R —®

- SYSTEMOKOLOGIE ETHZ
SYSTEMS ECOLOGY ETHZ

Bericht / Report Nr. 14

ModelWorks 2.2

An Interactive Simulation Environment for
Personal Computers and Workstations

Andreas Fischlin
&

D. Gyalistras, O. Roth, M. Ulrich, J. Thény,
T. Nemecek, H. Bugmann and F. Thommen

% shell File Edit settings IWindows Solve 17 G
Models |
= State variables |
I3 Model parameters |
Ex| Monitorable variables
I
15 onitorsble varisble names Jdent unit Menitoring |4
B c grass growth model i
G gdry weight/m'z T ¥ ~
46/t g dry weight/m'2 v;
ELT HIE| Graph
Time G
2550000000 £99.99914551 1.0
2575000000 £99.33914551
2900000000 69999914551
2925000000 £99.95914551 oa]
2550000000 £99.39914551
2275000000 £99.39914551
000000000 £99.99914551
0.6
0.4
0.2
0.0 _\ T T T T T T
0.0 5.0 0.0 15.0 0. 25.0 30.0
fime
Curves Hininum Hazximum nit
& — & 0,000 1000000 g dry weight/m2 []

Zurich, Mai/ May 1994 (Revised Edition June 1996)

Eidgendssische Technische Hochschule Zirich ETHZ
Swiss Federal Institute of Technology Zurich

Departement fur Umweltnaturwissenschaften / Department of Environmental Sciences
Institut fiir Terrestrische Okologie / Institute of Terrestrial Ecology

The System Ecology Reports consist of preprints and techiejpatts. Preprints are-af

ticles, which have been submitted to scientific journals and are hereby made at@i
interested readers before actual publication. The technical refiovtsfor an ekaugive
documentation of important research and development results.

Die Berichte der Systemdkologie sind entwederabdrucke oder technische Berich
Die Vorabdrucke sind Artikel, welche bei einer wissenschaftlichen Zeitschrife il
kation eingereicht worden sind; zu einem mdglichst friilhen Zeitpunkt sollen dasg
Arbeiten interessierten Leserlnnen besser zuganglich gemacht wéaetechnischen
Berichte dokumentieren erschopfend Forschungs-Emaicklungsesultate von ajje
mehnem Interesse.

able

e.

Adressen der Autoren / Addresses of the authors:

Dr. A. Fischlin, D. Gyalistras F. Thommen

Systemdkologie ETH Zirich Institut fir Terrestrische Okologie
Institut fir Terrestrische Okologie Institutsinformatik

Grabenstrasse 3 Grabenstrasse 3

CH-8952 Schlieren/Ziirich CH-8952 Schlieren/Ziirich
SWITZERLAND SWITZERLAND

Dr. O. Roth

Widenstr. 3

CH-8302 Kloten

SWITZERLAND EMAIL CONTACT:

ramses@ito.umnw.ethz.ch

Dr. T. Nemecek

Eidg. Forschungsanstalt fir landw.
Pflanzenbau Reckenholz
Postfach

CH-8046 Zirich
SWITZERLAND

Dr. M. Ulrich

Institut fur Gewéasserschutz und
Wassertechnologie

ETH Zirich

EAWAG

CH-8600 Diibendorf
SWITZERLAND

J. Thony
AS-Informatik AG
Muhlfangstrasse 16
CH-8570 Weinfelden
SWITZERLAND

Dr. H. Bugmann
Potsdam-Institut fur
Klimafolgenforschung
Postfach 601203
D-11412 Potsdam
GERMANY

© 1994,1996 Systemokologie ETH Zirich

mailto:ramses@ito.umnw.ethz.ch

ModelWorks

An Interactive
Simulation Environment
for Personal Computers

and Workstations

Andreas Fischlint
&
Dimitrios Gyalistras?, Olivier Roth?,
Markus Ulrich 3, Jurg Thony!, Thomas Nemecek
Harald Bugmann! and Frank Thomment

ModelWorks Version 2.2
Second Edition - Zirich, May 1994

Abstract

ModelWorks is a modelling and simulation environment in Modlla
specifically designed to be run interactively ondam pesonal com
puters and workstations. It supports modular modelling by featuring a
cougding mechanism between subdels and an uestricted number
of state variables, model @meters etc. up to the limits of the
computer reources. It allows for the fonuation of continuous time,
discrete time, digrete event models, as well as the free mixing of all
these formalisms. Not only does t&dWorks ofer the simulationist

a handy user int&ace to epaiment interactively with model systems,
but also allows the nateller to use ModelWorks' functions via a client
interface in any other programming context.

1 Systems Ecology, Institute of Terrestrial Ecology, Department of Environmental Sciences, Swiss Federal Institute of Technology,
Grabenstrasse 3, CH-8952 Schlieren/Ziirich, Switzerland

2 Widenstr. 3, CH-8302 Kloten, Switzerland
3 EAWAG - Swiss Federal Institute of Water Resources, Water Pollution and Water Control, CH-8600 Diibendorf, Switzerland

4 Station fédérale de recherches agronomiques, CH-1260 Nyon, Switzerland

aRevised Edition June 1996

ModelWorks 2.2

Contents
ot = 1 O = V.
PREFACE TO THESECOND EDITION .ouviiiiiet et e e e tsemasaassneaseasssees e sneermmeanens Vi
A CKN OWLE D GEMEN T Sttt ittt e et as e e mer e e e e ear e e e e eareaneenranennesd 1X
RE A D ING HINT S ittt et e e e e e e e e e e —r e e e r e et et e rnmrnnennd IX

Part | - Tutorial

1 GENERAL DESCRIPTION . ..ctttttittteeeitisiisiesiimmneeeasassssssnnsssssnssssannnssssssssssssneeseees 12
2 GETTING STARTED WITH THE SIMULATION ENVIRONMENT ..cvvvvviiieeeeeeeeeeeennn, 19
2.1 The Sample MOEL..........uuiiiiiei e 19
2.2 Simulating the Sample MOdel.............ueiiiiiiiiiiieeei e 20
2.2.1 Default SIMUIALION..........coooiiiiiiiiceee e 22
2.2.2 Changing initial values.............cooeeeiiiiiiieeee e 23
2.2.3 Changing parameters........ccooeeciiiiuiiii e ceeei e eere e e e e eane 23
2.2.4 Changing SCaliNG.......cccuuuuiiiiiiiiiie i eree e 23
2.2.5 Changing MONITOIINGcoiiiiiiiitiieieeieeeiiiebb e e e e e e e e ememeeeeeeeeeeeas 23
2.2.6 Changing parameters during Simulation....................eeveeeecvviviieeennn. 26
2.2.7 Changing integration methods..............ccoevviiiiieeee e 26
2.2.8 Program termination..............coovviiiiiiiimmmeeeeeeeeeeceeeeeeee e eeannnens 27

3 GETTING STARTED WITHMODELLING ..ccvttiiiiieeeeeeaaaisssisimmee e 28
3.1 The Model Definition Program of the Sample Model..................covvvueaeees 28
3.2 Developing a NeW MOEL..........ccuuuiiiiiiiiiiiereice e evemmr e 31
3.2.1 The NEW MOMEL.......ccooiiiii s 31
3.2.2 Model definition program for the new model................cccocciieenn 32
3.2.3 Compilation of the new model............ooooriiiiiiiiicce e 35
3.2.3 Simulation of the new model..............oooiiii s 36

Part Il - Theory

4 MODEL FORMALISMS ...oviiiieeiiiiiiiieeeesssinnmssnreeeeeesssnnnnseeesssssmmnssssssseeessessnnnenns 40
4.1 Elementary Models............ooooeeiiiiiiiiieeei e A0
4.2 Structured Models (Coupling of Submodels).............ccoooviiiiieeen 43

ModelWorks 2.2

5 FUNCTIONS. ..ttt e eeenset ettt et e e e e eeeaaeeeeeammmteeeeaaeeeaaeeeesssnannssnnnessaeanns 53
5.1 Simulation ENVIFONMENT...........uuuiiiiiiiiiis i emeerenn e 54
5.1.1 States of the Simulation ENVIroNmMeNnt..........ccccevveivieeeeeeecnniinieeeeenn 54
5.1.2 MOUEI BASE.. ...ttt ettt 58
5.1.2.aModel and model object installation and removatl................... 58
5.1.2.0CUrrent ValUBS..........ooiiiiiiitieeee e 58
5.1.2.c Predefinitions, defaults, and resetting............cccccoeevivieecvvnnnnns 59
5.1.2.dInitialization of the simulation environment........................cel 63

5.1.3 Simulations and the Run-Time SyStem...........cccceeeiiiiiieccveviniieeeennn. 64
5.1.3.aElementary simulation run...................uvviiiicccerieeeeeie 64

5.1.3.b Structured simulation (Experiment).............cccovvvvvvviieenneeeeeeenn, 65
5.1.3.cIntegration respectively time step..........cccvvvvviviiiiee e, 68
5.1.3.dModel objects and the run-time system..............ccceeeevvieeeeeennn. 71
5.1.3.eClient procedures and the simulation environment................71
5.1.3.f Manipulating the model base at run-time....................covveeen.. 73

S0 I Fo 1Y/ [a1 (o] o USRS 76

5.1.4 Standard User InterfaCe..........ooooiiiiiiiiiiimene et 79
5.1.4.aMultiple activations of the standard user interface.................. 80

5.1.4.b States of the standard user interface............cccccvvviieeenienn. 82
5.1.4.c10-windows (INnput-Output-WindOWS)..........cceeeeiriiiiiiiiieeeiee e 82

5.1.5 User Interface CustomMizatiQn.............uueuiiiiiiiecciiiiiiiann e 84
A Y (o To [1 0T TP PTRRPPRPIN 87
5.2.1 The Model Development CyCle...........ccuuiiiiiiiiiieeeiiiieeeeee e 87
5.2.2 Structured Model Definition Programs (Modular Modeling)............. 88
5.2.3 Structured Simulations (EXPerimentS)........cccccereiereeeeeeeemeniinenneeeenns 38
5.2.4 Module Structure of ModelWOrksS.........cccccveeeiiiiiiiccce 89

Part Ill - Reference

6 STANDARD USERINTERFACEceuititieitieeteeetimeeseessestssssssssesessssmensensssnseees 94
6.1 Menus and MenuU COMMANGS........ovvuiiiiiiiiei et e e e eemeeanes 94
B.1.1 OVEIVIEW OVEI MEBNUS..ceuitneineentieeeeeeresesaeenstestaasensessesamereenresarens 95
6.1.2 QUITt COMMANGS.....ciiiiieieeieiiieeeeeeieeee e 95
B.1.3 MENU FilB. . oo 96
0 A V.= o U o [S, 99
6.1.5 MENU SEtlNGS......coviiiiiiiiiiiiii e e errer e e e e e e e 100
B.1.6 MENU WINUOWS.....evieiiieiiieeiee s iemme e e e et et e ea e ea s esmmressenaeeneennes 107
B.1.7 IMENU SOIVE.. .ot e et e r e e e et e e eaass 108
6.2 10-Windows (Input-Output-WIiNdOWS)...........ccoviririiiiiiiimnne e 109
B.2.1 1O-WINAOW MOUEIS.......coeeeeieeee et veee e 110
6.2.2 10O-window State variables.coooove e 113
6.2.3 1O-window Model ParametersS..........uvvivieiiiiiiieeeee e e e 114
6.2.4 10-window Monitorable variables..........c.oevviveiiiiiieeeeeeeeee e, 116

T CLIENT INTERFACE ... uiitieee ettt e et imeee s et e et e e e e e e e et smeessa e s eareea s e e eeennns 122
7.1 Declaring Models and Model ODbjects..........ccooviiiiiiiiceee e, 124
7.1.1 Running a Simulation SESSION.........cccooeeiiiiiiiieeciiee e 124
7.1.2 Declaration of MOEIS.ouo e 125
7.1.3 Declaration of state variablesS...........ooeeviiiiiiieee e 128
7.1.4 Declaration of model parameters...........ccceevvvvvvvreeeeeeeeeiiienn 130

ModelWorks 2.2

7.1.5 Declaration of monitorable variables..............cccooiiiieeeiiiii 131
7.1.7 Testing for the Presence of ODJeCIS...........cccvvviiiiiieemiiiiiiiiiieeeeee 133
7.2 Accessing Defaults and Current Values..............ooooiiemnee e 133
7.2.1 Global simulation parameters and project description................... 133
7.2.1.a Retrieval of read only current values.............cc.evevvevieenvvnnnnen. 135
7.2.1.b Modification of defaults...............coevviiiiiiccsieee e 135
7.2.1.c Modification of current values............ccccceeeeeeiesceecvvviniiiieeeennn 136
7.2.1.c Resetting of current values to the defaults.................cccoeceee. 137
7.2.2 Installed models and model Objects............vveiiiiiiiceceiiee e, 137
7.2.2.a Modification of defaultS............ooooviiiiiiiiicce e 138
7.2.2.b Modification of current values..............cccccuvvvvimemnniniiiiineee, 138
7.2.2.c Resetting of current values to the defaults.................ccceeeeees 139
7.2.2.d Model and model object attributes.............cccevvvvvvieeeee e, 139
7.2.2.e Access support for models and model objects..................... 140
7.3 Removing Models and Model ObjectS......ccoovvvviiiieiiiviceeeceie e, 141
7.4 Simulation Control and Structured Simulation RURS...............ccvvviiieeneee. 141
7.5 Display and MONITOMNG........cceeeeeeeieiieiiieeeee e e ee e mmme e e e eeeeaeenes 144
7.5.1 WINAOW OPEratiONS......cccceviiiiiiiiiiiiiiemmeeee e e enn s 144
7.5.2 General MONITOMNGiiiiieiiiie e eeee e rerre e 146
7.5.3 StaSN filiNG..cceieiiieie e e 147
7.5.4 Graphical MONITOMINGuvuiiiiiiiiiiiie e 148
7.5.5 Simulation environment MOAES..........ccoeveviiiiiiiiereiee e 150
7.5.6 Setting of predefined defaults and global resetting........................ 151
7.5.7 Customization of keyboard shortcuts for menu commands........... 151
Appendix

A SAMPIE MOEIS.......oeeiiieiicei et reeer e e e e e e e e e e eaaaraens 154
A.1 The Continuous Time Sample Models (DESS) of the Tutarial......... 155
A.1.1 The Sample Model “Logistic Grass Growth” - Logistic............ 155
A.1.2 The New Model - GrassAPhIdSs..........cccceeiiiiiiiiieemeccee e, 156
A.2 A Discrete Time Model (SQM) - INSECL.........ooviiiiiiiiiiiieeeeeeiiiiineens 158
A.3 A Discrete Event Model (DEVS) - DIVEISILY.........cccuuviviiiieeeieeeiiinnnee 162
A.4 Typical APPlICALIONS........ccoiiiiiiit e eeee e 167
A.4.1 Batch Phase Portrait of Lotka-Volterra - LVPhasePlot........... 167
A.4.2 Interactive Phase Portrait of the Van-der-Pol Oscillator - VDPDI'1
A.4.3 Animation of the Age Pyramid of the Swiss - SwissRop.......... 175
A.4.4 Sensitivity ANalysis - SENSILIVILY...........uuviiiiiiiiiiiiieeeiiieieeeeeeeenn 182
A.4.5 Parameter ldentification - Gauseldentif.............ccccccoviieeennnnn. 187
A.4.6 Stochastic SIMUIALIONS.........ciiiiiiee e 195
A.4.6.1 Third Order Finite Markov Chain - Markov................... 195

A.4.6.2 Statistical Analysis of Simulation Results -
STOCNLOGGIOW ...ttt 205
A.4.7 Modular Modeling - GreenHOUSE.........ccevviiiiiiiiiiieeeiieiiieeeee 209
A.5 Mixed Type Structured Models...........ccooviiiiiiiiiiieee e 224

A.5.1 Mixing Continuous (DESS) and Discrete Time Models (SQMR24
A.5.2 Mixing a Discrete Event System (DEVS) With a Continuous

Time Model (DESS) - CarPollution.........ccccoeoeeeeeeiivieeeeeenn. 227
A.5.2.1 The Fiscrete Event System - Traffic(DEV.S)................. 227
A.5.2.2 The Crossroad and the TraffiC.............ccccviiiiiveeininnnnen. 231
A.5.2.3 Adding Traffic’s Air Pollution - Pollutants (DESS)........ 239
A.5.2.4 Putting All TOgether...........oovvvviiiiiiiieme e 241

ModelWorks 2.2

A.6 Research Sample Models...........ooiiiiiiii e 243
A.6.1 Population Dynamics of Larch Bud Moth - LBM...................... 243

A.6.2 Discrete Event Harvesting In a Continuously Growing Forest -
FOrestYield. ... 254
B LITEIATUIE. ...ttt et e e e e e e e e e annne e e as 269
C ModelWorks Versions and Implementations............cccoov v ieecivvennnnnnnnn. 272
D Use and Definitions of ModelWorks and Library Modules....................... 273
D.1 ModelWorks Mandatory Client Interface.............ccccvvvvvrieemiiinennnnnnne. 273
D.2 ModelWorks Optional Client Interface.............ccoooiiiiiiceee e 273
D.2.1 SIMEVENTS....cciiiieieeeiiiiie s e e e s emnnae e e e e e e e e e e e 273
D.2.2 SIMDeltaCalC...........ccoeeeiiiiieeeeeeee e 278
D.2.3 SIMGraphULIIScoooiiiiiiieieeee e 281
D.2.4 SIMINTEQIate......cceeeeeeiiii e 288
D.2.5 SIMODJECES. ...ttt 290
D.3 AUXIlTary LIDrarycccooeeeeeeeiieeieeeeeeeeee e mmme e eaannnnes 293
D.3.1 IdentifyPars.......ccooiiiiiie e eeeeee e 293
D.3.2 JUlIANDAYS........cceeiiieeeeieeeiit et e 296
G TS T 11 1= [299
D.3.4 RANAGEN.....uiii i i mmme e 301
D.3.5 RANAGEND......coeeeeieieiie s eerrn e e e e e e 302
D.3.6 RANAGENL......cooeeeeeiii e errn e e e e e e 304
D.3.7 RaNANOIMAL.......ccoieiieeiiiiiei e 306
DG TSI o {=T- To | D - | - WP 309
D.3.9 StOCHSHAL......coiiiiiiei e 313
D.3.10 SrUCIMOUAUX. ... eieeeeeeeeeeeeeeeeeeieeee e e e e e eeeeeeeeeeeaenn s vmmmeeeeesnennes 317
920G J00 5 A = o] o oSSR 320
D.3.11.aUser INterface.......cccceeeiiieeeeeiiiceeeicciii e eeeeveeen 320
D.3.11.b Declaration of table functions............ccccoeeeiiiieeecinnnnns 323
D.3.11.c Modification of table functions...........cccccovvvvviviieeeeee. 325
D.3.11.d Inter- and extrapolations with table functions............. 326
D.3.11.e Removing table functions...........cccooeveeieeieecccccccieeeennn. 327
DG B0 2 VAT 41 (=T T i I P 327
E QUICK REFEIENCES... ..ot n 329
E.1 AuXiliary LIBrary.........oooovermiiiiiiii i 329
E.2 Dialog Machine...........ooouiiiiiiii e 335
E.3 ModelWorks Client Interface...........ooovvviiiiiiiiimmnn e 342
INDEX «.utttttttttteeeeeeeeeeeeeeseeeeeeeeeaeaaaaaaaaaeesssassammneaeeeesssssassssssssssssamnnnssssnssesnnnnenees 347

ModelWorks 2.2

Preface

ModelWorks is a simulation environment to solve dynamic systems as they are used in
biology, physics, chemistry, environmental and engineering sciences to model various
processes. It is also particularly well suited to be used by university students during a
maodelling course FISCHLIN et al, 1987; MANSOUR & SCHAUFELBERGER 1989;
FISCHLIN, 1992}. ModeWorks can be used for simple didactic models as well as for
very complex research rdels NEMECEK, 1993). ModelWorks forms part of the even
more powerfulRAMSES software FISCHLIN, 1991), consisting of tools which are
paticularly talored to aid researchers who wish to model and simulate compigx, en
ronmertal or other so-called ill-defined systen@e(LIER & FISCHLIN, 1980).

