasons the interpolated maps
depicted relatively large trends over the Jura Moun-

tains in west-northwest Switzerland. Substantial differ-
ences were found between the observed and interpo-
lated trends at individual locations; several negative
station trends cannot be discerned in the interpolated
fields (cf. relatively large variance of errors in Fig. 5d).

3.2. Precipitation

3.2.1. Cross-validation results and analyses of 
station data

The spatial distribution of RE for the long-term mean
annual total precipitation (P––Ann), as computed from the
monthly cross-validated values, is shown in Fig. 9a. The
MREs for the 511 stations considered was 1.2%. Large
errors were obtained at higher elevations and towards
the margins of the study area. The 2 largest errors
occurred at the sites Campocologno (535 masl, marked
with an ‘x’ in Fig. 9a; RE = –100%) and Corvatsch
(3315 masl, located NW of Campocologno; RE = +85%).
For 90% of all other locations the RE for P––Ann was
below 20%.

Fig. 9b shows the distribution of the annually
averaged PEVt for ∆P. The mean PEVt from the 143 sta-
tions considered amounted to 74%. Again,
errors tended to increase with elevation, and par-
ticularly large errors were obtained at 3 isolated sites,
which are marked with an ‘x’. They were (from west
to east in Fig. 9b): Zermatt (1638 masl, –321%), Scuol
(1295 masl, –243%) and Santa Maria (1390 masl,
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Fig. 7. Seasonal mean temperature (left-hand panels) and seasonal mean standard deviations of monthly mean temperature
(right-hand panels) as computed from the interpolated fields. T––: long-term mean monthly mean temperature (data refer to
1961–1990); ∆T: monthly mean temperature anomaly (data refer to 1951–2000); DJF: December–February; MAM: March–May; 

JJA: June–August; SON: September–November. Circles denote the locations of the stations used for interpolation

Fig. 6. Comparison of cross-validation results for the inverse distance weighting (IDW) and the orographically based (elevation +
PC scores) interpolation procedures. ∆T : monthly temperature anomalies (results refer to 1951–2000); (a) MEANs: spatial mean;
PEVt: proportion of explained temporal variance; (b) MEANt: temporal mean; PEVs: proportion of explained spatial variance
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–238%). These stations were excluded from the calcu-
lation of all further cross-validation statistics. The aver-
age PEVt without the 3 outliers was 81%.

The altitudinal distribution of the errors for P––Ann is
shown in more detail together with some statistics of
the observed data in Fig. 10a. MEs was generally a few
mm per year for elevations below 1500 masl. MREs was

1 to 2%. Much larger values were obtained for the ele-
vation zones 2000–2500 masl (7 stations; Fig. 1) and
above 2500 masl (2 stations), where MREs amounted to
–10 and +47%, respectively. MAEs and RMSEs showed
a clear increase with elevation. Above 2000 masl the
cross-validated errors surpassed the observed varia-
bility as measured by MADs and SDs.
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Fig. 8. Comparison between measured seasonal mean trends of monthly mean temperatures (left) with trends derived from the 
interpolated fields (right). ∆T: monthly mean temperature anomaly (data refer to 1951–2000)

Fig. 9. Cross-validation results for (a) the interpolated long-term mean annual total precipitation (P––ANN, results refer to
1961–1990) and (b) the monthly precipitation anomalies (∆P, results refer to 1951–2000). RE: relative error; PEVt: proportion of
explained temporal variance. Stations marked with an ‘x’ showed very large errors and were excluded from all further analyses 

of cross-validation results (see also text)
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The annual cycles for the mean and 5 and 95% per-
centiles of 3 relative error measures for P–– are shown
in Fig. 10b. Averaged over the whole year MREs

amounted to +2%, MAREs to 11%, and RMSREs to 16%.
The annual mean MEs, MAEs and RMSEs amounted to
0.0, 10.5, and 15.3 mm mo–1, respectively. All statistics
suggested increased accuracy of the interpolation pro-
cedure during the summer compared with the winter. 

Fig. 10c summarizes the cross-validation results for
∆P as a function of station elevation. Note that no sta-
tions were available above 2500 masl (Fig. 1). Annual
mean PEVt showed a clear decrease with elevation.
The average value from the 4 (2) considered stations in
the elevation zones 1500–2000 masl (2000–2500 masl)
was 50% (42%). These elevation zones also showed
the highest MEs for annual mean SDt and TRENDt. 

