	01.1	1	1	•	c .1	1 •	•
1 ahlo 4 1/	Soloctod	climate	changes	conarioe	tor th	o almino	region
1 avic 1./	Juluu	unnau	change 5	ccnarios	ioi ur	c aipinc	ICEIOII
			0				0

Type of		Applied Technique	Major historical, or assumed future forcing	Climate model(s)	ΔTemperature					Δ Precipitation (in %)					
study	No.				REG	Win	Spr	Sum	Aut	REG	Win	Spr	Sum	Aut	
Empirical	(1)	Paleoclimatic analog based on pollen and lake level data (Guiot, Harrisson, and Prentice 1993)	Orbital parame- ters of Holocene warm phase (6'000 yr B.P.)	—Δ	$N, W \ge +3 °C$ SE < -1-2 °C				E, SW other		≤ -30% (-)				
	(2)	Instrumental analog: change of means 1981-90 relative to 1901-10 (see section 45.1.2)	Historical GHG increase (CO ₂ from 295 to <i>354</i> ppmv)		N S	+1.7 +1.6	+0.9 +0.5	+1.1 +0.5	+1.7 +1.3	N S	+15 +11	+10 +24	-11 -22	+8 -15	
	(3)	Extrapolation of frequencies of Alpine weather types: 1975-91 vs. 1945-74 (section 4.5.1.3)	Historical GHG increase (CO ₂ from 310 to 356 ppmv)	_	N S	(+) (+)	(+) (–)	(o) (o)	(o) (+)	N S	() ()	(o) (+)	(o) (o)	(+) (o)	
Semi- empirical	(4)	Linear statistical down- scaling using anomalies of large-scale atmospheric	2 x CO ₂ (from 330 to 660 ppmv)	CCC/ GCMII	N S	+3.1 +2.2	+2.6 +2.0	+2.6 +2.2	+2.2 +1.9	N S	+30 +36	+4 +14	-4 +1	+4 +13	
	(5)	fields (Gyalistras et al. 1994; Gyalistras 1994)	2 x CO ₂ (from 344 to 720 ppmv)	ECHAM1- T21/LSG	N S	+1.1 +0.9	+1.6 +1.3	+1.5 +1.3	+1.4 +1.2	N S	-8 +2	-14 +2	-2 +11	-2 +35	
	(6)		IPCC BaU, years 2075-84 (from 344 to 1100 ppmv CO ₂ equivalent)	ECHAM1- T21/LSG	N S	+2.0 +1.2	•	+2.7 +2.4	•	N S	+4 +43	•	+6 +27	•	

Model based	(7)	Nesting of RegCM in GCM (Giorgi, Marinucci, and Visconti 1992)	2 x CO ₂ (from 330 to 660 ppmv)	CCM1, MM4- RegCM		+3.7	+3.2	+2.4	+4.7		+1	+6	+16	-12
	(8)	High-resolution GCM driven by coarse-resolution GCM (Beniston et al. 1995)	IPCC BaU, years 2045-49 (from 344 to 750 ppmv CO ₂ equivalent)	ECHAM1 T21/LSG, ECHAM3- T106 high res. GCM		+1.8	•	+5.5	•		+30	•	-40	•
	(9)	As(8), but in addition RegCM nested in the high- resolution GCM (after Beniston et al. 1995, Marinucci et al. 1995)	"	As above, but in addition RegCM2- RegCM	N S	+0.8 +1.2	•	+3.5 +2.5	•	N S	+5 +15	•	-30 -5	•
	(10)	As (9), but RegCM-simu- lations stratified by large- scale weather classes (after Frey-Buness 1993, Frey- Buness, Heimann, and Sausen 1995)	IPCC BaU, years 2075-84 (from 344 to 1100 ppmv CO ₂ equivalent)	ECHAM1- T21/LSG & ECHAM3- T42, REWIH3D- RegCM	N S	+2.0 +2.3	•	+2.4 +2.1	•	N S	≥ +50 ≥ +45	•	≥ 0 ≥ +30	•

Note: REG refers to alpine sub-regions such that (W/SW/SE) denotes the western/southwestern/southeastern Alps and N and S the northern and southern alpine slopes. The symbols (+/o/-) refer respectively to a positive trend/no trend/negative trend; BaU = Business as Usual. Bullets denote missing values. For Scenario 1, the data are annual averages; for Scenario 2, the N-slope averages are for the Basel, Bern, Neuchatel, Saentis, and Zuerich, and the S-slope data are for Lugano only; for Scenario 3, the temperature trends apply in winter for mountain regions, in spring to valleys; for Scenarios 4 and 5 the data are averages for thirty-two locations on the north and eight locations on the south slopes of the Swiss Alps; for Scenario 6, the temperatures signify averages for the locations Bern, Davos, and Saentis (N-slope) and Bever and Lugano (S-slope), and likewise for the precipitation (with Saentis excluded); for Scenarios 7–10, the data are temporal and spatial averages and apply to the entire alpine region. The data are derived for scenario 7 from five simulations of the months of January, April, August, and November; for scenario 8 from a five-year simulation; for scenario 9 from five simulated Januarys and Julys for the western/central Alpine region northward of 44°N and westward of 13°E; and for scenario 10 from ten simulated Januarys and Julys. Changes for the N- and S-slope of the Alps in the scenarios 9 and 10 were obtained from our own analyses of the results provided by Beniston et al. (1995) and Frey-Buness (1993).