ModelWorks allows to work with an arbitrary number of dynamic models described by
differential difference equation systesnor by theliscrete event formalismA global
maodel can be separated into pitby hierarchcally organized submodels which exist as
independent units comunicating via output-input coupling. Modular and hierarchical
modelling is supported, which is particularly useful if for instance one wishes to keep
experimental results clearly paated from a theoretical, matmatical model by
formulating them as parallel malel, or to enhance model clarity, or to build model
libraries. Disrete and continuous rdels can be combined in one global model
system, with correct data exchange controlled by the simulation environment.

Simple mathmatical models can be built with only minor gmamming knowledge,
wheras programming experts have full access to a powerful programmiggalge

and may expand into any realm of sophisticated calculations still profiting from-the si
mulation ervironment and numerical algorithms provided by ModelWorks. Hence in
cortrast to most existing simulation software ModelWorks fully supports the researcher
during a malel development process, which often starts with a first, crude model and
ends with the most sophisticated, in every detail refined research3model

ModelWorks is based on a high-level programming language which has been selected
corsidering the following criteria: It has been formally defined; it is general and
poweiful enough to support not only numerical computations, but also a window based,
graghical user interface; on the other hand it is also simple enough to be comprehended
and mastered by the non-computer scientist having learned programming in a basic
computer science course, such as for instance taught in Pascal programming courses; on
the other hand it also offers support for the development of large and complex models
for the expert; finally and not the least, the language is available in efficiplenien

1For the cited literature see the chapitiéerature

2RAMSES is an acronym fdResearchAids for Modeling andSmulation of EnvironmentalSystems.
For more information on the concepts of RAMSESHKSEHLIN (1991).

3ModelWorks does not force the modeler to discard the simulation software together with all other
investments in learning , implementation, and testing time, or any compatibility issues, when he reaches
the limits of the simulation language; on the contrary, ModelWorks avoids the risk of having to restart
with the model implementation all over again in a high-level programming language, since it does so
from the very beginning. In contrast to a simulation language a well designed, general purpese, high
level programming language guarantees that anything which can be computed on a computer can be
realized. It appears that one of the reasons why so many experienced researchers almost never use
simulation software but use instead general-purpose high-level programming languages is that they avoid
the risk to have to switch techniques in the middle of a project. However, to work in a high-level
programming language only, requires to reinvent the functionality of a simulation software package, a
task often surmounting the modeling research problem at hand by many orders of degree.

Vv

ModelWorks 2.2

tations on many machines as e.g. AfpMacintos®1, IBM® personal computst, or

SurP workstation8 . Therefore we have chosbtodula2 as the prgramming lamgua

ge to be used for ModelWorks, currently meeting all the listegdir@ments clsest
(WIRTH, 1988). Due to this approach ModelWorks could be designed as a fully open
sygem, which can be expanded or customized by the user to any purpose she desires.

ModelWorks consists of a set of library modules written in Mo@ulavhich contain

the prgram parts common to any simulation, such as numericgratien algorithms,

and the tabular plus graphical display of the simulation results, or thadtnerchan

ging of malel or other simulation parameters. The variable portion, the moddeof in
rest, is to be supplied by the user in the form of a standard Madarkagram. It decri-

bes the mdel's properties and installs the model in the simulation environment by
means of the so-calledient interfaceof ModelWorks. Modelling and simulating with
ModelWorks irtludes therefore several steps: a) In the role of the modeller the writing
of the model denition by preparing a Modwa pragram, and b) in the role of the
simulationist the exation of the model definition pgram within ModelWorks'
simulation emironment to praluce and observe the model's behaviour.

Interactive modelling and interactive simulations are supported in ModelWorks in
several ways. The standard user interface of ModelWorks provides an interactive
access to themiulation environment. For instance it allows to change interactively all
settings, inluding any simulation parameters such as thegmtion method or the step
length, model pameters and/or initial values of the stateialales, plus selection of

the display of snuation results. Simulation results are made visible to the user by the
so-called system baviour monitoring concept: Values of any variable may be written
onto a file for future redrence, written into a table, or pligyed as curves in line-charts.

All data can be reset to a givddault value Further, the model's data structure are all
stored dynenically. This alows the user to itall an unlimted number of models of an
arbitrary size, with an aitrary number of waables each, up to the limits of the
hardware. Finally, bmause of ModelWorks open system design, it allows to extend and
customize the user inface, for instance by adding new functions or by using only
some of its functions, so that the user needs can be met as closely as possible.
ModelWorks software architecture has been especially designed to support such uses,
needs which we consider to bengally of interest for researchers working with
complex, non-linear model systems.

ModelWorks simulation environment is based on the "Dialog Machigelaranteeing

a corsident user interface and has originally been implemented Mo/ /ETH, a fast

and efficient Modula2 language system for the ApBl&lacintos® computer (VIRTH

et al, 1992). ModelWorks simulation environment runs on any machine on which the
"Dialog Machine"is available. If this is the case, an efficient and smooth port ef Mo
deWorks in a few days work is possibl€urrently ModelWorks is available for Ma
cintosh conputers with at least 512 KBytes of memory (RAM) plus at least two floppy
drives and IBM PCs which run undeS DOS and have 640 KBytes of memory
(RAM) plus a hard disk. For more details on particular implementations and hard plus
software re@uirements for specific versions, see thppendix This text serves as a ma
nual for the MaleWorks software. Since all versions are very similar antréifces

are the egeptions, there exists only this one text. The remaining differendesbe

the versions are only minor and therefore just briefly mentioned wherever the user is li
kely to encounter difculties without knowing the details.

IMacintosh is a registered trademark of Afbomputer, Inc.
2|BM is a registered trademark of International Business Machines Corporation.
3Sun is a registered trademark of Sun Microsystems, Inc.

4See the appendix for availability and the separate booklet «Installation Guide and Technical Reference
of the RAMSES software» installation of the "Dialog Machine"

Vi

ModelWorks 2.2

This text is subdivided into three parts: Part | Tugorial cortaining a little tour to be
followed step by step. It suffices to learn all basic techniques, which are needed in or
der to model and simulate simple models with ModelWorks. Part Il explaifshtee

ry and cogepts behind ModelWorks, in particular model formalisms and altifums:

of ModeMWorks. Any advanced modelling, such as madmodelling, rquires to st

dy the theoetical part. Part Il is &Referencananual containing a complete list and
detailed desription of all fedures of ModelWorks. Finally théppendixcontains
sample mdels, the ded literature, a short explanation of the ddbVorks versions,
descriptions of MdeMWorks' client interfaces and library modules, convenient quick re
ference listings, and an dex. For deiled ingrudions for the istallaion and other
technical dails refer to the gmrate boolet «Installation Guide and Technical
Reference of the RAMSES software».

vii

ModelWorks 2.2

Preface to the Second Edition

This second edition has been adapted to the changes and amendments made to the
ModeWorks simulation environment during the last years. ModelWorks has been
widely used in the context of several modelling and simulation research projects, the
largest spamng three to four years. The hereby gained experience was used to
redesign Mod&Vorks. Besides the many modifications the following are of major
importance:

First the basic functionality of ModelWorks has been extended. It allows now to solve
discrete event model(DEVS), which are formulated according to the so-catheeint
scheluling paadigm (KREUTZER 1986). In particular it is also possible to mix all
three supported model faelisms in any combination, i.e. structured model systems
can be built from caimuous time, disrete time, as well as discrete event components.
This includes the exchange of data among any model type.

Second, all Mod#&Vorks functions can be used in a more flexible way than this was
possible with the original design. In particular, all its functions can be used
dynamically any time (e.g. model declaration or removal in the middle of a simulation
run) and imdependently from each other (e.g. just the I0-window for the model
parameters). The latted@ls even to bgass the user interface completely and to use
ModelWorks only as a batchnsulator. Thus ModelWorks can be used also within
RAMSES for interactive nueling, experiment definition, simulation, and pest
simulation analysisRISCHLIN, 1991) and can now support the concept of ktian
servers THOENY et al, 1994) in a corputer nework.

Consequently, this text has been completely revised. In particular the Tpadrigl

has been modified to explain the use of¢hini RAMSES Shell» The whole of part

Il Theory as been completely rewritten: First, chapiodel Formalismsto define
DEVS and the new coupling when building structured models from any of the three
standard famalisms; second, chegs Functionsto describe the new dynamic fuiona-

lity of the smuation environment. The part IReferencehas been adapted to the
actual inplemenaion of ModelWorks 2.2. TheAppendix has been completely
rewritten, in paticular does it now contain many more sample models demonstrating a
vast range of typical uses of ModelWorks.

Note, despite all these changes, no functionality available in former versions of Model
Works had to be sacrificed. ModelWorks version 2.2 warrants full upward
compatibility (including module keys) with all earlier versions.

Zurich, May 1994 Andreas Fischlin

viii

ModelWorks 2.2

Acknowledgements

The authors wish to express many thanks to Prof. Dr. Walter Schaufelhéogeerly

Prgect Centre IDA from the Swiss Federal Institute of Technology Zurich (ETHZ), not
only for his substantial support, but also for his unceasing encouragement, which made
this research and development only possible.

The research behind this software has been supported by the Swiss Federal Institute of
Tecmology Zurich (ETHZ) and the Swiss National Science Foundation grants Nr. 31
8766.86 and Nr. 31-31142.91.

Reading Hints

Please be not irritated: Throughout this text references to persons are made by using the
female form; yet, the text is valid not only for women but also for men.

Throughout this texitalics are used to emphasize that this text is to be taken literally,
in paticular also case sensitive. This is the case for instance in the citation of an
identifier, such as a module name liBenMasteror if the user has to open a file or
directory with a given name such lasgistic. OBMor \MW\SAMPLES.

For easier orientation, the pages, figures and tables in Patbrial and Il Theoryare
prefixed with the letter T, in part Il Reference with the letter R, and inAthpendix

with the letter A. Within parts dures and tables are numbered separately, starting e.g.
with Tab. T1 respectively Fig. Al, but pages are numbered consecutively throughout
the whole text.

1Current address: Institute of Automatic Control, Swiss Federal Institute of Technology Zirich (ETHZ),
ETH-Zentrum, CH-8092 Zurich, Switzerland

ModelWorks 2.2

10

Part | - Tutorial

This tutorial describes the elementary usage of ModelWorks, i.e. you learn how to de
velop and simulate models using ModelWorks.

The first chapter(General Descriptiondescribes the general, fundamental-con
cepts of ModelWorks.

The second chaptegetting Started with the Simulation Environmertntains a
step by step explanation for running an existing model and getting familiar
with the simulation environment of ModelWorks.

The third chapterGetting Started with Modellingeaches how to develop new
models.

Having read this tutorial you will be able to develop and simulate your own, simple mo
dels. However, if you are interested in more complex models and more advaneed tech
niques, this tutorial is not sufficient. In order to learn the more sogdtedi fedures of
ModeMWorks you should read part ModelWorks Theoryand the second chimp,

Client intefface of part IllReference They contain a full and complete destap of

all possbilities ModelWorks offers.

This tutorial is best read while having access to a computer and the described steps are
acualy executedl. This requires that the reader is already familiar with hempaten

and the usage of its software, in particular the choosing of menu commands, clicking on
objects (i.e. object selection), and the dragging of objects (e.g. moving the scroll box in
a scroll bar). Moreover it is assumed that the user knows how to operatdeasionp
gramming editor (e.g. the desk accessdgckWrite), has a basic knowledge of the
programming language Pascal or Modilaand is familiar with the mathematicsai-

ved with modelling and simulation of tkfential equation systems. No pedar
information is provided on these tims. Please refer to other texts if you should have
any difficulties with any of these subjeéts The sparate boolet «Instalation Guide

and Teclmical Reference for the RAMSES software» contaifsrimation on how to
proceed in order to install the Motlébrks software.

Reading Hint: For easier orientation, the pages, figures and tables of FPatolial are prefixed with
the letter T.

INote that the following text assumes that you will work with the original ModelWorks version as avai
lable on the Macintoshcomputer. If you have no access to a Maci puter, the instructions are

to be executed similarly, but may look a bit differently or behave slightly differently, since tH& FBM

version of the "Dialog Machine" is only a subset of the Macirftosérsion.” A few hints: On the IB

PC folders become directories, object files ending with the extension "OBM" become linked GEM appli
cdions with the extension "APP", and in contrast to the Macintosh MS DOS file names are truncated to 8
chaacters (extension excluded); note that the latter may also affect module names. For more details see
the appendix. Wherever necessary, fBRC specific information has been added in form of footnotes.
Please interpret the text accordingly and accept our apology for not being able to offer®F@Bidxt
version; note that we are a research institution, not a commercial softwgsarggrand hence not able

to maintain more than that version we use ourselves in our daily research work; however, you should
have no difficulties in following the tutorial text, since all essential features of ModelWorks are available
on the IBM® PC version as well.

2We recommend:Operation of the computerYour owner's guide, e.¢lacintosh owner's guideMo-
dula-2 WIRTH, N. 1988. Programming with Modula-2 Springer-Verlag, Heidelberg, New York, 4th
corrected ed. Modelling: LUENBERGER D.G., 1979. Introduction to dynamic systems - Theory,
models, and applicationsWiley, New York, 446pp.

T11

ModelWorks 2.2 - Tutorial

1 General Description

ModelWorks is an interactive modelling and simulation environment to study tiae be
viour of dynamic models, which are describeddifferential difference equatias) or
discrete everst Any sysem described by a set of coupled, ordinary differential,
ordinary difererce equations, or instantaneous state transition functions formulated as
discrete events can be modelled using ModelWorks. Since ModelWorks features
modular madelling, it is also posible to mix models of different types or to integrate
several differential eqii@n sysems simultaneously with dérent integration methods.

ModelWorks has two interfaces to communicate with the human usersé¢hénterface
of the simulation environment for the simulationist anddient interfacefor the me
deller who builds models (Fig. T1).

Modeler
develops mox

Client Interface

ModelWorks

Simulationist
uses existing me

User Interface

Fig. T The two interfaces of ModelWorks: The modeller useschiemt
interfacefor the model developmenthe simulationist uses the usetein
face of ModeWorks' simulation environment to perform simulatiopex
ments with an already existing model. Typically the modeller and the si
mulationist are one and the same person changing just roles.

Typically the modellerand thesimulationistare one and the same person. However
their roles are distinct and should be clearly separated: The modeller definepat pro

ties of a gnulation model, i.e. she specifies a model definition. This includes the spe
fication of the model's nfeematical properties and itsjebts, such as equations, state
variables, and parameters, plus the objects' default values and ranges. It is also the
modeller who implements the model by writing a ModelWorksodel definition
program

The simulationist runs interactive simulation experiments, hereby using one or several
madels, which have been constructed by the modeller. She is restricted to use these
madels within cetain limitations which have been specified by the modeller, but within
that range, she may intatively define and execute with the model any kind of
experiment she wishes. For instance she may observe its temporal behaviour, sample
points from paticular trajectories, modify paranee values within a defined range, or

run a sesitivity analysis. Mod&Vorks contains all efeents and algorithms needed for
computer gnuations, such as numerical integration aitions, the interactive
changing of parameter ks, and the display of simulation results. The only exception

of course is the modelsielf, which has to be provided by the modeller.

T12

ModelWorks 2.2 - Tutorial

Normally a ModelWorks model definition consists of several objects, which belong to
various classes. First there must bespré at least one model; but the model definition
may consist of any number of models. Second, normally each model is associated with
several objects like model equations, state variables, model parameters, aux#iary va
riables, and monitorable viables. Such objects are callddel objed (Fig. T2).

Model

O Max initial value

State variable x(t) -~ — -
O | Initial value i

_ O Min initial value
X(t) :% orx(k+1)

O ==P 0

O Max value

O |Vvaluep |
o Model parameter c<———"

O Min value

Max value of interest

Min value of interest

O Monitorable variable mv =~ ——pm Clipping range
§

Fig. T2 Model objectsq) of a ModelWorks model: A ModelWorks mo
del defnition must consist of at least ongodel and every model usually
cortains state variablg, model parametsr andmonitorable variable. Any
initial value paraméer value, minimum, or maximum value becomes man
datory, if the assoiated varable or parameter is declared within the model
definition. ModeM/orks maintains the actual values of state variables, pa
rameters, and motorable variables and even remembers their initially spe
cified vaues (efault values): — : ModeWorks autanatically asigns the
initial valuei to the state variable at the begin of every simulation run,
and the valug is asigned to the model parameteupon entering the Mo
delWorks simulation evironment or after any intective change. 1 :
ModelWorks uses theleivative or new valuein order to corpute and
repeatedly assign newly w@ined values to the state variable during the
course of a simulation run (merical integration). — : During smuation
experiments the unknown values, which the monitorable variavlenay
obtain, shall be drawn in graphs only if they fit within a particular range of
interest; otherwise ModelWorks will clip them from the display.

A model is always of a particular type, i.e. eitbentinuous timeor discrete time This

type is given by the kind of equations which belong to the model: In the casetief con
nuous time the model equations are ordindifferential equatios ordiscrete evenn-
startaneus state transition functispin the case of disete time they are ordinary
difference equions. Note however, that a ModelWorks aebddinition program may

be strutured, i.e. it consists of several models which may be of a differing type, i.e.

T13

ModelWorks 2.2 - Tutorial

some models may be continuous time other discrete time. Intéredase results a-so
called mixedcortinuous and discrete time model definition.

A model may consist of any number of model equations. However, they must be given
as eylicit, eitherfirst order differential equatianfirst order difference equatisn or
instantaneous state transition functions. E.g. theldaing differential equation
describing the Van-der-Pol oscillator

y+pyz-1y+y=C

is not in the proper form, since it is neither explicit nor is it first order. On the other
hand, the same equation reformuladtad a system of explicit, coupled first orderfealif
rertial equations

X1 =Xo
X2 = M(1XE)X2 - X1

is now suitable to be used directly as a set of ModelWorks model equations. The
second form is called the state variable form. Most differential or difference equations
can be fomulated in this form.

Usually each model uses a numbestaite variabke Each state vable must be as-
ciated with a second variable used as its first odégivativein the case of continuous
time, or itsnew valuein the case of a discrete time model. The model equations are
formuated as expressions capable of defining theesof the derivative or new value.
The eyression may be an attary function of any of the other model objects, such as
state vaables, auxiliary variables, or modelrpmeters. Every state variable must be
asscciated with a particulainitial valueand a range within which it may be changed in
teractively (Fig. T2).

Every model may have any numbemaobddel parametst each associated with a fpar
cuar value and a range within which it may be changed interactively. Typicatlglmo
paamders are not or only rarely changed in the middle of simulatigrererents
(Fig. T2).

Intermediate results from an expression may be stored in a variable which will be later
used in another expression. Such auxiliary variables are often used to compute com
plex expressions defining the value of a derivative of a state variable. In a ModelWorks
model ddinition program the modeller may use any numberaakiliary variable.
However in the current version, ModelWorks does neither especially recognize or
support such viables nor does it hinder the modeller to use them in whichever way
she wishes.