Fig. 10d shows the monthly PEVt statistics. It can be
seen that from March to August the temporal variabil-
ity was less well reproduced compared with the other
months. SDt showed a slightly negative MEs. On aver-
age over all months it amounted to –1.9 mm mo–1. The
annual mean MREs, MAEs and MAREs for SDt were
–3%, 7.1 mm mo–1 and 13%, respectively (not shown).
MEs for TRENDt was generally small and showed no
clear seasonal cycle.

The distribution of the measured P–– data is shown in
Fig. 10e. The annual mean from all 511 stations was
105 mm mo–1 (or 1260 mm yr–1). The largest areal mean
values were found for June and August (135 mm mo–1),
and the smallest for February (84 mm mo–1). The inter-
station variability (dashed lines in Fig. 10e) followed
the mean and was largest for April to August. The
annual mean SDs was 33.3 mm mo–1.

The SDt statistics for the station data are also shown
in Fig. 10e. The average SDt from all stations showed
an annual mean value of 52 mm mo–1 and a moderate
seasonal cycle. The spatial variability of SDt varied
more strongly and showed maxima in February, April
and September to November. 

The mean TRENDt from all stations varied strongly
with the time of the year. It was positive for all months,
except for January (–6.8 mm mo–1 per 50 yr) and August
(–37 mm mo–1 per 50 yr). The variability between stations
(dashed lines in Fig. 10e) was considerable, except for
August to October, for which time trends of common sign
were found at most stations.

The interpolation method’s ability to reproduce the
spatial distribution of selected precipitation para-
meters is assessed in Fig. 10f. For P–– the pattern simi-
larity between the cross-validated and measured data
was generally high and showed a clear annual cycle
with maximum values in the summer half-year. The
spatial variability of SDt and TRENDt was less well
reproduced. However, the error statistics suggested
reasonable skill for all months, except perhaps for
TRENDt in June and July. 

3.2.2. Comparison of interpolation methods

Fig. 11a,b compares the performance of the REP, the
PRISM and the newly proposed method for the inter-
polation of P––. REP gave generally large MEs and MAEs

values for all elevation zones compared to the other
2 methods. PRISM and the newly proposed method
performed equally well for elevations ≤2000 masl, but
for the elevation zone 2000–2500 masl PRISM clearly
gave the best results. 

The cross-validation results of the newly proposed
method and the IDW method with regard to ∆P are com-
pared in Fig. 11c,d. Again, IDW clearly performed best
for α = 2.0, such that only this case is reported here.

It can be seen that generally both the temporal
(Fig. 11c) as well as the spatial (Fig. 11d) variability of
the anomaly fields was better reproduced by the IDW
interpolation. The differences between the 2 methods
were largest for March to September. 

3.2.3. Interpolation results

Seasonal averages of the interpolated monthly P––

fields are shown in Fig. 12, left-hand panels. It can be
seen that summer is the wettest season over most of the
area. In the Ticino region, southern Switzerland (sub-
sectors 4.5 and 5.5; Fig. 2), large average precipitation
amounts can also be observed in the transition seasons.
Maxima were obtained for all seasons over the Jura
Mountains (subsectors 3.1, 2.2 and 2.3), and along the
main Alpine ridge. The minima were found in the inte-
rior of the mountain range, in Valais (subsectors 4.3
and 4.4) and southeastern Switzerland (subsector 5.3). 
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Fig. 10. Cross-validation statistics for the interpolated precipitation totals and comparison with corresponding statistics derived
from the climate station data (OBS). P––Ann: long-term mean annual total precipitation; P––: long-term mean monthly total precipita-
tion (n = 511 climate stations, data refer to 1961–1990); ∆P: monthly precipitation anomaly (n = 143 climate stations, data refer to
1951–2000). (a,b) Results for the interpolation of P–– as a function of elevation and month; (c,d) results for the interpolation of ∆P
as a function of elevation and month; (e) observed monthly statistics; (f) monthly pattern similarities between the station data
and the cross-validation results. For the abbreviations used to denote the various data and error statistics see Table 4; subscripts 

s and t denote space and time, respectively
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Fig. 12, right-hand panels shows the 50 yr, season-
ally averaged interannual standard deviations of ∆P,
as computed from the interpolated monthly anomaly
fields. The largest SDt values were generally
obtained in the southern part of the study region.
Large interannual variability was also found for the
main Alpine ridge and the Jura Mountains during
winter and autumn. 