Finally models may have any numbemadnitorable variabke They are used to mie

tor the current values of any variable or otherwise accessible real numbers used in the
ModeWorks model definition program. Each monitorable variable is associated with a
clipping range used for the graphical display of the simulation results (Fig. T2).

All values specified by the modeller are remembered by ModelWorks as the so-called
default values. The values currently in use by the simulation environment are called the
curent valus. While starting the model definition program, M&erks assigns the
default values to the cuent values. This is calledraset Any time the simulationist
wishes to do so, she may execute a further reset of a specific class of values, so that
their curent values are overwritten with theirfalelts. This mehanism is most useful

1From the definitions x=1y and x =y follows X, =V, i.e. the variable substitutiong-x, , y-x, ,
y —X,; rearrange resulting two equations to mal%e the derivatives explicit.

T14

ModelWorks 2.2 - Tutorial

if the smulationist wants to resume a well defined state beforéraong with her
work, espeially after having made many and complex intékacchanges.

ModelWorks

Client's interface

Import list

Model defini-
tion program

~

ModelWorks simulation program

Client's interface

Model defini-
tion program

data exchange

Cotrolled data exchange
during program execution

Fig. T3 Organization of ModelWorks: ModelWorks is the constant part
common to any simulation program forming teamulation exironment

The variable part, thenodel definition programdescribes the a@l model

to be simulated. Both units form together the final simulatiorgrara.
They are linked by procedures provided via the client interface and which
support mtual data exchange.

Ranges for initial values of state variables or model parameters are defined solely by
the maleller. They become effective only in the sintiola environment while the si
mulationist edits the current values of these model objects. ModelWorks guarantees
that the snuationist asigns only values to anitial valueof a state variable or a mo

del parameter which lie within these ranges. Hence the modeller can use this mecha
nism to enforce ihits within which the model equations are still valid in order to

T15

ModelWorks 2.2 - Tutorial

reduce the danger that thensilationist runs a meangless simulation experiment or
encounters a fatal error adition. However, the clipping ranges for monitorable va
riables behave differently and should not be confounded with range limits: The simu
lationist can change clipping rges interactively anytime.

ModelWorks has been designed to make modelling as easy as possible, yet as powerful
and flexible as possible. Hence, for ModelWorks a model is a variable, not predefined
portion of a simulation program, which has been left out so that the modeller may de
fine it at a later time (Fig. T3). A user of ModelWorks wishes to define freely this open
portion according to her ctgnt needs, for instance by specifying a new set of coupled
differertial equations. The modeller does it by writing simple Moduktatements,

which are to be filled in and linked to the remaining, constant parts of Mtulks.

This is similar to a key which fits into a matching hole of a lock, only the two together
rendering the lock into a fully functional unit.

With the model definition program the modeller provides the missing key. The key
must comorm to certain rules in order to fit into the hole. However, in all other aspects
this andogy breaks down, since a key is not constructed before each use anew, or must
not be extended, or has not its own particular functionality; the latter are all typical
properties of ModelWorks model definition programs only.

The remaining parts of the simulation environment, i.e. the actual ModelWorks, can not
be modified and constitute the pre-programmed ModelWorks software. They are
general and hence common to any simulation program and resemble the lock with a
hole for the key. When the simulationist starts a model definition program containing a
model dé& nition, the latter is iserted automatically into the hole of ModelWorks and
what results is a fiyl functional simuléion program (Fig. T3).

Technically amodel definition programs a simpleModula2 program module. Its

main pupose is to define (declare) your model and its model objects, thus preparing the
data exhange needed for simulations. ModelWorks does not care how the modeller or
ganizes the structure of the model definition program and actually knows almost
nothing about arthing the modeller does in her program. The only objects Model
Works cares about are: models, state variables to be integrated numerically, model
parameters to be changedenactively from within the simulation environment, and
monitorable variables for the mdoring of the simulation results. Hence, they are the
only objects which have to be made known, i.€lated, to Modélorks.

The link of models and their model objects to ModelWorks is achieved via the client in
terface. In its essence it consists of two library modusBaseand SimMaster
These mdules preide all Modula2 objects (types and procedures) needed to describe
a model in the model da&ifition program.

Executing a ModelWorks model definition program means to start firsitmgation
ernvironment When it is entered, ModelWorks tializes the whole environment, in
paticuar the global simulation parameters and typicallycetes all model and model
object declarations as programmed by the modeller in the modelitien program. It
then peforms a reset of all current values using all the defaultsifsg during the de
clarations. Subequently ModelWorks is ready to execute s@nds etered by the si
mulationist, such as a simulation run, the execution ofralation expaiment, or the
editing of the curent values, e.g. of a model pareter or an initial value.

ModelWorks is not just another simulation language, since a model definition program

is written as a plain Moduid program text. As a consequence ModelWorks can not
auomaically sort the statements which compute derivatives. Compared with other si

T16

ModelWorks 2.2 - Tutorial

muation softvare, e.g. ACSL®, this may be considered to be a draw-back. However,

experience shows that autocatic sorting of statements is error prone, if one models

complex and ill-defined systems. Moreover, the greater flexibility offered by the host
language Modul&, a modern, powerful, and formally defined programming language,
often outveighs the lack of automatic sorting, which is mostly not much more than a
little incorvenience if the model definition has been carefully worked out before its im

plemeration.

Most models maintain tight relationships among their objects such as state variables,
paaméders, and auxiliary variables etc. The modeller may keep logically connected ob
jects close tgether, by defining related objects local to the model boundary. The latter
nomaly coincides with the boundary of the scope of a Modulaodule. Moreover,

the maleller is free to use any Modulafeature she wishes: For instance model
objects may be part of a complex data structure or the model definition may be spread
over any nurber of modules, thus supporting modular modelling. This extendibility is
one of the strogest features of ModelWorks.

Even if one is not familiar with the programming language Mce@ubait knows Pasal,
it is feasible to use ModelWorks. On the other hand, ModelWorks is powerful and fle
xible enough to allow also the advanced modeller to develop sophisticated models.

Note that with ModéNorks the modeller has not only full access to all features of
Modula2, but also to those of the "Dialog MachiAe'The "Dialog Machine" is a ge
neally apgicable software layer between an application program such as Woded

and the syiem software respectively hardware. In this situation the user interacts via
the later (mouse, keyboard, screen) only indirectly with the application; the "Dialog
Machine" irtercepts all user interaction and filters it according to a simple user
interface. The "Dilmg Machine" subtartially facilitates the writing of interactive
programs. Not dy does it simplify the programming of gisticated dialogues, but
also does it ensure tmmatically a consistent man-machine interface. Hence it allows
the modeller to exend the statlard, preéefined ModelWorks simulation emenment
easily, efficiently, and without faing her first to become a computer scientist; yet it
supports an ey pragranming of wirdows, menus, bit-mapped graphics, plus mouse
input. Moreover, the rsulting pragram will be user-friendly: Thanks to the dialogue
capdilities of the "Dialog Machine”, the sidaionist will be able to enjoy the use of a
simulation program, which &maticaly conforms to a robust man-machine interface.
This offers the achnced modeller to concentrate on the modelling process, instead of
being distracted by the claisome and coplex inplemertation details of user
interface problems. The gaaccess to the "D@y Machine" is aather strength of
ModelWorks.

For instance the modeller may wish to extend the simulation environmentdramo

ming her own graphical monitoring in an additional, separate window or by adding fur
ther, customized functions to the simulation environment, i.e. by installing more menus
offering additional menu commands. To give an example: ModelWorks and the
"Dialog Machine"have been successfully used to program an interactive modelling
environment, which allows to enter differential edigns and model objects at run
time, without having to resort to any programming at all.

1IACSL® is a proprietary simulation software program that is leased with restricted rights according to
license agreement and terms and conditions by Mitchell and Gauthier Associates, Inc. (USA), Concord,
MA, respectively by Rapid Data Ltd. (Europe), Worthing, Sussex, UK.

2The "Dialog Machine" has been designed by Andreas Fischlin, implemented by Andreas Fischlin,
Olivier Roth, Klara Vancso, and Alex Itten during the pilot project CELTIA under the auspices of Walter
Schaufelberger. This work has been supported by the Swiss Federal Institute of Technology ETHZ,
Zurich, Switzerland and by the Swiss National Science Foundation Grant Nr. 31-8766.86.

3This environment is the RAMSES sessModeling ancExperimentDefinition (FISCHLIN, 1991).

T17

ModelWorks 2.2 - Tutorial

Despite the many features ModelWorks offers, typical model definition programs are
written in a simple, standard format. Hence, as long as one develops models without
any sophiicated extras, even the beginning programmer can quickly learn to use Mo
delWorks successfully. Rally, as a simulationist only, there is no need to know any
thing about the more advancedtteas of ModelWorks, since ModelWorks itself has
been inplemented by means of the "Dialog Machine". For instance, under-graduate
students at the ETHZ have been able to work suta@ssvith ModelWorks model de
finition praggrams within a learning time of only a fewmaies.

T18

ModelWorks 2.2 - Tutorial

2 Getting Started with the Simulation Environment

When you read this chapter and follow the instructions given, you learn step by step,
how to run simulation experiments with ModelWorks. In particular you learn how to
produce behaviour trajectories of a sample model and how to change a model's initial
and paameter values using the ModelWorks simulation environment.

It is assumed that you know how to operate the computer you are using, its operating
sygem, and typical application software, and that you have ModelWorks in&tafed

are ready in order to actually perform the described procedures on your computer while
reading this chapter.

2.1 The Sample Model

The sample model is a simple growth model for grass. It models in a crude way the
growth of real grass by assuming logistic growth. In the first phase, the plants grow ex
ponentially under optimal conditions. Within a given, constant time interval (thgub
time), the density doubles. With increasing density, limiting factors, suchtrasnis,

light energy, or competition by the neighbouring plants, become more important. This
results in a decrease of the growth rateyressed as a self-inhibition of the plants: Fi
nally, the grass density reaches a maximum, the so-called carrying cap&sityirked

by the plant's environment.

The following non-linear dferential equation describes the model:
dG()/dt = gG(t) - eG(1)? 1)
where

State variable:
grass (g dry weight per4n G(t)
Initial amount of grass/initial value: G(0)=1.0 g/r

Model parameters:
grass growth rate (day: c1=0.7 dagt
Self-inhibition coefficient(rd g1 day?): cp = 0.001 mglday?

Let us have a closer look at the model and its equation. The model has oneistate va
le, the grass density G(t), which is a function of time. Further, it has tvgbacdmme

del paameters, cand ¢. The first term of the differential equationGgt), describes
the exponential growth phase of the plants; the secongG¢t)2, is reporsible for the
self-inhibition.

The unknown element in Eq. (1) is the function G(t). During a simulation, this function
is approximated by calculating a sequence of valueg,&tt), G(b)... given the int
tial value G(§). Since G(t) is defined by a differential equation thesepctations cof
regpond to a particular solution of Eq. (1). In other words: By numeritadjiation
ModelWorks produces the trajectory going through the poinf) G@. soves an iniial

1An exact description on how to install ModelWorks is given in the separate bobidetlkation Guide
and Technical Reference of the RAMSES softwaRlease follow these instructions exactly, otherwise
you may have difficulties while executing the described steps.

T19

ModelWorks 2.2 - Tutorial

vaue problem. The sample model with the differential equation (1) has bemnpre
struded and is ready for executiin

2.2 Simulating the Sample Model

To simulate the sample model we recommend to use whenever possible the «<RAMSES
Shell». The«kRAMSES Shell»epresents a handy utility, which allows you to model
and simulate more conveniently than this would be the case with ModelWorks alone.
This is epecially the case on the Macintosh® if you run &RAMSES Shell»n the
mode«Mini RAMSES Shell»under System 7. Note however, without the «<RAMSES
Shell>? all essential ModelWorks functions are always available, only the degree of
convenience may vary.

A main purpose of the «<RAMSES Shell» is to maintain for you a consistent working

ervironment and to support you during your work. For instance does the «<RAMSES
Shell» execute automatically repetitive tasks, such as compiling or executing a model
wherever it is needed or it remembers which model you worked with, i.e. the so-called
work object, when you turned your machine off the last time etc.

The «<RAMSES Shell» requires that there is a so-callatk objectpresent at all times.
Techically speaking, the work object is an ordinary Moelilpraggram running as a
sukprogram under the «<RAMSES Shell». Typically it is just the model definition pro
gram with which you are currently working.

To run the sample model, you have first to start¢dRAMSES Shell» Start it with a

doule click on its icon or adopt any other method you normally use to start application
programs on your computer. In order to make the appearing message windag/s di
pear and to resume the start-up process click into each of the automatically displayed
windows or press any key. l#ss the «<RAMSES Shell» has been used before for other
purposes, you use it in the mode «Mini RAMSES Shell», then you entenetieely

the simulation environment and the sample madegjistic, which should be the current
work object, is made ready for simulations.

Once fully started, you see the initial screen of the ModelWorks simulationoen

ment with its menu bar, and the four windows fordelg, state variables, modelrga
meters, and monitorable xables (Fig. T4). ModelWorks is now ready to accept from
you commands, which will cause it to execute a simulation, to change a parameter, or to

10n the Macintosh no preparations are necessary to follow this tutorial except that you should be using a
working copy of the RAMSES software (Working through the tutorial will change the contents of your
diskettes, so don't use your originals!).

On the IBM PC you are ready only if you have followed exactly the latta procedures
described in the bookletinstallation Guide and Technical Reference of the RAMSE®aseit, in
particular those for the installation of the ModelWorks software. For instance when you are using GEM
ModelWorks you should then have an estable GEM application made from the sample model
LOGISTIC.MODwhich is now called OGISTIC.APP

2Note that on the IBM PC there exists no RAMSES shell, hence skip in the following text any reference
to the RAMSES shell. Instead follow the instructions described in yountsrtation, in particular the
booklet ¢nstallation Guide and Technical Reference of the RAMSE&a&ef.

3Note the RAMSES shell remembers the settings (modes) it was in, when it was used the last time.
Hence, in case the shell has been used before or you suspect wrong settings, confirm that you are really
using it in the proper mode for following thestrudions described in this tutorial. The needed settings
(modes) are the following: Use the shell in the mode «Mini RAMSES Shell» with all other modes in the
recommended default settings and the current woecbbhould bé ogistic.MOD (resides in the folder

Work, or there is an additional copy also in thelélSample Mode)s Consult further details in the help

topic Shell modeswhich you can access by choosing the menu comrhiztal... or Help RAMSES

shell... Follow the herein desbed instructions on how to change the settings (modes) of the RAMSES
shell to the recommended defaults.

T20

ModelWorks 2.2 - Tutorial

madify any other settings according to your needs. There are two basic techniques to
issue comands to ModelWorks: Either you select a menu or you click with the mouse
into a buton from the button palette of the so-called 10-windows.

Throughout this manual read instructions as e.g.
"choose menu command Solve/Start run" as "choose
menu command Start run from menu Solve".

The menu-bar has five ModelWorks menus, each with several commiitelfets you

print graphs, set preferences and quit the progEadit;allows you to access the clip
board to transfer graphs ofsilation results to other programs or to desk accessories;
Settingsoffers conmands to set current values of the global simulation parameters or
the so-called project desctipn plus the resetting of current values to their defaults;
Windowsopens or activates the six windows of MMlerks; andSolveis used to exe

cute and control simulations. In the visible windows, the model objects of thaeatti
madel, the grass growth model, areplas/ed.

r . . B _ . . Rl
% Shell Simulation File Edit Settings Windows Solve 35:32:17 PM 5
Models
State variables
Model parameters K
Monitorable variables
|@| [onitorable variable names Ident Unit tonitaring
X | A | pgistic grass growth model
LT+ %% Grass G g dry weight/m™2 T ¥
is|L | s | Grass derivative dG/dt g dry weight/m"2
EARIAERE]
b ==
E[[==——— Table =——UE Graph
Tirne G

@.8
T T T T T T

T
6.8 5.8 10.8 13.8 Z268.8 25.@ 28.4
time

Curves Minimum Max i mum Unit
@I "] 106G . BEE g dry weight/m*2 |—

Fig. T4 Initial screen of the ModelWorks simulation environmentagb

ned immeliately after starting the model definition program, i.e. thelmo

le which contains the definition of the logistic grass growth sample model.
All four 10-windows for the models, the state \adies, the model pame-

ters, the monitorable variables, plus the graph and the table window are
open.The latter two windows have been slightly rearranged from their default size and
position in order to give a better view onto the |O-windows.

The windows initially displayed serve two purposes: First they are used to display cur
rent values such as initial values or parameter values and secondly their button palettes
are used to dar vdues or settings. Hence they are call@dwindows (input-output
windows). Here are the common characteristics of the four IO-windows:

All 10-windows display a button palette in the upper left corner, a list of objects in the
middle, and a scroll bar on the right side. Any model object can be selected by a simple

T21

ModelWorks 2.2 - Tutorial

mouse click. All subseuent clicks on the buttons refer to the currently selected object.
Sdection of the bold model title is inf@reted as selection of all elements belonging to
this malel. To selecall objects of a list, click the buttg All buttons with a down
arrow[T] are used tgeta current valugwhereas buttons with a leftraw [¥] are used to
reseta vdue to its default as defined by the modeller. The buyifpserves to specify
which columns, i.e. current values of the model objects, are to be shown in the list.

The menu comman8ettings/ All aboveesets the program to its original state, i.e. ex
acly as it was when entering the simulation environment. If you should loose the ori
ertation during a complex series of interactive changes, thisramd allows you to re

sume alvays to a well defined state. If you should have changed already any settings
up to this point, reset it first with the me commandSettings/Reset All abovwefore
continuing with this guided tour.

2.2.1 DEFAULT SIMULATION

You can immediately start a simulation experiment (run), because ModelWorks ensures
that any valid model definition program contains all necessary data for the so-called de
fault simulation run Choose the menu commadadlve/Start rurto actually start the si
mulation. The graph and the table windows are automatically opened, and &ramall
display window ajpears in the upper right corner (Fig. T5).

3:37:44 PM R

" % Shen Simulation File Edit Futiings Windows gy

Models
State variables
Model parameters

| P N P
o

Muonitorable variables
4 é| Monitorable wariable names ldent Unit HMonitoring
Ry é & Logistic grass growth model
o s e Grass G g dry weight/m*2 T ¥
55|l | 4 | Grass derivative dG Adt q dry weight /2
ER RN
T =
Table Graph
Time G
1425000000 &676.73585938 1.8

1450000000 B30 425390281
14, 73000000 £23.55310039
153.00000000 B35 12182477
1525000000 £28. 30728218
153.50000000 B30 26ITIZ9
15. 75000000 £91.83325195
1&. 00000000 B2 15228271 H.6
1623000000 594 26013184
1650000000 £33 13000244
1873000000 S90.9701 5381
1700000000 E36 GZ4IRET
1725000000 ST ATE260
17 50000000 BT GI262939
177000000 29201778122 8.2
1&.00000000 £33 24039307
1825000000 59361039570
18.50000000 £33 82691406 a.e -
18. 75000000 £99.0264292¢ T T T T T T T

19 00000000 £99.1851 1963 8.8 5.0 1a.@ 15.8 28.8 25.8 ts;Erin.ea

Curwes Hirimum Moz i mum Uni t
[1—s ENCEL] \EEENCEE] g dry weight/m"2 []

Fig. TS ModelWorks simulation environment during a simulation run of
the logisic grass growth sample model. In addition to the IO-windows the
table plus graph windows are currently open. The current time is displayed
in the upper right coer. The graph window shows the growth curve of the
grass (g/m).