The seasonally averaged, measured and interpo-
lated ∆P trends are juxtaposed in Fig. 13. The mea-
surements (Fig. 13, left-hand panels) showed for the
transition seasons positive, for summer negative,
trends at most locations. For winter a more complex
pattern was found, with positive trends in the north-
west and southwest, negative trends in the south-
southeast of the study domain, and trends of oscillating
sign along the main Alpine ridge and its northern rim.

The trend maps (Fig. 13, right-hand panels) picked
up the main features of the observations for all seasons.
However, as this was the case for temperature, major
deviations from the measurements occurred at the
locations of individual climate stations. An example
are the summer trends for subsector 3.5 (Fig. 2), where
most stations showed decreasing trends, whereas the
interpolated map suggested a slight increase in sea-
sonal mean precipitation. 

4. DISCUSSION

Several climatological data sets similar to the one
derived here have already been produced for the
Alpine and Swiss regions (Table 1). However, to my
knowledge, this is the first study to provide a multi-
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Fig. 11. Comparison of cross-validation results obtained from different interpolation procedures. (a) P––Ann: long-term mean annual
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Fig. 12. Seasonal mean precipitation totals (left-hand panels) and seasonal mean standard deviations of monthly precipitation
totals (right-hand panels) as computed from the interpolated fields. P––: long-term mean monthly total precipitation (data refer
to 1961–1990); ∆P : monthly precipitation anomaly (data refer to 1951–2000). Circles denote the locations of the stations used 
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variable, multi-decadal, consistent data set at a 5 km
resolution. 

The main purpose of this work was to derive a rela-
tively comprehensive description of the Swiss climate
and the associated error bars, rather than to optimize
every single aspect of the interpolated data set. Many
improvements are certainly possible, and the following
subsections will discuss in turn issues related to the
data set’s resolution, to the data and method employed,
and to the accuracy and utility of the results.

4.1. Resolution issues

Unlike many earlier studies (e.g. Nos. 2, 4, 5, 8, 10, 13
and 14 in Table 1) the present work did not consider
grids of areal mean values, but rather it aimed at
estimating the amplitude of various scalar fields F at
unsampled locations (Eq. 2). 

Whereas the accuracy of interpolated areal mean
data is typically limited by the number and represen-
tivity of the climate stations available in the vicinity of
each gridbox, the problem encountered here was that
a station network with average distance D––s between
neighboring stations can only resolve spatial variations
in F of scale ≥2D––s. In this study D––s was between 5.1 (for
P––) and 24 km (for ∆T ), so one might ask whether there
were enough data to support a 5 km resolution.

At least 2 answers can be given to this question.
Firstly, from a pragmatic point of view, one may argue
that it is always better to have some objectively
derived estimate of F at unsampled locations rather
than none at all, provided that the associated error bars
(Figs. 5 & 10) are kept in mind by the users of the data
set. Secondly, and more importantly, the present work
aimed precisely at exploiting the additional informa-
tion provided by appropriate covariates (Fig. 3c,d; top
2 rows in Table 3) in order to enhance the limited reso-
lution of the station data. 

Having a gridpoint distance D–– of 5 km, the derived
data set in principle resolves variations in F of scale
≥2D–– = 10 km. Of course, the true behavior of F is
masked by interpolation errors, and users of the data
set are advised to trust only differences between loca-
tions that are well above the typical MAE or RMSE
values that are reported in Figs. 5 & 10. Nevertheless,
note that the mean cross-validated errors were typi-
cally close to zero (Figs. 5a,b,d & 10a,b,d), such that on
average the interpolated surfaces can be expected to
correctly reproduce the true F. An exception applies
to P––, and perhaps also to ∆P, for elevations above
2000 masl, where larger systematic errors were found.

Several applications require site-specific data at a
much higher resolution than 5 km. The gridpoint dis-
tance of the present data set could easily be enhanced
to 1 km, since all needed covariates were available at
this resolution (Fig. 3). The present work employed a
5 km grid only for purely technical reasons, in order
to save computing time and reduce storage require-
ments. The production of grids with D––GP < 1 km is,
however, presently not possible with the proposed
method, due to the lack of appropriate DEM data
outside of Switzerland.

Some applications, such as the validation of climate
models, require grids of areal mean values with a
resolution of 25 to 50 km. Such grids can be easily pro-
duced from the present data set by averaging all grid-
points found in a target gridbox. Note that this is likely
to improve the accuracy of the data set, because the
interpolation error at each gridpoint can be viewed as a
random variable with a zero mean (in most cases, see
above) and a standard deviation s ≈ RMSE (as defined
in Table 4); and according to standard statistical the-
ory, the mean of n identically distributed, independent
random variables has a standard deviation of s�13n.
Hence, the transition to a 25 km (or 50 km) grid implies
an error standard deviation for the gridbox mean of s/5
(or s/10). Somewhat larger values must be expected if
the errors at neighboring gridpoints are correlated.

Schmidli et al. (2001) give an example of this effect.
They reported a strong improvement in the represen-
tation of temporal variability when they considered
regional means from several gridpoints of their 25 km
Alpine-wide precipitation data set.

This reduction of the interpolation error variance
should, however, not divert attention from a possible
sampling problem associated with the 5 km (or any
other) grid: given the complexity of the Swiss terrain,
it is not clear how many point estimates are actually
required per 25 km or 50 km gridbox to correctly cap-
ture the areal mean signal. This issue and the spatial
covariance structure of the errors remain to be exam-
ined in future work.

4.2. Data problems

Data problems related to both the climate station
data and the DEM input data might have affected the
quality of the interpolations.

Interpolation errors tended to increase towards the
south-southeast borders of Switzerland (Figs. 4 & 9)
and with elevation (Figs. 5a,c & 10a,c). This was prob-
ably due to the low station densities in the respective
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regions and elevation zones (see also Fig. 1). The
efforts needed to obtain additional data, in particular
for Italian stations to the south of Switzerland and
for the entire 1951–2000 (or even only the 1961–1990)
period, were, however, far beyond the scope of the
present study. With regard to precipitation, the data
coverage could improve, thanks to possible future
updates of the database by Frei & Schär (1998)—the
database presently covers only 1971–1990; with re-
gard to temperature, however, no corresponding data-
gathering effort seems to be currently on the way.

The interpolation of the anomaly fields was based on
a relatively small number of stations that had continu-
ous data for 1951–2000. Data from many other shorter-
term Swiss stations are actually available and could
have been used to improve the interpolation results for
individual months or years. These data were, however,
not included because priority was given to producing a
temporally homogeneous data set. Moreover, the use
of a temporally varying database would have compli-
cated the description and analysis of the interpolation
errors, which already show a very complex pattern
(Figs. 4, 5, 9 & 10). An alternative to using a time-
varying station network, which was not pursued here,
would have been to employ record extension tech-
niques (e.g. Hirsch 1982) in order to produce a denser
station network for 1951–2000.

A further problem relates to possible inhomogeneities
of the station data. Schmutz (2001) analyzed 114 long-
term Swiss precipitation stations and concluded that
only 39 should be used for long-term trend analyses.
He considered 1901–1995, but, unfortunately, he did
not report on the time points at which the inhomo-
geneities were detected. One might speculate that the
post-WWII data used in the present study should be
more reliable than those considered in his analysis.
With regard to temperature, no study similar to
Schmutz’s seems to have been carried out until now. 

The strategy pursued to quantify the effects of pos-
sible inhomogeneities by means of cross-validation
had the disadvantage that it does not allow separation
of poor performance due to data problems from other
factors that influence the quality of the interpolations.
Also, this strategy might fail to give large cross-valida-
tion errors if a large number of neighboring stations
show the same kind of inhomogeneity. However, such
a configuration would probably also go undetected
through a homogeneity test.

The cross-validation procedure might also fail to
account for any systematic measurement errors if they
occur at a larger number of stations. For precipitation
rain gauges, undercatch can lead to errors on the order
of several 10% (Sevruk 1985), in particular, at high
elevations. The present data set does not consider any
corrections for such errors.

A too-coarse or erroneous representation of the relief
presents a further source of error, in particular for grid-
points that are found in the vicinity of narrow valleys or
of mountain ridges. It can be expected that the use of a
DEM with a gridpoint distance <1 km would give a
particularly strong improvement for temperature. This
is because in the present study all orographic regres-
sions were determined using local station elevations,
whereas for application of the regressions, the point
elevations had to be estimated by interpolation from
the DEM. 