Now, ModelWorks integrates the tfential equation and gitays simultaneously the
results in the graph and table wiows. In the graph window, you see how the grass
grows at the beginning pgnertially and how it reaches finally its equilibrium density.

T22

ModelWorks 2.2 - Tutorial

2.2.2 CHANGING INITIAL VALUES

Initial values can be changed in the window for state variables: bring the state variable
window to the front (click on it or choose the commaithdows/State variablgsand

sdect the state variablérass Click on the buttofiz.] and change in the appearingrgn

form the initial value to 4.0. This means, that the grass starts growing at a higher den
sity. Verify this in another simulation run; the maximal density remains the same. Use
other initial values to explore the model's behaviour (e.g. 200; 0.1). If you want to en
ter a initial value out of the allowed range [0,10'000], the program will refuseépiac

it. For instance try to enter 10001 or -1 and see what happens.

After your explorations, reset the initial value with the menu comnSattings/Reset
All model's initial valuesor with the buttof,].

2.2.3 CHANGING PARAMETERS

Model parameter values can be changed in the windownéatel parameterin the

same maner as described for initial values. Clear the graph with the menu command
Windows/Clear grapland perform a simulation run for reference purposes. What will
happen if you increase the @wth rate g of the grass? Faster growth, or highexima

mal desity? Increase the growth rate from 0.7 to 1.2, and perform a simulation run.
Now, the population grows faster, and reaches a higher equilibrium value. In the table
output you can see the maximum value the grass density reactz@D(g/m).

2.2.4 CHANGING SCALING

As the grass curve exceeds the maximum value of 1000, ModelWorks clips these va
lues. In order to avoid this clipping and to have also a look at the clipped portions of
the curve, you should rescale thenitorable variablérass You may achieve this by
increasing the upper limit of interest for the grass. This can be done in the window for
monitorable vaables. Bring it to the front, sele@rass and click on the buttd]. In

the appearing entry form, you can enter the sealingvalue for the upper limit of in
terest, type 1200 and click into the OK tmurt; MadelWorks writes the values &mati-

caly into the legend in the graph window. fem another simulation run. This time,

the curve should be fully visible and no longer be clipped.

2.2.5 CHANGING MONITORING

ModelWorks uses the expressiomonitoringfor any kind of display of simulation e

sults. Any variable which can be monitored is calledamitorable variable Every
monitoring definition is done in the window for monitorable variables. ModelWorks
uses one window for numerical display (tabulated), and one window for the graphical
display (line charts) of results, called the table window respectively the graph window.
Starage of numerical results is also supported on the so-called stash file for the use of
the data by other programs, e.g. a spread sheet program like Microsoft Excel™ or a
program for stéistical analysis or just to document a simulation run. At a timde¥o
Works uses just one stash file only.

The model definition program of the sample model declares a second monitorable va
riable beside the state variab{8rass This is the derivative of grass listed in the 10
window Monitorable variableswith the nameGrass derivative However, the daults
speified by the modeller for this variable are such that it is not displayed unless the si
mulationist adivates it for actual monitoring. To see what the curve of the derivative
looks like, bring the window for monitorablenables to the front, sele@rass deva-

tive, and click on the btan[X] (Toggle function). In the columonitoring appears a

T23

ModelWorks 2.2 - Tutorial

"Y" in the row for the monitorable variablérass derivativeand the legend of the
graph is accordingly ulated. The values of the variablérass derivativewill be
drawn as another curve in the line chart of the win@aph during the next snua-
tion run. Running anotherrsulation displays the two curvésrassrespectivelyGrass
derivative

You may generate also other graphs, @mgss derivativerersusGrass Select the mo
nitorable variableGrassin the window for the monitorable variables window and click
onto the buttongX] and ther{X]. In the columnMonitoring disappears first the "Y"
and then appears a "X" in the row for the monitorable vari@bdss This means that
the vdues of the variabl&rasswill no longer be shown on the y-axis (ordinate) ¢ieg
fundion) but will be used as x-values on the abscissa. The values of the v&nabste
derivative should still be displayed as y-uak (check the "Y" in the columonito-
ring and the legends for the curves and thecigba in the graph window). Run another
simuation run and you should see a dome-shaped curass derivativers. Grass

Before you proceed, please select the comniaset: All model's graphingnder me
nu Settings

During the steps described in the previous two paragraphs you may have noticed that
ModeMorks uses different colodsnd line patterns if you have activated several mo
nitoring variables at once. For instance the "Y" in the wintbomitorable variabless

drawn in the same colour as the corresponding curve, and curves are drawn fgsing dif
rent paterns (important on monochrome screens and laser printers) in order to assist
you in teling the curves apart. These characteristics of a monitoring variable are called
curve afributes and they consist of first the line styleneStyle- the pattern with which

a line comecting two points is drawn), second the colour of a cstaen], and thirdly

the synbol with which points of a curve are marked. Unless explicitly $igeCi
ModeWorks asigns curve attributes automatically, which is therefore called the
automatic cure atribute definition strategy For instance following this strategy Mo
delWorks assigns &amaically the stain coal (black) to the first anduby (red) to the
second variable being taeated for monitoring. This helps the user to tell curves opti
mally apart under many circumstances.

However, the automatic curve attributes definition strategy has also its disadvantages,
in patticular the attributes may change all the time. For instance in one graphagse

is black, in the other it is red bGtrass derivativdbecomes black etc. The actual colour
will depend only on the exact chronological sequence in whitoratorable variable

has been activated for monitoring with the buft@n To try this out click orGrass de
rivaive in theMonitorable variablesvindow and toggle it with buttol] so that it be
comes ativated (Y). Run a simulation, e.g. this time by pressing the command key
(clover-leaf key) simultaneously with key 'R'. Note that cuBrassis drawn in black
(unbroken) and Grasderivative in red (broken). Then _click orass in the
Monitorable variable window and toggle it with the buttdX| twice. Again both
monitoring variables are aeated (Y). Now rerun the simulation and note that this
time colours are reversed, i®rassis drawn in red (broken) ar@rass derivativan

black (unbroken). This is only beuseGrasshas been activated for monitoring as the
second curve aft€trass deivative which has remained untouched during the toggling
of Grass

1This may depend on the currently set preferences, i.e. the immediate update of the graph takes place
only if the option «Once changed, immediately redraw graph» available under menu command
File/Preferencess currently checked; otherwise the redrawing of the graph will be deferred till the begin

of the next simulation run.

2In GEM ModelWorks on IBM PCs are no colors available; sorry, but the memory limitations of MS
DOS have forced us to sacrifice them.

3 the third becomesmerald(green), and the fourttapphire(blue). For more details see pReference

T24

ModelWorks 2.2 - Tutorial

The convenient the automatic curve attributes definition strategy may be, the confusing
it may become in complicated situations where the simulationist wishes to run many si
mulations and to compare the same monitoring variables. ModelWorks allows you to
gain conplete or partial control over the assignment of curve attributes, i.e. you can
adopt your own curve attributes assignment strategy. You may achieve this by assig
ning explicitly to monitoring variables their particulaurve attributs. For instance
change the dour, of the curveGrass to green and draw it with the symbol 'v' which
may remind you of real grass tuft. Click @Gnassin the window for monitorable va
riables, and click on the kon (rainbow toggle function). Choose the attributes
unbrokenas line stylé, thestainemerald(green), and type 'v' in the symbol field; then
click the "OK" push buon. Finally select the commar@ket: Global simulation pa
rameters...urder the menuSetings and change thenonitoring intervalto 0.5; then

click the "OK" push button.Now run another simulation run and you should see this
time a green curve gfaying the symbol 'v' at times 0, 0.5,1, 1.5,2 etc.

Note that from now on the cun@rasswill always be drawn with exactly these curve
attributes, i.e. in green regardless when and with how many other curves you currently
display it. To see this behaviour click @rassin the Monitorable variablesvindow

and togyle it with the buttor2] twice. Run a simulation and note ti@tasswill be

drawn in green (unbroken,'v') a@tass derivativen black (unbroker?) Then click

on Grassderivative and toggle it with the buttoi] once, so that it will no longer be
activated for maoitoring. Rerun the simulation and note that this t@rassis still

drawn in green (unbroken,'v').

Once again there is a disadvantage to this method if all your monitoring variables adopt
it: you will run more often than you may first think into a situation where several curves
currently in display happen to be all of the same colour or line style (may be important
on a black-and-white laser printer or a publication). For instance cli€kassin the
Monitorable variableswindow and click on the btdn &, then select the line style
broken, press the space bar to clear the symbol and hit return. Now clixlassand
adivate it with buttonX] Rerun the simulation and note that you can no longer
separate the two cugs on a printer or a monochrome screen. Of course it is also
possible to_switch back to the automatic assignment strategy: Sebsgand click

the buttonlg; in the apeaing entry form click into the tapost radio button
automatic dénition of curve aributes and close it by pressing the enter key, or
alternatively, reset the oue attributes of wéable Grasswith the buttor®| or with the
commandReset: All mdel's curve attributeander menuSettings

Finally you can learn how to monitor the values of the vari&igss derivativan
tabular form. Bring the window for monitorable variables to the front, s€eass
derivative and click on the butto] (Toggle function). In the columMonitoring
appears a "T" in the row for the monitorable variabtass derivative This means that
the values of the viable Grass derivativewill be written into a calmn of thetablein
the windowTableduring the next simulation run. Bring the table domw to the front,
enlarge it till you see all columns and rerun the simulation.

Before continuing reset this time the table and graph monitoring plus all curve
attributes to their defaults with the following method: Bring first the wintiwdelsto

the front, skect the row containing the model titledgistic grass growth mode&nd

click on the bubns[:&], [£], and[#. Note that the effect of this method is exactly the
same as if you would have clicked on the buttons with the same pictures in the window
Monitorable vaiables after having selected the model title (bold faomgistic grass
growth modélin the later window.

INote that specifying a line style is crucial; if you should omit it, automatic definition of curve attributes
would still remain active regardless of the settings of stains or plotting symbols.

2Note that on a monochrome screen or a non-color printer such as a laser printer both curves are drawn
with the same line style, i.e. unbroken, and can only be separated by their different symbols 'v' resp. none.

T25

ModelWorks 2.2 - Tutorial

2.2.6 CHANGING PARAMETERS DURING SIMULATION

Now, you will learn, how you can changedel parametsreven in the middle of a-si
mulation run. We let the model simulate the grass growth as before; but, whenthe den
sity has reached its maximal value, we increase the self-inhibition of the plants; the pa
rameter ¢ (this signifies, that the agting capacity of the environment K =/c;
decreases, for instance due to a sudden nutrigoietaisn or an unknown toxic
substance). After this change, the grass density will tend to a lower egmilialue.

To do this, start a simulation with the same settings as before. When the population has
reached its maximal value (this happens approximately at time 15.0, watch the time
window), interrupt the simulation with the menu comm&uaidve/Halt run Pausg. In

the paameter window, you can now increase the value of the self-inhibition coefficient
co from 0.001 to 0.002. Continue the simulation vBitlve/Resume ryrand observe

the reation of the system.

2.2.7 CHANGING INTEGRATION METHODS

To start with this section, reset the program to its initial state Sattings/Reset All
above

The numerical integration of théifferential equatiorhas to be done with speciaten

grdion algorithms. ModelWorks offers several different methods for numerical
integration. Each has its particular advantages and disadvantages. The default
algorithm used in this example Euler, which is shown in the model window. We

shall compare twantegraion method and record the results on the stash file.

First, we have to define tlstash fileoutput. Bring the window for monitorable neb-

les to the front, select the varial@eass and click or{&] (Toggle function). In the co
lumn Monitoring appears the letter "F" for stash filing (this is in addition to the "T" and
"Y", which signify that this variable is written already into the table and drawn in the
graph). Now, during a simulan run the values of the variabf&rasswill be written

also onto the stash file. Note, byfalelt every new simulation will overwrite the stash
file's content.

Differences between integration methods become more obvious withitéegeation

step sizes (this is the step which is internally used for numerical integrations).
Therefore, we change this step to a higher value. Select the menu command
Settings/Global sndation parametersand change in the entry form the value for the
integration ste@nd the maitoring interval to 1.0. (The monitoring interval is the
interval at which simulation seilts are displayed. If this is smaller than the integration
step, the former is automaticallydieced to generate the requested result display).

With these settings you can perform a simulation run. iitegration methoé&uler is

the sinplest integration algorithm; therefore it is fast, but not very precise. Afterthe in
tegration, the stash fileModelWorks.DAY contained in the same folder as the
«RAMSES Shell» resides, is ready for inspection and you can open it with your
favourite text editor, e.g. with the editor you normally use in conjunction with the
«RAMSES Shell» or the desk accessbhbigckWrite With the «Mini RAMSES Shell»
simply select the menu conandShell/Edit 'Logistic.MOD'close the work object and
open the stash file with the editor's menu comnfatelOpen... It should contain the
same simulation results as the table window (look>JAT A-BEGIN of Run 1)..

10n the IBM PC the name of this file is truncated to 8 characters and hence becomes
MODELWOR.DAT. The file resides in the same directory as LOGISTIC.APP.

T26

ModelWorks 2.2 - Tutorial

Once you have finished inspecting the results resume the simulation session, when
using the «Mini RAMSES Shell» with the menu commavdcros/Clear, save &
launcht.

For the next simulation choose another algorithm: Bring the model window to the
front, séect the model, and clicki] Choose the more precise algoritfRwinge
Kutta 4 To prerent ovewriting of the stash file, we change its name. Therefore,
before starting the next simulation run, choose first the menmeohSettings/Select
stash file and give the stash file a new name, élgdelWorks.DAT2 Only now start

the simulation by chang the menu comandSolve/Start run

The new run will give different results, as you can easily verify in the graph. For a
more déailed, numerical analysis, you could use the values on the two stash files. Mo
delWorks would even allow to write the two time series onto the same st&sh file

2.2.8 PROGRAM TERMINATION

To return to the desktop of the Finder, use the menu comi8aet/Quit Mini
RAMSES shell

In the «Mini RAMSES Shell» there exists also the possibility to terminate the simulation session with the
menu commandé&hell/Exit simulation i.e. to terminate only your running work object without tyuit

the «Mini RAMSES Shell». However, you may have little interest in selecting this memiacaim
explicitly, since normally the «Mini RAMSES Shell» does this for you automatically, e.g. when you
switch to the modelling session.

Note also, that in case your model encounters a run-time error, e.g. a numerical overflow because of a too
large state variable value, you do also execute implicitly the same comm@hell&sxit simulatiof

1in case you should encounter problems while attempting to resume the simulation session, try to resume
the «Mini RAMSES Shell» via the Finder and consult the help tdpitible shooting/choose menu
commandShell/Help..) or consult the bookletlIrstallation Guide and Technical Reference of the
RAMSES softare»

20n the IBM PC use e.y) ODELWOR.DA2

3This a more advanced technique, requiring multiple model declarations. For more details on this
subject, please refer to the reference manual.

4This happens as soon as you click into the buitoort of the dialog box , which is displayed whenever
a Modula-2 run-time error is detected.

T27

ModelWorks 2.2 - Tutorial

3 Getting Started with Modelling

In this chapter you will get a closer look at the way ModelWorks models are defined.
First it is explained, how the Modufa program defining the logistic grass growth
sampe model was written. Then you learn how to define a new model by modifying an
exiging model definition program by gy the RAMSES modelling environménfi-

nally, the new model's behaviour can be studied by resuming the simulation session and
executing new simulation runs.

Again it is assumed that you know how to operate the computer and its software, and
that you have the «KRAMSES Shell» including ModelWorks installed and ready-as des
cribed above in order to actually perform the described steps on your computer while
reading this chapter.

3.1 The Model Definition Program of the Sample Model

In the last chapter you worked with the grass growth model in the ModelWorkis:simu
tion ervironment as a simulationist. Now, we shall have a closer look at the oaed si
lation program as a modeller. This program defines (declares) a logistic growth model
and is called anodel definition program Chooseshell/Edit ‘Logistic. MODto open the

file Logistic.MODfor the subsequent inspection of its corent

Step by step, we shall now go through this sample program and have a closer look at all
its elements.Besides, the complete listings of the sample model definitiogranoLogistic and of

the definition moduleSimMasterandSimBasewhich form the client iterface used by Logistic, are also

listed fully in theAppendixand are described in detail in the parRéference ModelWorks model

defi nition programs have all the same basic structutegistic.MOD

The import list contains all the items (types, constants, variables, and procedures) used
within the program module. They are exported by the modules which form the client
interface of ModelWorks:

FROM SimBase IMPORT
Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
StashFiling, Tabulation, Graphing, DecIMV, SetSimTime,
Nolnitialize, Nolnput, NoOutput, NoTerminate, NoAbout,
StateVar, Derivative, Parameter;

FROM SimMaster IMPORT RunSimEnvironment;

RunSimEnvironmerns the procedure, which will start the simulation environment of
ModeWorks. DeclM, DeclSV, DeclM\andDeclP are the procedures used to declare
maodels and their objects. The typddodel, IntegrationMethod, StashFiling,
Tabulation, Graphing, RTCType, StateVar, Derivative, Paranstneeded in order
to declare the nuel objects. All these objects, i.e. modddtate variable, model
parametes, monitorable variables, auxiliary variables and all associated variables, like
derivatives, iniial vaues and default values, are typically declared locally to the
program modle boundaries:

10n the IBM PC you will have to use the Modula-2 development environment as described in the
booklet ¢nstallation Guide and Technical Reference of the RAMSESaseft For instance using the
Windows-Version requires to work with the Logitech Modula-2 programing system.

2|n case you work on a Macintosh with a system older than System 7.0, once you are in the model editor,
e.g. MEdit, you will have to choose first the commabihcros/Open work file[slor simply type its
keyboard equivalent 0. This will open the current work objdabgistic. MOD.

T28

ModelWorks 2.2 - Tutorial

VAR
m: Model;
grass: StateVar,
grassDot: Derivative;
cl, c2: Parameter;

m is a variable of the opaque typwdel. It instantiates an object of the cladsdel

and allows also to reference that particular model, i.e. the logistic growth model, as a
whole. Note however, that this declaration defines yet none of the madeloperties

nor does this associate withany of its model objects.

As model objects the logistic growth model has one state variable, and two parameters.
The typeStateVaris used for state vafles, the typ@arameterfor model parameters.

For every state variable of a ModelWorks model, we also have to define an associated
second variable of typ®erivative (for continuous time models), bliewStatgfor dis-

crete time models). It either corresponds to deeivative (x(t) = dx/dt - continuous

time) or thenew value(x(k+1) - discrete time) of the state variable (x(t) respectively
x(k)). For the sample model, which is continuous time, this is the vagedgsDotof

the typeDerivative

In complex models often arises the need to introduce additional variables, which are not
state variables. They are called auxiliaryialles and ModelWorks offers the type
AuxVarto denote variables of this category. pically awiliary variables hold the re

sults of evaluations of terms from complexfeli¢értial equaions, i.e. they depend on
state vaiables and on parameters. However, the logistidehs so simple, that there
arises no need totmoduce such a variable. On the other hand it igortant to note,

that any vaable of the typestateVar Derivative repedively NewStateAuxVar, and
Parameterare fully conpdible among themselves and withriadles of the elementary
Modula2 data type REAL.