4.3. Methodical considerations

The selection and evaluation of the orographic pre-
dictors is not a straightforward task. This work identi-
fied fixed sets of predictors related to elevation and the
relief (first 2 rows in Table 3), which were then used to
fit spatially varying multiple linear regression models.
Possible alternative approaches that remain to be ex-
plored might consider the stepwise selection of predic-
tors, the inclusion of non-linear terms or transformed
predictor variables (Prudhomme & Reed 1999), or the
use of the predictors as covariates for kriging (e.g.
Phillips et al. 1992), or for kriging with an external drift
(e.g. Pardo-Iguzquiza 1998).

The predictors considered in this work accounted for
variations in slope and aspect (Fig. 3a), and for the
occurrence of troughs and ridges (Fig. 3b) at different
spatial scales. Their possible added value is discussed
below mainly based on the comparison with the sim-
pler interpolation procedures. A more detailed analysis
of the statistical linkages between the PC scores and
the various climate parameters could have provided
additional insight, but such work was beyond the
scope of the present study. 

The use of the PC scores in addition to elevation
strongly improved the interpolation of P–– (Fig. 11a,b).
An exception applies perhaps for elevations above
2000 masl, but here the comparison of the methods is
probably not representative due to the very small
number of stations available (Fig. 1). The improvement
obtained demonstrates once more that precipitation in
the Alps depends on slope and shielding effects and
shows no simple relationship with elevation (Schüepp
et al. 1978, Frei & Schär 1998). 

The comparison with the results of Schwarb (2001)
(Fig. 11a,b) suggests that with regard to P–– and up to
an elevation of 2000 masl the method used here is as
good as PRISM (Daly et al. 1994). The better perfor-
mance of PRISM reported by Schwarb (2001) for the
high-altitude zones is probably because he used a
much denser station network. Part of the difference
may also be because he tested his method for a dif-
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ferent period (1971–1990) and for a different sector,
which extended beyond the boundaries of Switzer-
land. 

The new method also gave some improvement com-
pared to IDW interpolation for autumn and winter ∆T
(Fig. 6). During these seasons, large-scale inversions
and cold-air ponds often dominate the Swiss tempera-
ture field. Apparently, the orographically based proce-
dure accounts better for such phenomena than the
IDW procedure, which depends entirely on exploiting
the spatial correlation in the measured data field. 

Interestingly, the PC predictors did not bring any
improvement with regard to T––. It is not clear whether
this was due to the absence of any significant slope/
aspect, etc., effects at the scales investigated (>11 km;
Fig. 3) or whether the station network used or the inter-
polation procedure used simply failed to capture any
corresponding signals. 

The orographically based interpolation performed
clearly less well than the IDW method for spring ∆T
(Fig. 6) and for spring to autumn ∆P (Fig. 11c,d). The
fact that the IDW interpolation with α = 2.0 gave the
best results suggests a relatively rapid decline of useful
information with distance. Since the orographically
based procedure did not account for this effect, and
since the better performance of IDW does not neces-
sarily imply the absence of an orographic signal, it is
possible that a combination of both approaches would
give the best results. This could be accomplished by
distance-weighting the climate station data prior to
fitting the regressions (Brunsdon et al. 2001), or by
interpolating the residuals from the regressions using
an IDW or kriging procedure (e.g. Agnew & Palutikof
2000). 

A peculiarity of the method used was that every
anomaly field was interpolated individually as a func-
tion of the relief. Two alternatives would have been
(1) to fit 1 orographic regression model per calendar
month and then apply it to all anomaly fields of that
particular month; or (2) to first interpolate daily fields
(e.g. Frei & Schär 1998), and then use them to compute
the monthly climate anomalies. Alternative (1) would
have required the estimation of a much smaller num-
ber of regression parameters than was the case in the
present study. This would probably have given more
robust regression equations, however, at the ex-
pense of assuming a time-invariant relief-predictand
relationship for every calendar month. Alternative
(2) could possibly have increased the precision of the
results, but it would have been computationally much
more demanding. Moreover, it would have had to
account for the strongly skewed distributions of daily
variables. The present study adopted an intermediate
solution, but it is not clear whether this was the optimal
choice. 

The proposed interpolation method could possibly
also be improved by tuning the values of all involved
parameters (Tables 2 & 3), for instance, based on the
minimization of the cross-validation errors; by experi-
menting with additional predictors, in particular with
variables that account for other physiographic factors
than the relief, e.g. vegetation type (Zheng & Basher
1996) or lakes (Z’graggen 2001); and finally by includ-
ing auxiliary meteorological information, for instance
that related to weather types (Courault & Monestiez
1999) or to local insolation and cloudiness (Ninyerola
et al. 2000). 