The procedurdynamicis the heart of a ModelWorks model definition program. It
cortains the Modul& translation of the mathematical etjoas describing the model's
dynamics, here Eq. (1); for a proper functioning of ModelWorks, it is very important,
that this procedure cqmtes the exact values of the derivatives or new values of all
state vaables as required by the given equation(s):

PROCEDURE Dynamic;

BEGIN
grassDot:= cl*grass - c2*grass*grass;
END Dynamic;

The procedurdlodelObjectontains theleclaratiors of all model objects. For each of

the four objects, models, state variables, parameters, and monitorable variables, there
exists a special declaration procedure. Once such a procedure has been cdiéd, Mo
Works knows the variable, defaults, plus ranges corresponding to the mzax] abd

can access it to maintain its values, or can show it in a window, or use iplaydis

current value in a graph. It is mandatory to declare a model if you wisitlarelenc

del ojects (see below). The declaration of model objects, i.e. state variabtkd,pao
rameters, or mortbrable variables is optional and depends only on the currentlneeds

The procedur®eclISV declares thetate variablgrass

DeclSV(grass, grassDot, 1.0, 0.0, 10000.0,
"Grass", "G", "g dry weight/m”2");

1For instance, you could use ModelWorks also for the plotting of a function, e.g. a time series measured
during an experiment (parallel model to compare measured with simulated behavior). In this case you
would need to declare only a monitorable but not a state variable.

T29

ModelWorks 2.2 - Tutorial

The actual parameters are the two real variables for the state variablgréasgland

its deivative grassDot Next, there are three real constants: the default initial value,
and the uper and lower limit of the range of initial values. There is no such thing as
negative grass, hence the lower limit has been set to 0.0, the upper to a value beyond
which values are no longer plable. The three strings are the name, an abbreviated
name, and the unit of the state variable. These strings, and the initial value, will be dis
played in the IO-widows for state variables. The limits for the initial value will be
used during interactive chges: attempts by the simtiist to enter initial values out

of the allowed range will be refused. With this mechanism the modeller can prevent the
simulationist from entering Yyaes which would result in illegal sifation experiments

for which the model is not dieed or which could cause some other fatal run-time
errors.

The procedurdecIlMV declares the variablggassandgrassDotas monitorable va
riables. This is necessary if we want to monitor the values of these variables on the
stash file, in the table, or in a graph. Typically state variables, auxiliary variables, and
output vaiables (used to couple submodels) are the model objects which are declared as
monitorable variabls. Our calls oDeclMV:

DecIMV(grass, 0.0, 1000.0,
"Grass", "G", "g dry weight/m"2",
notOnFile, writelnTable, isY);
DeclMV(grassDot, 0.0, 500.0,
"Grass derivative", "dG/dt", "g dry weight/m”2/time",
notOnFile, notinTable, notinGraph);

The first parameter denotes the real variable, which will be monitored. Next, there are
two real constants: the default values for the scaling of the graphics output. The three
strings are the same as for the state variables: the name, abbreviated name and the unit
of the monitorable vaables. The next three elements are default settings for file, table
and graph output (e.g. isY means, that by default the vargmbsswill be plotted on

the y-axis (ordinate) of the graph). These elements are imported with the enumeration
typesStashFiling, Tabulation, Graphing

DeclP is the procedure for theéeclaration ofmodel parametsr Since we have two
model paameters, gand 6, it is called twice:

DeclP(c1, 0.7, 0.0, 10.0, rtc,
"c1 (growth rate of grass)",
"cl", "/day");
DeclP(c2, 0.001, 0.0, 1.0, rtc,
"c2 (self inhibition coefficient of grass)",
"c2", "m"2/g dw/day");

The parameter list contains first the real variable of the parameter. Next, there are three
reals: the default value of the parameter, and the upper and lower limit of its range
within which the simulationist may enter a new parameter value. A parameter declared
asrtc (RTCType means that its value may be changed even in the middle roiia-si

tion, not only before or after a run. The three strings are again: the nameyréveaab

ted name, and the unit of the parameter. Note that model parameters must mpdé¢-be im
merted as cortants; since they can be changed interactively during a simulation ses
sion, they must be Modu2 variables.

The next procedurblodelDefinitionsdeclares the model. It contains the following call
to pracedureDecIM:

DecIM(m, Euler, Nolnitialize, Nolnput, NoOutput, Dynamic,
NoTerminate, ModelObjects, "Logistic grass growth model",
"LogGrowth", NoAbout);

T30

ModelWorks 2.2 - Tutorial

This declares the logistic grass growth model within ModelWorks. The first actual pa
rameter is the model variablen. Then,Euler (type IntegrationMetholl defines the
default inegration method for this model. The next six parameters are all procedures;
Modula2 sugports procdure types and therefore it is possible to use procedures as ac
tual paameters when calling a procedure. This mechanism has to be used to install in
ModelWorks all procedures, which stgibe the model dynamics and perform the
model object delarations. It is then left to Mod&V/orks to actually call any of these
procedures. The poadures (No)Iinput, (No)Output, Dynamidescribe the model's
dynamics, and the prcedures(No)Initialize, (No)Terminatéescribe actions to be taken

at the begin and end of eyesimulation run (more details on the purpose and usage of
these proedures is given in the reference manual and in the definition of module
SimBasg Some of these pecedure identiiers have the prefiNo, which means that
these procedures have actually just gmpodies and are needed here only to call
DecIM properly. The next procedur®&odelObjects declares all model objects as
explained above. The next two mlents are strings for the name and an abbreviated
name of the model. The last procedure, in our @de@About,could be used to write
information about the model in the help window of ddtWorks (this window is
activated by clicking on the buttq?] in the model window).

The procedur&etSimTimeets the default values for the simulation start and stop time.
Finally, we come to the short body of the program module:

BEGIN
RunSimEnvironment(ModelDefinitions);
END Logistic.

The only action performed by this program is to call the procedure
RunSimEnvironmentThis starts the ModelWorlsmulation environmentand passes
the program control to MteMWorks. Its parameter, the procediMedelDefinitions
contains the complete filgition of the sample model. Note, how the procedures are
nested: First ModelWorks will activate the simulation environment and call the
procedureModelDefinitions Later on it will call the procedur®bjects which will
result again in calls to the pralures DeclSVY DecIMV, andDeclP. This mechanism
ensures that it is clear which objectddog to which model. Note also that while
declaring an object, this object will also benmmdiately initialized with the given
values. E.g. returning from procedweclP(c,p,...)will imply that the default valup

for the model paraster is assigned to the variakle

3.2 Developing a New Model

Instead of just reading an existing model definition program we will now develop a new
model, hereby writing a new model definition program. However, before we start wor
king on the new model definition program, we have to specify the mathematigat-pro
ties of the new model.

3.2.1 THE NEW MODEL

The new model does not only include grass, but also herbivores as the second state va
riable aphids Aphids feed on the grass and establish an ecological relationship, for the
sake of simplicity, we assume somehow similar to other predator-preipnstaps.

The new model will consist of two coupled differential equations, each describing the
dynamics of the two species, according to the Lotka-Volterra predator-prey ndtel

grass is the prey, and the aphids are the pyesda

1Early this century these models have first been formulatddoiiA (1925) andVOLTERRA (1926).
Their purpose is to describe thepptation dynamics of a prey and a predator species.

T31

ModelWorks 2.2 - Tutorial

The model is described with the following non-linear second ordderelitial
equation sy'em; note that the parameter and initial values are not the same as in the

former model:

dG(ty/dt = ¢G({t) - eG2(t) - &G(t)A®)
dA(t/dt = gcaG(t) A - A(®)
where

State variables:
Grass (g dry weight [dw] per &t
Initial amount of grass/initial value:
Aphids (g dry weight [dw] per R):
Initial number of aphids:

Model parameters:
Grass growth rate (day:
Self-inhibition coefficient(m g1 day?):
Grass consumption rate by aphid3(gi! day?):
Aphids birth rate per grass consumption (§:g
Death rate of aphids (day:

)

G(1)
G(0) =200 g/m
A(t)
A0)=20 g/n

c1=0.4 dayt
cp = 810° m2 glday?
cz3 = 1.5103 m?2 gl day?
=01 ggt
c5=0.2 dayt

Let us have a closer look at the new model and its equations: The first equation is the
same as before, except that the termy G{t) A(t) has been added. This term iso@s
sible for a derease of the net grass growth, due to grass consumption by aphids. The
second equation describes the dynamics of the aphids: They can grow by feeding on
the grass, which is expressed with the tesr,dG(t) A(t). The second term, s é(t),

accounts for the natural mortality of the aphids.

In the next section it will be explained how to alter step by step a copy of the logistic
grass growth sample program to implement this new grass-aphids model. It is assumed

that you know how to edit a program téxt

3.2.2 MODEL DEFINITION PROGRAM FOR THE NEW MODEL

The new model definition program will not be written completely anew, that would be
too cunbersome. Instead we will simply modify a copy of the sampddel definition
program The menu commarn@hell/New.. of the «Mini RAMSES Shell»provides a
simde mechanism to achieve exactly this goal. This is ay,d®@nce generally cem-
merded way to develop ModelWorks model definition programs

When you choose the menu comm&iell/New..a dialogue box appears, where you
can speify the name of the new model definition progfanType GrassAphids.MOD

and make sure the file is stored in the folMé&rk

1The new parameter and initial values are not necessarily realistic, since the sole purpose of the model is

to help to learn ModelWorks.

2 you are using the full <RAMSES Shell» instead of the «Mini RAMSES Shell» or on the IBM PCs it is
also assumed that you are familiar with thdofeing terms and concepts: program text or source code,
compilation, compiled object code, program linking, and thewien of programs.

30n the IBM PC make a copy of the source code of the sample proggistic.MOD and rename this

copy toGrassAph.MOD Then operGrassAph.MODand start editing.

4Note that the new model definition program is created by copying most of its content from a template.
In case the template can not be accessed, for whichever reason, you are asked in an additional standard
file open dialog to select also a new template file. You may select one of the templates, e.g. the file

T32

ModelWorks 2.2 - Tutorial

Throughout the fébwing explanations the affected program text is shown together
with its context. The text ptons actually having been altered or added are shown un
detined. The begin of the model definition program looks as follows:

Important hints : First it is recommended to use the madaxros/Placeholde(™=G) to go to

the next place holder. A place holder starts with the charactaesee '(*.' and ends with '.*)'".
Once the macrtacros/Placeholdeihas selected such a place holder, @&.cAuthor .*), simply
ovettype it, e.g. by your name. Secondly, it is also recommended to save regularly your work du
ring editing, e.g. by regularly chsimg the menu commartdle//Save Thirdly, in order to work
corveniently with the <cRAMSES Shell» make sure that thetifien (name) of the model @eai-

tion program, hereGrassAphidsmatches exactly the name of the work object, Geass
Aphids.MOD at all time$.

MODULE GrassAphids;

(*% *% * *% *% * *% *% * *% *% * *

MODEL: GrassAphids Lotka-Volterra grass _and aphids _model

Author 2, date , ETHZ

There is no need to change the import list. All objects required are already imported
from the moduleSimMasterespectivelySimBase

Next declare the new state variabfghids its derivativeaphidsDof and the three new
paametersc3, c4,andch

VAR

m: Model,

grass, aphids : StateVar;
grassDot, aphidsDot : Derivative;
cl, c2, c3.c4,c5 . Parameter;

Change the proceduynamicby adding the consumption term into the first statement
plus irserting a second statement corresponding to the second differential equation:

PROCEDURE Dynamic;
BEGIN
grassDot:= cl*grass - c2*grass*grass - c3*grass*aphids
aphidsDot:= c3*c4*grass*aphids - c5*aphids:
END Dynamic;

Now edit the procedur®lodelObjects Since several default values will be different
from the ones of the old model, first change the parameters of the declaration
procedures ataly present. The behaviour of the state variaiplassis different. It
needs another initial value:

DeclSV(grass, grassDot, 200.0 , 0.0, 10000.0,

ModDefProg. TEMPLATEcontained in the folddRAMSESLibor any other text file. In the latter case,
please observe the syntax rules any template should follow. These rules are described in the help topic
Templategchoose menu commaighell/Help.).

1This problem may ocurr only if you are not using the «Mini RAMSES Shell». The latter shell mode
avoids any such problems automatically.

2Replace the place holdét. Author .*) with your name. Similar replace the place holferdate .*)
with the actual date.

T33

ModelWorks 2.2 - Tutorial

"Grass", "G", "g dry weight/m”"2");
The monitorable variablgrassneeds a new upper limit for its clipping range:

DecIMV(grass, 0.0, 10000.0 , "Grass", "G", "g dry weight/m"2",
notOnFile, writelnTable, isY);

The model parametecd andc2 need new default values:

DeclP(c1, 0.4 ,0.0, 10.0, rtc,
"c1 (growth rate of grass)", "cl1", "/day");
DeclP(c2, 8.0E-5 , 0.0, 1.0, rtc,
"c2 (self inhibition coefficient of grass)”, "c2", "m"2/g
dw/day");

Secondly, insert the procedures declaring the vargiiidsas a state and as a ntoni
rale variable, plus call the procedures declaring the new parameters:

DeclSV(aphids, aphidsDot,20.0, 0.0, 1000.0,
"Aphids", "A", "g dry weight/m”2"):

DecIMV(aphids, 0.0, 1500.0."Aphids", "A"."g dry weight/m”"2",
notOnFile, writelnTable, isY):

DeclP(c3, 1.5E-3, 0.0, 1.0, rtc,

"c3 (coupling parameter)", "c3", "m”"2/g dw/day");
DeclP(c4, 0.1, 0.0, 10.0, rtc,

"c4 (ratio of grass net use by aphids)", "c4", "-").
DeclP(c5, 0.2, 0.0, 10.0, rtc,

"c5 (death rate of aphids)", "c5", "/day"):

You could call these procedures in any order, mix declarations of state variables with
those of monitorable variables orrpmeter declarations. However, consider that the
sgjuence of delarations corresponds to the order in which they are listed in the 1/O
windows of ModelWorks simulation envirorent.

The modeldeclarationprocedureModelDefinitionsremains the same except for minor
charges in the actual parameters of the call to procedaocdM. As the new model re
quires a better egration algorithm, we change the defatthodfrom Euler to Heun
further we change the model name strings:

DecIM(m, Heun, Nolnitialize, Nolnput, NoOutput, Dynamic,

NoTerminate, ModelObjects, " Aphid-grass model (Lotka -
Volterra) ",

" GrassAphids ", NoAbout);

Change the defaults for the simulation start and stop time as follows:
SetSimTime(0.0, 100.0).
The main program needs no chanyes.

Once you have finished editing the new model, save your work plus resumentize si
tion session with the menu commavidcros/Clear, save & launéh

1A complete listing of the new model is contained in the Appendix.

2|n case you should encounter problems while attempting to resume the simulation session, try to resume
the «Mini RAMSES Shell» via the Finder and consult the help tdpitible shooting/choose menu

T34

ModelWorks 2.2 - Tutorial

3.2.3 COMPILATION OF THE NEW MODEL

If your new model definition program contains no more errors, you will immediately
resume the simulation environment with the new model GrassAphids loaded and ready
for simulation (continue with sectid®imulation of the new modél

However, often this is not the case. Understand thathvhiei RAMSES Shell»conpi-

les and executes automatically the current work object while resuming the simulation
sesion. No action will be visible, except for the following two possibilities: Either the
new malel definition program contains no syntax errors, then it will be immediately
executed, i.e. loaded into the simulation environment; or alternatively, the compiler
detects errors and you will return into the editor.

In case compiler errors have been detected, you must first correct them before you can
cortinue. Once you are back in the editor, the first error mark will be selected and the
coresponding error message is displayed. Errors are marked in your program text with
the characterst” they enclose also the error number. Acknowledge the errcages

e.g. by pressing the carriage return or enter key, and overtype the error mark with the
key baclspace. Then correct the error bydifiging your code appropriately.

E.g. if your model definition program is missing thecldeation of the parameterc
then your file may look similar to this:

Modula-2 Error: identifier not declared or not
risible

O A= =00, AP T T =00 T O T AT T,

cl, o2, o4, o5 Farametear;

PROCEDURE Dyrnamic;

BEGIH
grassOot = cl*grass - c@*grosstgrass - clfEIRarass*aphidst 1171
aphidsbhot:= c3t SOt*cd+grasst 117 *aphids - o5t SOt*aphids;

EMD Dynamic;

Follow above given instructions, then locate the next error by the command
Macros/Find next error(or type ¥#J. The cusor jumps to the next error mark,
selects it, and a megye explaining the error kind will be shown again. Repeat
correcting errors until you have no more error marks or you wish to ignore subsequent
error marks, which might have been caused just as sep@ce from the already
corrected one. This is the case in the above example. In such a case you simply declare
the missing parameters and fnish the editing by choosing the menu command
Macros/Clear, save & launchThis maco command will clear your source code from

all eventually still present error marks, save your code onto the disk, close the file and
resume the simulation session. Hence, as a rule: Once you have finished editing the
new model, save your work plus resume timeugition session by this technique only,

I.e. choose the menu commadcros/Clear, save & launch

commandShell/Help..) or consult the bookletIrstallation Guide and Technical Reference of the
RAMSES softare»

1This whole section applies only to the «Mini RAMSES Shell» as available on the Macintosh. On the
IBM PC skip it completely and follow the specific instructions on how to make Modula-2 programs. For
instance, GEM ModelWorks requires to use the JPlI TopSpeed V1.17 Modula-2 development
environment or the Windows-Version requires to work with the Logitech Modula-2 programing system.
For more information on how to edit, compile, and correct programs with it, consult the booklet
«Installation Guide and Technical Reference of the RAMSE®aseft Once you have compiled, and
linked GRASSAPH.MODyou will have to perform one more step: rename the resulting applicaton
GRASSAPH.EXE) GRASSAPH.APP

T35

ModelWorks 2.2 - Tutorial

If needed, repeat such edit and simulation cycles until there are no more errors and the
model definition program satisfies your ideas about the new model.

3.2.3 SIMULATION OF THE NEW MODEL

Once your model definition program is error-free, you see the initial start-up screen of
the MadelWorks simulation environmeénwith the new variables displayed in the4/0
windows. Execute the following steps to explore the behaviour of the new model:

- Run a simulation with the default settings (ChoSeéve/Start rup

- Define agraph where the predator is plotted versus the prey (state space
curve). Skect the prey, and toggle its curve definition by clicking on the
button. Click the buttonto define a plot which uses the x-axis (abscissa) to
plot the prey vlues. Start a new simulation run. The resulting curve shows
nicely how the grass and the aphids reach an equilibrium point.

- Set ¢ = 0.0 (no self-inhibition of the prey population). This results in &e-dif
rent stdility behaviour of the system: The oscillations of the population are
no lorger damped, but persist in a marginally stable limit cycle. In the state
space you may aerve closed trajectories, each corresponding to such a limit
cycle. You should have obtained a graph similar to the one shown in Fig. T6.

S =——————— Graph Emgl
1.8
6.8
8.6
@4
8.2
1L
6.0 -I T
a.6 e B 4E0E , 0 EEGE . @ 2605 . 6 1BEEE Ga
Curwes Minimum Max i mum Uit
— . 6EE 1568 . Aaa q dry weight/m"2 =R

Fig. T& Graph of the simulation results produced with ModelWorks
simulating the new, developed sample model . The graph shows a state
space representation of a Lotka-Volterra like grass-aphids model system.

Marginally stable limit cycles can be easily perturbed; verify this by changing
the integration method tuler, or while using the methddeunby increasing

10n the IBM PC follow the same steps as when you executed the initial sampleLOGISTIC.MOD
under chapteBimulating the Sample ModeFor instance when you are using GEM ModelWorks you
have to start first the GEM desktop and then to start the appliGaZR&NSSAPH.APP

T 36

ModelWorks 2.2 - Tutorial

the integration step and the monitoring interval up to 0.5 . How accurate is the
numerical integration algorithm?

Congratulations! You have reached the end of the introductory tour throudél-Mo
Works. You should have learned to develop and simulate simple models using Model
Works.

In addtion to the basic techniques you have just learned, ModelWorks features many
more advanced modelling and simulation techniques. Among the more important fea
tures are modular, hierarchical modelling, including the coupling of several models and
the mixing of discrete time with cnuous time models. With ModelWorks it is easy

to andyze results of complex simulation studies by means of a sensitivity analysis or a
paameer identification. Moreover, thanks to its architecture open for extensions it al
lows for an unlimited number of possibilities. For a complete, full, and detailed des
cription of all of ModelWorks features, please refer to the plnesoryandRefeence

of this text.

In case you would like to continue with the introductory example, here some suggestions how you could
possbly explore it further on your own:

- introduce an auxiliary variable for the total biomass b(t):
b(t) = G(t) + A(t) 3)

Declare b(t) as a monitorable variable and compute its values within the proCedipué

T37

ModelWorks 2.2

T 38

Part Il: Theory

Part I Theorycontains a descripticend functional specification of every feature ModelWorks
offers. However, it contains only little information on the elemary and typical usage of
ModelWorks. In case you should not be familiar with the basic capts of ModelWorks,
please read first the ModelWorks tutorial.phrticular you should read the first chapter of the
tutorial: General Descriptigsince this part caiains no technical information on the actual use.

Part 1l Theoryexplainsthe principles behind ModelWorks, not the details on the actual im
plementation and version of ModelWorks. Therefore it is typically studied once, la¢tjne of
any selous work with ModelWorks. Implementation dependent details are kstddeyplained

in Part llIReference The latter has been written to support youimy your daily work with
ModelWorks.

Part Il Theorycontains two chapters:

The chapteModel Formalism@resentghe mathematical formalisms in which et
Works models are to be formulated. The first seatiotinis chapter treats eteertary
maodels, the second structured models, which are Huilin several elmertary, coup
led submodels.

The chapteFunctionsdescribes all basic functions of ModelWorks: First it desctitges
functionality of the simulation environment and secorgiyeral gsects of the model
development process.

Any serious modeling with ModelWorks requires to read at least this ghd afanual and the
sedion on the client interface of the manual ParRéference

Reading Hint: For easier orientation, the pages, figures and tables of Pemedryare prefixed with the
letter T. Within this part the numbers of figures and tables follow those used iriTRtotial

T39

ModelWorks 2.2 - Theory

4 Model Formalisms

This chaptedeals with theoretical aspects of modeling which are used in addition to the stan
dard knowledge when developing models with ModelWorks. flaxsonly the mathematical
formalisms in which the modelashould describe Mod&lorks models. Please refer to a text
book fora geeral introduction to the modeling and simulation of dynamic systeriviodel
Works distinguishes between two model types: Elementamges andstrudured modek.
Structured models are composed of several possibly coupled, elemsubanoded.

4.1 Elementary Models

The elementary models which are used in ModelWorks are discrete or continuopisi$irdes
crete event dynamic siems. They are formally described bget of possibly coupled dina
ry first orderdifferertial, difference equidons, orinstartan®us state transition functisn Nor-
maly the coriinuous or discrete deperdent variable is theo-caled simulation time however,
it can reoresentany other independent riable like length or depth. Generally ol paame
ters are cosidered to be time invariant, but ModelWorks popts alsdime variant parameters.
However it is recommended to treat them either as auxiliarialbbes (beomingpart of the dif
ferertial or differenceequations) or to treat them as @put A graphical r@resenation is
given in Fig. T7, for more details see also Fig. T8.

(a) (b)
u(y x|y > uk)y x(k) y) >
Input State Output Input State Output

Fig. T7: Graphical representation af dynamic system: aj continuous time
(DESS) oriscrete even{DEVS) systems,K) discrete timgSQM) systemsThey
constitute the basic types used in ModelWorks to describe models (s.a. Fig. T8).

A continuous timalifferential equationsystemspecification DESS is given by the following
system of differential equations (s.a. Fig. T8a):

Dynamic equations: X(t) = f(x(), u(t), ps(t), t) (4.2)
Output equations: y(t) = gy(x(t), py(1), 1) (4.2a)
Event output: H <v,tgT,a>} = ge(x(t), pa(t),) t=t (4.2b)
Initial conditions: X(tg) = Xo 4.3)
Input function: u(t) (4.4)
Parameter set: p(t) (4.5)

1 E.g. LUENBERGER D.G, 1979. Introduction to dynamic systems - Theory, models, and applications
Wiley, New York, 446pp.

T40

ModelWorks 2.2 - Theory

A discrete time difference equatiegistem specification @equentialmachine (SQM) is given
by the following system of difference equations (s.a. Fig. T8b):

Dynamic equations:
Output equations: y(K) = gy(x(k), py(K), K)

Event output:

Initial conditions: X(Kg) = Xo

Input sequence: UK) = uKg), UKq),... uKs)

Parameter set: p(K)

x(k+c) = f(x(k), u(k), pr(k), K)

19{ <V vtS!T1a>} = ge(X(K)! QG(K)i K)

p(Kg), P(K1),--- P(Kf)

(5.1)

(5.2a)

te=K (5.2b)
(5.3)
(5.4)

(5.5)

A continuous timediscreteeventsystem specification@EVS is given by the following sys
tem of equations based on instantaneous state transition functions (s.a. Fig. T8c):

H v (x(t),u().0,B¢().0)
Dynamic equations: x(t) =

Hx(t)

A gy (x(t),a,py(1),1)
Output equations: y(t) = E
y(t)

E gS(X(t)la 1P (t) vt)

Event output: H <v,tr,0>} = E
0

O {<v tgT,0>|tgtT=t}20)
(6.1)
& <v tgT,0>|tgtT=t}=0)

@O {<v tgT1,a>|tgtT=t}20)
(6.2a)
O <v tgT,0>|tgtT=t}=0)

@ {<v,tgT,a>|tgrt=t}£0)
(6.2b)
(O{ <v tgT,a>|tgt1=t}=0)

Initial conditions,events X(tg) = Xo V<V tgT, 0>t~} = g (6.3)
Inputs, event input u(t), 3{<v tgT,a>|tgtt=t} 20 (6.4)
Parameter set: p(t) (6.5)
where:
a,at, on Set of real respectively positive real numbers in 1- respectively n-dimensional space
O: The empty set
t: Continuous time (independent variable) (DESS, DEVS) t 0 [tg.tend tono
K: Discrete time (independent variable) (SQM only) K=Xq,-.-,Kf.1 KOO, kOt
C: Discrete time step (SQM only) c>0 coot
t Continuous left-hand side of time before and up to a discrete event (DEVS only)
0! Set of discrete events (internal and external), events are quadrupels of the fgmoe
V! Event class (must be globally unique)
ts: Scheduling time of an event ts O [to.tend tg0 O
T Time advancement frong till associated events aredue 120 oot
a: Transactiondata of an event
X: State vectok(t) at time t respectivelx. For DEVS exists also the state vect(tr), it is the
left-hand side of the discontinuity before and up to t xoaon
X: Derivative vector g(t)/dt (DESS only) xoagn
f.a9v, 9e:.- Linear or nonlineafunction vectos dim[f]=n, dimfgy]=m
dy: Linear or nonlineainstantaneous state transition functiecttor ofevent class dim[py]=n
u: Input vector ud ol
y: Output vector yoom
p: Parameter vector, composed of the elemeng, gy, andpy pOQOr

T41

ModelWorks 2.2 - Theory

In the context oModelWorks the terroutputis used in a different than the usual systems
theoretical meaning. It is reservedttee output produced by a submodel to be connected with
the input of another sufodel (coupling olsubmodels). It should not be confounded with the
display of simulation rgults for the simulationist. The latter is called monitorimdpte that the
outputy defined by Eq. (4.2), resp. (5.2) does nalepend on thénput u. This restri¢ion
guarantees the correct calation of structured models. Structured models apéagred below.

The discrete tim& of aSQM is a real number, which may be interpreted as a sutifséte
continuous time t. Theliscrete time step is interpreted as tl@ntinuous time interval elapsed
between two adjacent discrete tirpeintsk; andkj,; (Fig. T8b). The classical case where
is an integer and ¢ may be interpreted td be ofJIength 1 is just a special case.

For discrete eventsystems ModelWorks supports teeent schedulingparadigm. Discrete
events are time bound entities which have the potential to Grusestantaneous state transition
¢ in aDEVS Typical examples of events are the arrivalindividuals such as animals at a
feeding site, or the leaving of customdrem a location which offers services. Hereby the
state vector instantaneously changes fetatex(t") to statex(t), thus creding astate disorti-
nuity. The vectorx(t”) represents the left-hand side(t) the right-hand side of these clisti-
nuities. By definition states of DEVS do not change inbetween evésgsally discrete events
are grouped into a finitesset of classes, whereby each class is chaadeized by a
correspondingnstantaneoustate transition functiowector ¢, operating on the DEVS state
vector.

Every event is described as a quadrupet t,a>, where v describes the event's clasg the
time at which it has been scheduledihe time which may elapse till thevent becomes due,
anda the transaction data. Through the event class event isuniquely associated with a
particular instantaneous state transition function vedtpr In simple case€st can be
interpreted as the time a DEV&Sallowed to remain in its current state before the next change.
Transactions allow to transmit data from the scheduling state to the dug-tmeExamples of
transactions are attributes or properties describing indivdual animals or customers.

Event schedulings needed for state changes and the time advancement of (i3 8c).

At a giventime there may exist any number of events. Thus events are grouped into sets, i.e
the set of event®{<vitgT1,0> | k=1t } defines all events scheduled at time; tthe set

I <vtgT,0> | k+1 =t} all events due at time t. Events which arecheduled and handled by

the same DEVS are called internal everithe events, whichare scheduled by a system which
does not provide the instantaneous state transition fungjiassociated with the event's class

v, are called external eventd he latter are only of importancestructured systems, which are
explained below.

ModelWorks ordersll events according to their due times, which allows to solve a DEVS
solely by asequence of instantaneous state changes given by the ordering of the events.
Hereby the "independent variable" continuous time t iBonger a true "independent variable",

but rather a byproduct; in other words: discrete events have the side effect of adwaerciimge

t by a positive amount (to 0*). Given any set of even8{ <v,ts,1,0> | &t } at time t, the

time is always only advanced to the the next event, i.e. the due time of the event with the
smallestt. Note, an arbitrary number of events mag due at the same time, which may have
been scheduled at various timgsirt the past; moreoverr may also bé, i.e. an event may
schedule immediate eventshich are due at the same time they are scheflulétherefore

2Throughout this text a sequential machine is considered a synonym for the disceetstandard system
formalism. However, the term sequential machine is sometimes also spetify an automaton. Note the
latter is usually defined toperate on discrete, explicit states and not on state variables as this is usually the
case for discrete time difference equations.

3i.e. an autonomous DEVS, only one event class, cardinality of event output always 1

40f course the modeler has to make sure lieatequations specify no recursive event scheduling without a
proper termination condition, otherwise a simulation run may not be able to progress resp. terminate at all.

T42

ModelWorks 2.2 - Theory

ModelWorks uses the scheduling sequence additional criteria to determine a unique order
among events which are due at the same time.

(a) R,
u®— X(t) [x(t)
(b) R, R,
v y(K)
u(K) —» ¢ X (K+c) - X (K)
r 9 It=t
Qe
(c) o p
y
QQ’%\ X(0 ,—+>ﬂ.
/ g
e 1 3 H[t=t}
X(t) - P,
9 |te+ T=t} @ 9 |t=t)

Fig. T8: Signal flow in @) continuous time differential equatiqESS), p)
discree time difference equatiomr sequential automaton (SQM), and) (
continuous timediscrete event (DEVS) dynamic sgms (s.a. Fig. T7). These
systems constitute the basic typsed in Mod&Vorks to describe elementary and
structured models.

4.2 Structured Models (Coupling of Submodels)

Any number of elementary models, here calldmoded, may be coupled to form coreg,
strudured moded. Anynumber ofhierarchicallevels may be introduced. Elentery models

are defined exactly the same way as described in the previous chapiercoupling is realized

by connecting a submodel's output to another submodel's input. There are four casdsto be
tinguished: (A) all submodels areontinuous timealifferential equation systems only (DESS),
(B) all sulmadels araliscreae timesystemsnly (SQM), (C) all submodels are discrete event
systems only (DEVS)(D) and thereare some continuous (DESS and/or DEVS) as well as
discrete time (SQM) submodelMlixed structured models may bemposed from any number
and any type of models.

T43

ModelWorks 2.2 - Theory

Y22
Ui Y21 | u, X, vy
u* *
u " \'
u*2 2
3
Y31 | Y32
U, X, ¥
Usp — VvV Y3

Fig. T9: Example of a structured model systeomposed of threelementary,
couped submodel systems. The global inpétis defined by Eq. (7a, b, orc),
the inputs of the subsystemijstny Eq. (8a, b, or ¢), the outputs of thsubsystems

Yij by Eqg. (10a, b, or c), and the global outpyt* by Eq. (11a, b, or c).

(A) A structured model composed of n elementary, coupled DESS submodels, each
continuous timeaand defined according to Eqg. (4.x) is defined as follows (for an example see
also Fig. T9):
The input of the global system is given by

ur = ur() (global input) (7a)

The input to the submodel i depends on the global pw@nd on the outpuy;(t) of the nsub-
madels putput-input coupling

ui®) = hi(ut) , y1(t).... yn®) (input of submodel i) (8a)

The dynamic equations for obtaining terivatives ofthe state variables of the submodel i are
given by:

dxtydt = f; (xi(t), u®), i), t) (dynamic equations of submodel i) (9a)
The output of the submodel i depends on the states and the parameter set of the subkmodel
output variable must not depend directly am input variable (no direct output-input coupling).

Since the input variables may depend directly on the output variableg&eet output-input
couping would lead to a circularity which could not be resolved generally.

i) = g (x;(0), Dgi(t), t) (output of submodel i) (10a)

Some of these outputs are not connected to other subnbodlelee global outputs. These €le
ments frony;(t) form for each submodel the global output vecigi$t).

The output of the global system is given by combining the global output vactodf the n
sulmodels i

T44

ModelWorks 2.2 - Theory
ya(t)
y=| (global output) (11a)

yr(t)

(B) A structured model composed of n elementary, coupldzmodels, eachliscrete timeand
ddined according to Eq. (5.x) is defined as follows (for an example see also Fig. T9):

u* = u*(k) (global input) (7b)
ui) = hi(u*(k) , y1(€).... Yp(K)) (input of submodel i) (8b)
xjtk+c) = £ (x(<), ui(K), pfi(k),) (dynamic equations of submodel i) (9b)
i) = gi (xi(), Dgi(K), K) (output of submodel i) (10b)
Vi(k) (global output) (11b)
Y (K)=
¥n(K)

(C) A structured model composed of n elementary, coupled DEVS submodels, each
continuous timeaand defined according to Eq. (6.x) is defined as follows (for an example see
also Fig. T9):

DEVS may also receive inputs and produce outputs.
The second part @vent outpuibccurs if a systerachedulegxternal every, i.e. events which
are designated for a DEVS differdndm the scheduling system. This is the case if the
scheduling system is a DEVS which provides for the classf the scheduled evenio
instantaneous state transition functian or if the scheduling system is not a DEVS.
The input of the global system is given by

ur = ux(t) (global input) (7¢)

All input to the submodel i of type DEVS depends on the global wipuand on the output
y;(t) respectivelyd{< vt T,a>|ls+1=t} of the n sulnadels Eutput-input coupliny

ui®) = hi(u) , ya(®),... yo®) (input of submodel i) (8c)

In contrast to DESS and SQM, DEVS can receive two types of input, i.e. ordinpgpt
vectory;(t) and event input; the latter consistseaternalevens which have been scheduled by
other submodels.

H<v tg T,a>|tgrT=t} (event input of submodel i) (8¢

Note, state changes in a DEVS can onlychesed by event input, but not by continuous input
vectors u(t). The latter influence a DEVS only in the moment of an instantanstais
transition, i.e. a discrete event. The dynamic equations consist of a $etnsition function
vectorsd,,, one for each event classyhich are capable of changing the state vegi{d) of the
submodel i instantaneously, given at least one event of the corresponding dadge:

T45

ModelWorks 2.2 - Theory

H @vXx(©),u(t).a.pf(t), 1) @B{<Vv tg T, 0>|tgtT=t} £01)
x®) =0 (dynamic equations of submodel i) (9C)
H x(t) ©f <v .ty T,a>|tgtT=}=1)

The output of the submodel i depends on the states and the parameter set of the subhmodel
oufput variable must not depend directly am input variable (no direct output-input coupling).
Since the input variables may depend directly on the output variablégeat output-input
couping would lead to a circularity which could not be resolved generally.

i) = g (x;(0), pgi(. t) (output of submodel i) (10b)

Some of these outputs are not connected to other subnbodielse global outputs. These €le
ments frony;(t) form for each submodel the global output vecigi$t).

The output of the global system is given by combining the global output vactordf the n
sulmodels i

Ya(t)

y=| - (global output) (11b)

yn(t)
Event classes must be globally unique.

Similarily DEVS can produce two types of outputs: tAis is the case for states, by definition
ordinary output vectorg(t) remain also constant inbetween events. Note, thatevant output

can onlybe received by a DEVS, but the inverse is not the case, i.e. any model may produce
event In addition to such ordinary output vectors, ModelWmkpports alscevent output
which consists ointernalandexternal evers. DEVS may produce so-called interaalwell as
externalevents. @The events produced by a DEVS are called internal events; external events
are produced by model system different from the receiver. Moreover note, not only DEVS,
but all other elementary model types may prodaxternal event output.Event outputconsists

of a set of event8{ <v,tg,1,a>}. It can be done anytime by scheduliagents at timed The

time T is the time span the DEVS is allowed to remain in the current state.

(D) A general structurechodel composed of n elementary, coupled submodels, each either
cortinuous or discrete timand each defineaiccording to Eq. (4.x) resp. Eq. (5.x) is defined
as follows (for an example see also Fig. T9):

There are two differerindependent variabge the continuous timeld [0 and theliscretetime K

O O, wherek is asubset of the continuous time t, i.&.[J t. Thediscrete time step of the
discrete time submodel(s) is interpreted as a real titesal, the coincidence intervak, on the
time axis t. Thaliscrete timesubmodels are only defined at the endpoints of these intethals,
coircidence time pointsTheset of all coincidence points constitutes themige timek. The
continuous timesubmodel(s) describsontinuous (or faster) processes which occuxwben
the coincidence points. A communication between the two submodel types occurs erdyyat
coincidence point (Fig. T10). The values of the tviime variables match at every coincidence
point exactly, i.e. t = K. In particular,this implies that the following condition is satisfied by
the cotinuous and the discreséart time

to = Ko where §, Ko O O (12)

Given the coincidence interval c is constant the continuousttimay be mapped always to the
discree timek = Kj at the lastoincidence poinas follows:

T46

ModelWorks 2.2 - Theory

t —
Kj =+ ic=p+ INT(Tb) c ¢ = const., INT is integral part of argumen{13)

However, ModelWorks does not require to keep the coincidence interval ¢ constant, in which
case Eq. (13) no longer holds. Finally note in the special case whetgall be restrictetb
integer numbers, Egs. (5.1) and (12) require thaas$ well as ¢ must also be integers.