4.4. Accuracy of results

The accuracy of the interpolations was estimated by
means of leave-one-out cross-validation. This approach
provided only information for the sites sampled by the
station network, such that the various mean error
estimates (ME, MAE, etc.) were biased towards the
regions of high data density and the lower elevation
zones.

Note also that the cross-validation errors reported for
individual locations (e.g. Figs. 4 & 9) probably give a
too-pessimistic estimate of the true errors in the vicin-
ity of these locations. This is because the inclusion of
all stations for the production of the final grids is likely
to improve the accuracy of the interpolations around
all available data points. 

The accuracy of the present data set could have been
assessed further based on a comparison with similar
products. However, such work is complicated by prob-
lems of data accessibility, as well as the use of different
databases, study regions, time periods, resolutions and
target variables (point vs areal mean estimates) in the
various studies (Table 1). Therefore any comparisons
had to be limited to the few studies that have reported
similar error measures as the ones considered here. 

4.4.1. Temperature

The errors obtained for T–– were generally small
when compared to the measured spatial variability
(Fig. 5a,f). The smallest error amplitudes were ob-
tained for the summer half-year (Fig. 5b), but in
relative terms (i.e. compared with the spatial varia-
bility of the temperature field) the spatial distribution
of T–– was more accurately reproduced from March to
September (Fig. 5f). 

This seasonal variation of the errors for T–– probably
reflects the effect of more frequent temperature inver-
sions during the autumn and early winter months.
Inversions are likely to create abrupt horizontal transi-
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tions in the temperature field at a 5 km resolution, and
they were probably not captured so well by the inter-
polation procedure. 

The temporal variability of ∆T was generally very
well reproduced and showed a distinct annual cycle,
with the largest error variances occurring from October
to January (Figs. 5d & 6). This decrease in performance
was probably again related to the reduced vertical mix-
ing of the atmosphere (and hence a decoupling of low-
and high elevation sites) during this time of the year.

The spatial variability of the monthly ∆T fields was
generally less well reproduced than their temporal
variability (Fig. 6a vs b). Note, however, that PEVt and
PEVs are both relative error measures and that the
interpolation procedure had to capture a very small
spatial signal compared with a much larger temporal
signal: the average temporal standard deviation of ∆T
was between 1.2 and 2.6°C (Fig. 5e), whereas the aver-
age spatial standard deviation of the individual
monthly ∆T fields was between 0.8°C for winter and
as small as 0.4°C in summer (analyses not shown).

The fact that both the IDW procedure and the oro-
graphically based procedure yielded relatively low
PEVs values points towards the existence of strongly
local controls for ∆T that are quite independent of
the relief. These might relate to perturbations of the
local radiation balance, e.g. due to site-specific cloudi-
ness or boundary-layer effects. 

4.4.2. Precipitation

The interpolation errors for P–– were smaller than the
measured spatial variability only for elevations below
2000 masl (Fig. 10a). Schwarb (2001) experimented
with different interpolation methods and station net-
works and found that the availability of accurate sta-
tion data is probably the major factor that controls the
quality of statistical interpolations of P–– in the Alps.
Schwarb (2001) used a better database than the one
that was available for the present study, and his data
set is certainly more accurate than the one provided
here for elevations >2000 masl (Fig. 11a,b).

The spatial pattern of P–– was clearly better repro-
duced for summer compared with winter (Fig. 10b,f).
Neidhöfer (2000) reported a similar result. This sug-
gests that the relief controls the spatial pattern of
the long-term mean precipitation more closely in the
warm season compared with the cold season. A pos-
sible mechanism could be related to the triggering and
propagation of convective weather systems in the
vicinity of orographic obstacles, such as the Alpine
foothills. Such a long-term orographic signal does
not depend on the stochastic nature of individual
precipitation events. 

The temporal variability of ∆P was generally well
reproduced (Figs. 10d & 11c, but note also Fig. 9b).
Schmidli et al. (2002) reported similar values (PEVt >
0.9 along the northern Alpine flank and PEVt ≈ 0.6 in
the southern parts of the Alps), however, for areal
mean anomalies and only at a 25 km resolution. 