A Discrete system

Continuous system

c c c time
? ? T
Cont. tin t to+c t+c tend
Disc.tin K K K K
o] 1 2 f
<>
e Coincidence time pi coincidence interv

Fig. T10: Coupling ofdiscreteandcontinuous timesubmodels The figureshows

the result®f a simulation of a structured model system composed of one discrete
and one continuous time submodel. A communicabetwveen the two submodels
occurs at everycoincidence time pointvhen the output othe discrete submodel
determines the rate of change of tentinuous time submodel. No data exchange
takes place durinthe coincidence intervalduring which the rate of change of the
discrete time submodel remains constant (sample and hold).

Any structured model mixed of continuous and disctiete submodels can be subdivided into
two portions: the first is the continuous time portiGconsisting of the set of all continuous
time submodels witltheir related continuous time inputs and outputs plus the continuous time
global input and output; the second is the discrete time pdktimonsisting of the set @il dis-

crede time submodels with their related discrete time inputs and oypjugsthe discrete time
global input and output. At every coincidengeint the system is fully defined and all suts

dels are fully coupled (System=+ A). Between coincidence points, the dynamics of the
system collapse or degenerate to thdinanus time portioix, the other portion of the system

A remains constant but is still accessibl&toThis corresponds to a sample and hetthnique
(sample at coincidence points, hold Wween) (Fig. T10).

The global inputonsists of two vectors, one for the global continuous time inggtand the
other for the global discrete time input :

ué = ux(Y) C3)
(global inputs) (7C)
u*® = uX(k) 0 4)

At the coincidence points the inputs of all submodekspend on the continuous as well as the

discrete time global input*¢ resp. u*3, and on the output of the continuous time submodels j
[= as well as the discrete time submodels A (i, j¢ ,j¢ 0 {1,2,... n}. Between coincidence

T47

ModelWorks 2.2 - Theory

points the inputs to the continuous subma#élél = depend continuously on the continuous
time global inpuu*¢ and on theutput of the continuous time submodél§li=. Any deen
derce of the continuous time submodélsj = on the output of the discretene submodels

jo O A is resolvedby using the last defined values (sample from "sample and hold") of all
variables ofA while mapping time t t& using Eqg. (13) (hold from "sample and hold"):

udt) = hE(U, urdK) L yaE0), YRR, ¥n-1%K), YpdK)))
uid(<) = B3 s, u(K) , Y15, YoAK), .. Yn-19K), Yni() @A)

The dynamic equations for the calculation of the derivative&for the new values fof of the
state variables of the submodélsesp. #:

dxe® = fi (x(0), ugt), Dred), 1) O=)
Xgk+€) = f5 (oK), UglK), prglk), K) (D D)
The output of the submodelsriesp. ? are calculated of the states and the parameter set of the

paticular submodekiresp. #. An output variable must not depend directly on an irvawiable
(no direct output-input coupling, avoids unresolvable circularity).

(dynamics of submodel§,ii% (9¢)

Vie(t) = g (lia(t)v Bg(t), t) @3
YisK) = G (Xia(K)’ Bga(K), K) (O 4)

Some of these outputse not connected to other submodels but are global outputs. These
elementdrom y,(t) resp.y,{(k) form for each submodel the global output vectgyLt) resp.

Vi (K).

The global outpuy* of thestructured model consists of two vectors, one for the globaticon
nuous time outpu*¢ and the other for the global discrétee outputy*s. Each is again com
posed from the globalutput vectorsy,(t) of the continuous time submodeldi = resp. the
global output vectorg,;{(k) of the discrete time submodeis] A:

(outputs of submodel$;iid) (10c¢)

yag(t)
i = 72 0=
(global outputs) (11c)
@)
Yo =
Yn-15(K)
yna(K)

The general definition of theouplinghas two special cases which are often of intetesthe
modeler:

- Structured modeatonsisting of several, but uncoupled submodels: The inputs of the
sulmodels do not depend on any output of another submag@l:= hj(u*(t)) resp.
ui(k) = hj(u*(k)). Such submodelsoexist as completely independent units, yet im
plemering them within the same model definition program offersatieantage that
they can be simulated innadlel at once. This might beseful when working with si
milar models, e.qg. to test different model versions of the samesyesiem, or to com
pae a measured time serigm(allel modelwith a simulated trajectory (model).

T48

ModelWorks 2.2 - Theory

- The structured modes composed of hierarchically organizedbmoded (several
levels): An example of such l@erarchicalmodel system is givem Fig. T11 (two
levels). Note however, that ModelWorks ignores thierarchical organization, which
is only of concern to themodeler. ModelWorks treats all models exactly the same
way, regardless of the level on which they are defined.

oy — @W:‘/\

U2 | I M 1 Y11
—N Y.

_I\ Uy Uz | u, X, 22 Y
u* M*

_l/ E ’ "’
Uzq | Y32

g3 ¥3

—/ysl
Fig. T11: Example of a hierarchicallyorganized structured model system

composed of several submodels, which #nemselves structured model systems
consisting of several internally, coupled submodels.

Structuring model systems as defined in Eg. (8a,b or c) requaregarticular calculation
sequencduring simulation which may affect the results in a way which has to be considered
by the modeler. Iparticular it must ensure that all input values are calculated first, i.e. at the
begin of an integration step. Further, the results must be independent of the calculatiaf order
the submodels. This can be guaranteed given that the following conditions are observed:

1. Thecalculationof a model is split into the following three parts:

a) Calculation of thenputvariablesu;(t) for the submodel i: Eq. (8a, b or c)

b) Calculation of the derivatives resp. the new values of stede variables of
the submodel i (integration): Eq. (9a, b, or c)

c) Calculation of th@utputvariablesy;j(t) of the submodel i: Eq. (10a, b, or c)

2. The calculation order is that shown in Fig. T12.

ModelWorksguarantees that the prerequisit under point two is always met, but cannot ensure

that none of the modelguations are misplaced, e.g. that a derivative is calculated in a part re
sewed for the calculation of outputs.

Note also that the calculation order shown in Fig. T12 has a further consequenceciside-
red by the modelertt may affect the precision of the numerical results depending on how the

T49

ModelWorks 2.2 - Theory

equdions are distributed among the continuous-time submodels. Differeqtiations coupled
within a submodel are integrated differently from those coupi@dubmodel boundaries when
using higher order integration methods. Tfast should be considered when subdividing a
madel into several submodels unless the simulationist shrestdct herself to single stepté
graion methods only (s.a. the following example and Fig. T14).

t<t' <t+h
> Initial Output of > Input of : ; > Integration
conditiol T. subsysten subsyster all subsyste >

t:=t+h

Fig. T12: Calculation orderapplied by ModelWorksluring integration. The
larger loop corresponds to a single time step (h = cuineagration step the inner
loop is used only bintegration methods with order > 1 (e.g. Heun, Runge-Kutta
ath'order) (s.a. Fig. T22).

Fig. T12 shows how coupling within a single submodel, i.e. formulatedthin the equation
sedion dynamic, is defined at every point in time, whereas the coupbetyveen submodels,
l.e. formulated within the equation sections outpespectively input, takes place only at the
end points of an integration step. Note also that this phenomenon is differehé&aoupling
between continuous and discrete time submodels, where the coupling is usually happamng
more rare, i.e. only at the coincidence points. They are mostly rfurther apart than the cur
rent size of the integration step h. Both kinds of couplthg, one at the end points of the-dis
crdisation interval h as well as the one at the end pointe@foincidence intervat, are of the
same type, i.e. ModelWorks applies the so-called sample and hold teclisegu@lso below
underSimulation environmerdf the next chaptdfunction$.

Finally a simple example shall illustrate the whole concdsussed in this chapter. The mo

del is a systernonsisting of two ordinary, nonlinear first-order differential equations. First it
shallbe modeled simply and secondly it shall be modeled as a structured model built from
submodels:

Ex.: The following model equations shall be modeled, first within a single model (Eq. 14):

X1= a1 - bxi? - oxaxe
(Model M) 14

X2 = CX1X2 - OXz

This system consists of two ordinary but coupled differential equafitomsilated according to
Eqg. (9a) with neither input nor outpuautonomous system). See Fig. T13a for the relational
diagram of this model system.

Secondly thewo differential equations shall be distributed into two separatdzmoded (15)
respetively (16), which are coupled with each other (Fig. T13b):

Ur=Yyz input according Eq. (8a)
X1= a1 - bxa? - oxaun dynamic according Eq. (9a) (Submodel) (15)
Y1=X1 output according Eg. (10a)

respectively

T50

ModelWorks 2.2 - Theory

U2 =Yy1 input according Eq. (8a)
X2 = CX1X2 - a2 dynamic according Eq. (9a) (Submodel,) (16)
y2=X2 output according Eq. (10a)

Model M

JE—— .
Xl X2
4—

Structured Model System

(a)

y —

N J/

Submodel p1 1| Y2 submodel p2

(b)

Fig. T13: Relational diagrams of a model on¢a) formulated as a single
elementary model M given by Eq. (14) arehce (b) modeled as atructured
model system consisting of tweubmodes py andp, according to the Eq. (15)
and (16).

Both submodels are tifie type continuous time and ca#e) applies with the equations (7.a)
till (11a), but no global inputs nor global outputs are present. Each of siseodels has one
input and one output defineatcording to Eq. (8a) and (10a). These inputs and outputs have
only been introduced in order to couple the two submodels. They fetra@ured model sys
tem, each submodel containing one of the differential equations from Eq. (#&thematically

the structured model system formed with (Es)d (16) is equivalent to the one given by
Eq. (14). However, discretisation errors may result in teample and hold effect described
above (see also below und8mulation environmerdf the next chapter) (Fig. T14).

This is because no information exchange across subripodetiaries takes place during an in
tegration step. Thus coupling among submoaelsurs only at the endpoints of an integration
step (s.a. Fig. T12). In casa higher ordemtegration methods used, the coupling of d#-
rertial equations within a submodel takes place even in the middle of an integratiorH&rpe
simulation results of theontinuous-time part of a structured model might slightly differ for
non-single step integration routingspending on where the modeler has chosen the submodel
bourdaries between the differential equationdowever the smaller the integration step, the
smaler becomes this effect . E.g. in order to make the effect clearly visikdese (ii) of

Fig. T14 has been computed with a rather large integration step of h=0.15.

T51

ModelWorks 2.2 - Theory

T52

0]
1.0] .
.-'r-. "'\-\. K'Ia" }{1h
N A —
..... . f;;h
0.0 _| T T xza.: —T T T T T
0o.o 5.0 0.0 15.0 20.0 23.0 20.0
timea
(i)
1.0]
4 -, 3“51':'
_x'ﬂv\ -
s ! f_;iq;u__h ¥yd .
I S TR
, J&B\?-’_}_‘_{r -\-—"".._"l:l;‘.-""—'-'\- - e
....... - I b
0.0 -I T }?Eb' L T T T T
0.0 5.0 0.0 15.0 20.0 23.0 a0.0
time
Curves Mirnimam M@= i mum Unit
—— x1a prey [variant a) 0. Qa0 27000, 000 #
-—- x2a predator variant a) 0. 000 1200 . 000 #
..... #1b prey [variant b) 0.000 27000, 000 #
........ »2Zb predator Cvariant b) 0. 000 1200 . 000 #

Fig. T14: Simulation results of two mathematically equivalent modatiants a
and b as given by Eq. (14) respectively Eq. (15-16). Resultstained usindi) -

the first orderEuler, (ii) - the second order integration method Heun with
steplength h = 0.15. Although thevo model variants (s.a. Fig. T13) ought to
behave identically, their two implementation variantaiad b yield the same results
only in case(i), but differing ones in casé€ii). This is a consequence of the
calculation order within a simulatiostep (Fig. T12) and the order of the
integration method: In caq@) the informationexchange between submodels is
not so often done for variant b théor variant a, because it takes only place at the
begin of, not during an integration step, XX, - state variables of variamt, Xy,

Xop - Of variant b.

ModelWorks 2.2 - Theory

5 Functions

ModelWorks functions are provided by gsnulation environmentaind are available itwo
ways: First by the simulationist via theser interfacand second by the modeller via tbient
interface(Tutorial Fig. T1). The standard, interactive user interface of ModelWatl®wvs the
simulationist to access the majority of the functions interely. The client interfacallows the
modeller to access all functions, but in a static way, i.e. through the writhg Modula2 pro
gram, typicaly a model definition program (Tutorial Fig. T3). Botiechniques have their uni
gue adlantages and disadvantages and can be freely mixed in any combination.

The simulation environment of ModelWorks provides at run-tineeneeded base and eron
ment to produce model behaviduajectories, e.g. by executing simulation runs, changing pa
ramder values,monitoring settings, or defining sinhation experiments etc. Aimulation run
of ModelWorks corresponds to the numerical solution of an initial value praiifienset of or
dinary differential equations or difference equations alone or inmamgd form (s.a. chaer
Model Formalisn)s In particular note that this means that therentr implementation of Mo
deMWorks does neither provide arelct support for the solutioof boundary value pigdems,
nor patial differential equations, nor doessoffer backward numerical integration. Hence, the
simuation environment provides only one single independent variable, typically the tand,
any model currently installed, regdegsof the installation mechanism, will be solved in func
tion of this variable onl\2

ModelWorks' simulation environment comes ir@gistence as soon as a module iscaked
which doesmport either from modul&imMasteror moduleSimBase or both. All adivities
from the starting of the simulation environment till its quitting are termsichalaion sessiof

The ModelWorksimulation environmentonsists of the following components:

* Model base
* Global parameters and settings
* Simulation run-time system
» Standard user interface
The model basallows to install or deinstall any number of models together wigir madel

objects and all associated data. giebal parameterand settings allow to control the general
propetties ancappearance of the simulation environment, e.g. to specify the time domain of a

SThe moduleSimintegratgseeAppendixsectionDefinition Module$ provides an exception to this rulstume-
rical integration of definite integrals can be computed without affecting the global independent variable.

6Any eventual interruption of aession, e.g. if the simulationist starts to work on something else, hereby
switching the simulation environment into the backgrouadignored and omitted from the simulation
session. This is because such activities will in general not affect theostidte simulation environment.
However, any activity, e.g. executing another modefinition program, also operating on the same
simulation environment, is considered to form part of the same simulation session.algdot©n the
Macintosh under MultiFinder or System 7 the simulation environment will not cease to operatwitttesd
into the background; in case a simulation run is still in execution while the background switch occuns, this
will continue till ModelWorks requires the next input thye simulationist. This feature can be very helpful,
e.g. if a researcher has to execute lengthy simulations sheatoesed to observe interactively; in this case
she can launch a simulation experiment and start writing a paper or analyzietcdafdhe simulation can be
fetched into the foreground anytime to check its progress andtheeareleased into the background again.
Albeit, in background simulations run slower than in foreground, since foreground applicationsigietra
priority and more CPU-timéhan a background process. Of course any number of ModelWorks applications
can coexist in such a fashion.

T53

ModelWorks 2.2 - Theory

simulation experiment or to define the location of windows on a screen. The simulatien
time sysem provides all algorithms needed faumerical integration, model coupling, and
graphics etc. Thetandard user interfagdlows the simulationisto access the typically needed
fundions of the simulation environment interactively (see subch&itaulation Environmeint

If the modeller wishes to give the simulationist access to the standard user interfaselb{see
chaper Stardard User Interfageshe simply atvates the latter by callingrocedureRunSimEn-
vironment(exported by modul8&imMastex. Thestandard user interface may be quit anytime,
even in the middle of aiuation, by the menu comman@uit

ModelWorks allows to extend the ModelWorks' standeser interface with adtonal, user
speific functions, or to use ModelWorks even witrancompletely different user teface (see
sulchapterUser Interfac&€ustomization Since ModelWorks is based on tiialog Ma
chine"themodeller may also access "Dialog Machine'tines herself and mix them with the
funaions proided by ModelWorks. For instance the modeller might want to have an
additionalkind of manitoring not offered by the standard ModelWorks functions. To accom
plish this she may add a nawenu with commands to open a window in whichmsiation
results are to be gtayed in a problem specific graph. E.g. by drawinlin@ chart of the pro
gress of a pamder identification inthe parameter spacecawmling to the current Maes of the
performance idex or to draw the age pyramid of an ageictured population during thensi
lation of its pgulation dynamics (s.a. chapt&le Models theAppendiy.

Theclient interface must be used to define, i.e. to declare, the models, the model objects, the
madel equations, and the default values for all objects so thatuihdime system of Mie}
Works may access and maintain them (Tutorial Fig. T2). It is importante that Model
Works does only know about those objects which have been made known to\vithigh have
been explicitly declared by means of one of the following proceduoes moduleSimBase
DecIM DeclSV DeclP or DeclMV (see subhapterModel Basg Othewise MalelWorks
does not care what the modeller is doing with thaigects, nor whéher they are wolved in a
conplex struture or operation. Fdnstance a state variable might be part of a stined data
type such aa Modula2 record or an array or might be computed by firdtieeing input va
lues from a data base. On the other hand it is also important to understaviodblYorks
will operate on model objects, i.e. will repeatedly access their values. & dghe bgin of a si
mulation run MdeWorks assigns automatically thetiali valuesto all state vaiabdes or up
dates the values of state variables duting simulation by assigning to them theuks of nu
meical integraions (see sectioklodel objects and the run-time systenin order to use Mo
delWorks meangfully it is therefore necessatliat the modeller obeys a minum nuniber of
rules, so that MdeWorks and the modeller use and access model objects in harmony.

5.1 Simulation Environment

5.1.1 STATES OF THE SIMULATION ENVIRONMENT

During a simulation session the simulation environment is aheajs in one of four states:
No model, No simulation Simulating or Pause(Fig. T15). States reflect what basic opera
tions have been performed on the simulation environment and may also detienavaiabili-
ty of cetain conmands or functions.

In the stateNo model the simulation environment's modbhse is empty, i.e. no model has
been installed. As a consequence any commands such as theananandSettings/Reset:

All model's parameterd thestandard user interface are disabled; similarly a call to procedure
ResetAllParameterdrom moduleSimBasgis without any effect. Only if deast one model is
installed, the simulation emronment is set to the staléo simulationwhere allfunctions rqui-

ring at least one model as a goaditionsuch as the changing of model and model objddt at
butes beome possible. The stalo simulationserves the starting of simulations and ipity
caly used to change settings or values such as initial values, npadeheters etc. In the state
Simuating, i.e. once a simulation run has been startéke functions with the ptertial to

T54

ModelWorks 2.2 - Theory

conflict with the running simulation, e.g. changing the simulation start tigeesp. K,
produce a slightly different result. In the st®®usethe smulation is temporarily brought to a
halt, for instance to allow for a closergpetion of the smuation results (Fig. T15).

No model
Declaration Removal of
of first model last model
A

No simulation |

7\

Stop (Kill) rur Starlt run S}Op (Kill) rur Stop (:(ill) run
or StOE)Run or SimRun or StopRun or StoIpRun
or Stop time reached or Stoptime reached (0 model)
or Termlination or Termination condition true
condition trule (0 model) (=1 model)

- - alt run (Pausegr PauseRun
Simulating Pause

Resume rumr ResumeRun

Fig. T15: Statetransition digram of the simulation environment of ModelWorks
when executing elementagimulation runs. The states aréNlo model - when
there is no model preserlo simulation- whenthere has been at least one model
declared, but no simulation is runningt, Simuating - simdation is running, and
Pause- running simulation has been temporarily halted. The standgsed inter
face reflects these states by thalding or disabling ofcommands accordingly
(s.a. Fig. T24). The transitions controlled bihe simulationist are labelled with
the bold texof the corresponding menu camands of the standard user interface,
e.g. Start run . The trarsitions under the cdrol of the modeller are labelled with
plain style procedure idéfiers, e.g. PauseRun.