The temporal skill of the interpolations in the present
study was better for the winter season compared with
the summer months (Fig. 11c). This was probably
because the stronger large-scale forcing during winter
yields spatially more coherent climate anomalies, which
can be better captured by the interpolation procedure. 

As was the case for temperature, the spatial variabil-
ity of the ∆P fields was generally less well reproduced
than their temporal variability (Fig. 11c vs d). The
average PEVs value was 0.4 (Fig. 11d). Schmidli et
al. (2002) reported PEVs values between 0.67 (lower
quartile of all monthly fields) and 0.8 (upper quartile)
for their monthly Alpine-wide ∆P fields. Similar to the
present study (Fig. 11d), they found a somewhat
smaller spatial skill for summer. This could be due to
the predominance of smaller-scale and more erratic
weather systems during the warm season. 

In summary, the comparison with the results of
Schmidli et al. (2002) suggests that with an increase in
spatial resolution (i.e. a decrease of the gridpoint dis-
tance from 25 to 5 km) the temporal variability of ∆P is
still well reproduced, but that the spatial accuracy of
the grids deteriorates.

4.4.3. Standard deviation and trend fields

The relatively poor representation of the spatial vari-
ability of the ∆T and ∆P fields affected the accuracy of
the derived standard deviation and trend fields, which
were also not so well reproduced (Figs. 5f & 10f). The
mean errors for the derived fields were, however, in
most cases close to zero (Figs. 5c,d & 10c,d). This sug-
gests that the relatively large error variances were not
caused by a systematic deviation at all stations, but
rather by locally varying errors of opposite sign (see
also Figs. 8 & 13). 

One reason why the small-scale variability of the
station statistics was not so well reproduced was that
the orographic regression equations were determined
using data from a relatively large number of stations
(Table 3). Consequently, the small-scale variability
found in the individual anomaly fields (not shown), as
well as in the derived statistics (Figs. 8 & 13), tended
to get smoothed out. 

As already discussed, the deviations found might
also have been caused by inhomogeneities or other
data problems at the individual stations (see Section
4.2). Furthermore, they could also be due to real
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signals which were not correctly reproduced by the
interpolation procedure, e.g. due to insufficient sta-
tion density or the omission of relevant physiographic
factors (see Section 4.3). A further possible error
source could be the presence of purely local climate
forcings, related, for instance, to urbanization or
changes in land use. Pielke et al. (2002) also found
substantial, difficult to explain, small-scale variability
in temperature trends in an other mid-latitude region
(Colorado, USA). 

The causes of the small-scale variations not resolved
by the gridded anomaly fields should be investigated
further. Meanwhile, it is suggested that users of the
data set either should use areal averages that are com-
puted from a larger number of gridpoints (see Section
4.1), or, if they wish to use data from individual grid-
points, should also consider the associated error esti-
mates (Figs. 4, 5, 10 & 11), for instance in the context
of sensitivity analyses. 

5. CONCLUSIONS

The constructed 50 yr data set enables analyses of
the joint space-time variability of the Swiss tempera-
ture and precipitation fields at a relatively high spatial
and temporal resolution. 

The accuracy of the provided point estimates at the
gridpoint locations varies strongly as a function of the
interpolated variable, geographical location, and time
of year. Detailed error statistics are available for com-
parison with alternative data sets and for sensitivity
analyses by potential users.

The newly proposed interpolation method is superior
to simple elevation-detrended interpolation with re-
gard to long-term mean precipitation. It also proved
superior to the IDW method for the interpolation of
autumn and wintertime temperature anomalies, but
otherwise in its present configuration it is worse than
IDW for the interpolation of anomaly fields. 

The estimated biases of the interpolations for most
variables and regions are close to zero, indicating that
areal averages from a large number of gridpoints are
accurately reproduced. This suggests utility of the data
set for the validation of climate models, the calculation
of the water balance over larger areas, and the accu-
racy assessment of coarser gridded data sets.

The spatial patterns of the long-term mean fields, as
well as the temporal variability of the anomaly fields
are generally captured well by the interpolations.
Larger systematic errors and error variances occur,
however, at locations above ~2000 masl and in data-
sparse areas in south-southeast Switzerland. 

The measured climate anomalies and trends show
substantial small-scale spatial variability, which is not

well reproduced. The point estimates provided by the
interpolations should therefore be interpreted with
care. 
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