Since the effectiveness of certain functions may depend on the cstagmtof the simulation
ervironment, the standard user interface adjusts accordingly: Fig. T24 illustiateshich
state which menu comands are enabled (black) or disaklgidimed) and which so-called 1O
windows are active (black title bar), i.e. respond to mouse clicks, or are inactive (greypdéitje

i.e. do not respond to any mouse clicks. The fact that certain fundi@nsnly available in
cetain states could be perceived as an undesirable limitatimwever, they have been merely
introduced because ¢am commands are meaningful only in particular stated@edsure ma
ximum consistency. For instance, tbemmand to stop a simulation is meaningless if there is
currently no simulatiorrun in progress; thus the standard user interface offers this function
only in the stateSimuating or Pause For more information on this topic see the sec8tetes

of the standard user interface

Transitions from one state another are accomplished in several ways: First most transitions
are caused by the simulationist who chooses particular menu commandssstise of the
menuSolveavailable inthe standard user interface (Fig. T15). Secondly, as programmed by
themodeller, procedures lik&SstopRunfrom moduleSimMasterare called. Thirdly Model
Works causes transitions by itself, for instance when leavingthieSimulatingdue to one of
the folowing two reasons: The simulation time has reachedtibe time, or the terminate cen
dition provided by the modeller returns true. Note that ihiplies that state transitions are-un
der the cotrol of three masters: the simulationist, the modeller, and/orMuglelWorks soft
ware. For infance in the standard user interface the following state transarensinder the
cortrol of the smulationist (Fig. T15, T2New4): In the stateBlo model and No simulation

the menu comandStart run in stateSimulatingStop (kill) rury in statePauseResume runor

T55

ModelWorks 2.2 - Theory

Stop (kill) run All these transitionsnay also be cdrolled by the modeller via calls to the
following proceduresSimRun StopRun Paus®un and ResumeRun In case of mudiple,
conflicting control the simulationist has the highest gy followed by the programmindyy
the modeller, and lowest priority has the ModelWorks run-time syskernany request to stop
the simulation will lead to a termination of the run as soon as the cumtegtation step has
been completed.

No model -
Removal of Declaration of
1 1
last model first model
Experiment finished No simulati Experiment finished
1 .
(0 model) | | 0 simufation (0 model)
Start experimer Experimenlt
or SimExperiment finished(=1 model)
Simulating
No run Stopped
A A~
Stop (Kill) rur Stop (Kill) experiment
1 yd 1
or StopRun SimRun or StopExperiment
1
or Stop time reached

[
or Termination
condition true

Halt run| (Pause)

- or PaugeRun
Running Pause

Resunne run
or ResumeRun

Fig. T16: Stateransition digram of the simulation environment of ModelWorks
when executingstructured simulatiomuns experiments). The main states are the
same as the ones shown in Fig 15. However, ttateSimulatingmust still be
split into three further sub-state®o run, Running and Stopped The substate

No run allows the modeller inhe middle of an experiment to modify values as
fredy as in the statdNo simulation In the substateRunninga few functions
which might disturb the ongoing simulation are no longer possibiethe substate
Stoppedanyattempt to execute more runs are ignored (see Fig. T15 for the mea
ning of the labels of the transitions).

When programmingtrudured simuléions (exgriments) (see subchapteérogramming Struc
tured SimulationgExperiments)the stateSimulatingis split irto three further sub-states:
No run, Running and StoppedFig. T16). Whenever procedur8imRunfrom moduleSim-
Masteris exeuted, thesimulation environment is in substa®unning in the remainder of the
experiment proedure it is in the substalo run (unless the experiment has been stopped).
The substatélo run has been introduced &tlow the modeller in the middle of an @ximent

to modify values like glbal smuation paameters, e.g. the simulation start tigg as freely as

in the statédNo simulation For instance to simulate in a row an agroecosystem model during
several, by thewinter separated growing seasons requires to set the next time dogitajp [t
between two corsecutive smuation runs. But the simulation start timgcein't be seto a vdue
bigger than the current time t, since this would require the simulation time to jumplafiéeis
only possible in the substatilo run, which is in contrast to theubstateRunningless resicti-

ve, a behaviour which may be sertial for structured simulations.

T56

ModelWorks 2.2 - Theory

The substat&topedis reached if the experiment has been stopped andusequent runs
are to be suppressed.

The following typical transitionsake place in experiments which are executed from within the
stardard user interface or by a ctil procedureSimExperimenfrom SimMaster Once the si
muationist has chosen the menu comm&audve/Start eperimentthis causes the simulation
environment to enter the main steéd@mulatingplus the sustateNo run (Fig. T16). As soon
the proceureSimRunis called fromwithin the pracedure DoExperimentthe substatéNo run

is left and MdeWorks enters the subst&anning If a simulation run is finished, either be
cause the modeller has callgtbpRun the simuldion time has reached the stop time tloe ter
mination condition has returned true, the stateRunningis left and the substaldo run is re
enteredFig. T16). Once all simulation runs have been completed and the end of pleg-ex
ment procedurbas been reached, the main stilie simulationis resumed again unless there
should all models have been removed,; in the latter case thé\siateodel is resumed instead.

In case the simulationist chooses from within st@ndard user interface the menu command
Solve/Stop (Kill) experimenor the modeller callStopExperimenfrom SimMaster the sub
stateStoppeds entered. In substate&Stoppedthe modeller can program a final analysis of the
experiment or perform any other house-keepagks similar to the possibilities in the stdte
No run. Note that in substatstoppedviodelWorks will stillexecute all reaining statements,
includingeventual calls to procedui®mRun i.e. till the procedureExpaimentis actually fi
nished. However, no more integration and mimning will take place. This is because Me}
Works empties the body of the proced8maRun so that the struared simulation will temi-
nate without any further computations by the run-time systdine simple Botean function
procedureExperimentRunnin@nd ExperimentAbortedrom moduleSimMasterallow to de
temine whether the mauationist has started respectively aborted an experiment. allows

the modelletto program structured simulations accordingly, e.g. to exit from a loopngal
SimRun as soon ag&xperimentAbortedeturns true (s.a. subchaptérogrammingStructured
Simuations (Experiments)and in theAppendixthesample models demonstratiigjochastic
Simulationssuch asMarkovor StochLogGrow.

Thefirst group of procedures causing state transitions, SRunand SimExperimenfrom
maduleSimMasterkeep the program control during theihole execution. As long as one of
these procedures éxecuting the simulation environment is either in the sHeulatingor in
the statd?ause Note, the second group of state transition causing proceduresStopRun
StoExperiment PauseRunand ResumeRurfirom moduleSimMastersetonly a semaphore,
i.e. they inform only ModelWorks run-time system aboutwish, that a state transition ought
to happen as soon as possible. This technique allows ModelWorks to cdimgtietersistent

ly an eventually already started integration step before actuaking the transition. As a rule
follows that the modeller's program calling onetbé semaphore settings procedures should
immediately relinquish control and retuiinto the "Dialog Machine". In particular nat@npts
should be made to call another procedure causing a state transitns.will allow the first
transition to atually take place. For instance it is not possible to execute the statemeaite

... StopRun; SimRun; ...successfully because of the following reasons: Hingt call to
StopRunsignalsto the run-time system to stop the run; but, this has only tecttebn the
semaphore and the program has not yet returned from pro&icduRein The latter coulanly
happen if the program control would badinquished immediately after callirfgtodRun, which

is of course not the caseSimRunis subsequently called. MoreovBimRundisallowsany
recursive calls to itself. Hence the subsequent caBitnRunwill be without any effect and no
new simulation run can be started by such a method.

The modeller can request be irfformed about all state changes by installing a state change
hander (sednstallStateChangeSignalifiggm moduleSimMasterand for an example the sub
chaper User Interface Coamizatiof). Whenever the sauation environment changes sub
states, the istaled state change handler will also be called. The currentcdatéhen be iqui-

red by the modeller via theient inter-face by calling the poedure GetMWStatdrom malule
SimMaster The sulstates can be inquireth procedure GeMWSulState Sulstates are only
ddined while an epaiment is executing, hendBeMWSulStatereturns othavise alwaysno-
SulbState(note the latter is also the case if thpedment has been tgrorarily paused).

T57

ModelWorks 2.2 - Theory

5.1.2 MODEL BASE

5.1.2.a Model and model object installation and removal

ModelWorks allows to install or deinstall any number of models and mbgklts at any time.
The actual limitations are not inherent in the software but are only given by the avaiape-
ter resources, i.e. the crently available heap space atie& computing power needed tome
rically solve the modlls.

Every model definition program imports either from mod8ienMasteror SimBaseand calls
themodel base of the simulation environment into existence. Initially there are no models in
staled in this base and the simulation environment resides in the\stateodel. Typically the
adual definition of the models andodel objects are contained in the body of declaring proce
dures. The procedure containing the call(s) to procedacdMfrom moduleSimBaseis often
either exeuted as one of the first statements inlibdy of the model definition program or-in
directly exeuted by passing it as thetual argument to procedurnSimEnvironmenfT uto-

rial Fig. T3). Any successful call to procedui2ecIMfrom moduleSimBasewhile no smua-

tion is running will result in a state tramion from stateNo model to stateNo simulation
(given the anulation environment should notrahdy be in the statdo simulation). If a
simulation is runing a successful calio DeclM will cause no state transition until the
simulation is ended. Then the simulation environment will emiter appropriate state, i.e.
No model or No simuation, depending whether the model base contaihkast one model or
none (Fig. T15, T16).

Models ananodel objects can also be declared or removed in the Siiaiglatingeven in the
middle of a simulation run (including subst&anning Fig. T15, T16). In the latter case ap
ply a few rules, which are slightly different from the effect of a declaration outside Siatda-
ting (see sectioManipulating the model baserah-timg. They ensure the consistency of the
madel base and all associated data during the whole simulation session.

Removing a model implies always the removal of all its model objects together with afladls
data associated with this model andabgects.

ModelWorks' standardser interface provides no means to install and remove models; hence,
once installed, neither the number of models nor that of the model obgttse changed with

out quitting first thisuser interface (Fig. T18). However, it is possible to extend the user in
terface by menu commands, which support the dynad@clarationand theremoving of
modeb and model gécts. If theproceduresDeclM resp. RemoveMare called from within
procedureswhich are attached to some additional menu commands, the simulationist gets the
power to install and remove models dynamicglya. subchaptetser Interface Customization
andin theAppendixthe research sample modé8M). For instance in its simulation session
the RAMSES shell does providenzechanism, which allows to load and unload models, in
form of individual model definition programs, which may be even called on top of each other.

5.1.2.b_ Current values

To allow the simulationist for iteractive experimentation with niels, model objects, and the
globalsettings of the snulation environment, ModelWorks provides for all these data scratch
copies which may be manipulated freely. For instancesthedard user interfacel@ks her to
manipulate nobnly the monitoing, but also the cuent global settings such as wliow pcsi-
tions, and numerical values or attributes of the models and the model objecthegdl data are
caledcurrent valus. Any nunaical integration works with the current values only.

Current values can either be interactively chanfyedh within the standard user interface by
means of the mouse (e.g. window positions), meammmands, entry forms, and [O-windows
or via the client interface by calling procedures sucBetS\, SetPetc. from module&SimBase
Changes can also be made in the middlea cfmulation run (iluding substateRunning
Fig. T15, T16). In the latter case qby a few rules, which are sligly different fromthe effect

T58

ModelWorks 2.2 - Theory

of a change outside stag&imuating (see se@n Manipulating the model base at run-lime
They ensure the consistency of the curreties during the whole simulation session.

In particular from within the standard user interface in the stdtemodel or No simulation
modifications are possible for the lfmling setings and pameter values:

- Global parameters and settin@(model andNo simulation:

start (/) and stop {t,{Ks) time for simulation runs

 integration steprespectively maximum integration step (i) plus maximum
relative local error (g8

 discrete time step or coincidence intervaP(c)

« monitoring interval(h,,)

» project descriptioronsisting of a title, remark, and footer string plus parame
ters which control the displagf strings in the graph respectively the recording

of information on models, model objects atathle functions together with their
current values and settings on the stash file (recording flags)

» stash-file name, type, and creator
* Window positions and arrangements

- Model specific attributeg\(o simulation:
* integration method

- Modelobjects specific attribute®6 simulation:

 initial values of state variables
» values ofmodel parameter
» kind of monitoring, scaling, and curve attributes fimonitorable variable

In addition ModelWorks offers a versatilesetmechanism which allows to reset any settings
or parameters which may have been modifiedrdythe simulation sessidyy the simulationist

or via the client interface by the rdel definition program. The values or settingswhich Mo
deWorks resets are the so-callddault values, either originally specified by theodeller or
later by a call to a procedure redefining defaults via the client interfibes allows the snua-
tionist within the standard user interface ttura any time to avell defined state of all pame

ters and settings, regardless of tegree to which they have been manipulated (see section
Pralefinitions, defaults, and resettijg

5.1.2.c Predefinitions, defaults, and resetting

ModelWorks maintains for the global parameters and settings and for atbdédaed in its
maodel base two copies: One is thiefaultvalue, the other is thecumrent value (s.a. section
Current valuesrig. T17). Two copies exist for the following kind of data:

- Global parameters and settings
» global simulation parametergi,, tondKs, hpax €1 C iy
» project description and recording flags
» stash-file name, type, and creator
* Window positions and arrangements

7 Interactively via the standard user interface only if at least one continuous time (sub)model is present

8 Interactively via the standard user interface only if at least one continuous time (sub)modeVavitible step
length integration method is present

9 Interactively via the standard user interface only if at least one discrete time (sub)model is present

T59

ModelWorks 2.2 - Theory

- Model and model object specific attributes
* integration method

 initial values of state variables
» values of model parameters
» kind of monitoring, scaling, and curve attributes for monitorable variables

. E.g.
Assignments
to tend
MW -_—
Defaults from
Model Works
Defaults
to tend ...
M > 0.0 100.0
Defaults from Po *0 - 10800 2000.0)
Client or Set - | | I ' '
Model Definition
MW/S/M
Reset 1989.0 2000.0
Assigns Defaults
to current values
Current values
MW/S/M to tend .- pO 0 ...
. - 2]
Editor Set |« = [[||| | 20000 21000
Modify Current values
MW/M
Simulations -
1) by calling SetDefltGlobSimPars (1989.0, 2000.0,)
MW by Model Works 2) by calling SetGlobSimPars (2000.0, 2100.0,) or
S by Simulationist by menu command Set global simulation parametander
M by Modeller menu Settingsof the standard user interface

Fig. T17: Relationship betweedefault and current values and thesetmecha
nism of ModelWorks. ModelWorks maintains for most vatuescopies: One is
the default, the second is tlearrent value, which is actually used for simulations.
Some defaults, for instance for the gloahulation parameters, are predefined by
ModelWorks, others such as those for model objectsoale specified by the
modeller. Duing a resetalso executed at program start up, théad# values are
assigned to the current values. Interactive miodations(editing) of values from
within the stadard user interface affect only the currentues. Via the client
interface it is possible to change the defaults as well as thentwalues.

Themodeller is forced by the client interface to specify defaults for all models and medel ob
jects. Theyare the values passed to ModelWorks while declaring the particy&tab E.g.

the value 0.1 is the default of tmeodel parametecl This requires that the modeller declares
the parametecl with the following call: DeclP(c1,0.1, ... ModelWorks will keep a copwf

the object's default value in order to be able to reassign it to the currard ifed resets re
guesed by the simulationist. Choosing a menu command as@ettings/Reset all model's
paameterdromthe standard user interface or calling procedResetAllParameteffsom mo
duleSimBasen a simulatiorsesion while running above example will thensagn 0.1 to the
variablec1 (Fig. T17) regardess of what the value afl currentlymight be.

T60

ModelWorks 2.2 - Theory

Symbol|| Meaning of parameter or variable Predefined default
Global simulation parameters
to/koy |[Start time for simulation 0.0
tandKf |[Stop time for simulation 100.0
h/hmax [|Fixed integration step or maximum integration step
for continuous time (sub)models 0.05
& Maximum relative local integration error 0.001
c Discrete time step for discrete time (sub)models or
coincidence interval for mixed time structured models 1
Pm Monitoring interval 0.25
Descriptor, identifier, and unit for independent variable "time" "t* ""
Project description
Project title string
Use project title string in graph TRUE
Remarks string
Use remarks string in graph TRUE

Footer string

"dd/mon/yyyy hh:mm Run 110

Automatic update of date, time, and run # in footer TRUE
Recording of data about models in stash file TRUE
Recording of data about state variables in stash file FALSE
Recording of data about model parameters in stash file FALSE
Recording of data about monitorable variables in stash fil¢ TRUE
Recording of graph in stash file FALSE
Recording of table functions in stash file FALSE
Stash filing
Stash file name ModelWorks.DAT11
Macintosh file type and creator (signature) actually determjned
by module DMFiles' default from the "Dialog Machine"
file type e.g. TEXT
creator e.g. ' MEDT'
Automatic definition of curve attributes Predefined value
colours and line-styles iMOD 4 = 12
(0] coal unbroken
1 ruby broken
2 emerald dashSpotted
3: turquoise spotted
i =
symbols 4: o 5: *
6: o] 7:
else ""

Tab. T1: Predefined defaudt Unless overwritten by thenodeller, ModelWorks asgns the
given default valueso the listed parameters. For the defaults of models artklinobjects,
the modeller is forced to specify them while declaring the models anddtel ofects in the
maodel defintion program. Predefined values can not be overwritten by the modeller.

10The abbreviations stand for: dd - current day, e.g. 01 for the first daynafnth; mon - current month, e.g.
Jan for January; yyyy - current year, e.g. 1989; hh - current hou?2efgr 10 pm; mm - current minute,
e.g. 04 in 10:04 pm

110n the IBM POVIODELWOR.DAT Will be created in the folder where the application resides, which has
started the model definition program respectively on the IBM PC in the current working directory.

T61

ModelWorks 2.2 - Theory

Interactive modifications of values from within the standard simulagaomironment by using
entry forms or the 10-windows affect always only th@&rent values, not the defaults. Calling
aresetfunction from ModelWorks will then reassign the default valuethéocurrent values.
All current values affected by the reset, e.g. ialkial values of a particular model, will then be
set to their defaults as have been defined latest via the client interface (Fig. T17).

Resets can be executed for particular classes of data. Resets may affesirmgily mnodel ob
ject, all objects of a single model, or all objects of mlbdels (s.a. Fig. T26). Furthermore re
sets can be executed for a particular class of mogsttstonly, e.g. onlywindows or only the
curve attributes of mmitoralde variables. The declaration of a model or model objelttal -
ways result in an implicit assignment of the default to the current value, i.e. an individual reset.

Generally defaults are defined by two mechanisms, but alwaythealient interface or a nen
stardard user interface only: The first mechanism is provigethe declaration of models and
madel objects; all these defaults are providedt®y modeller only and belong to the individual
madel or model object only. The second mechanism is useallfglobal parameters of the-si
mulation ervironment; these defaults are not necessarily provided by the modeller, heace Mo
deWorks preoides them in form ofpredefined defaultsor the so-calledpredefinitions
(Fig. T17). Thus, whenever the simulation environmeminters the statBlo model, Model-
Works assigns to eveglobal simuation parameterthe project desription, or the stash file
name the appropriafreddinitions (Tab. T1). Then the model dmition program may over
write these prddinitions with defaults preferred by the modeller, i.she callsSetDeflkyz
procedures.

E.g. does ModelWorks use a predefirdedault simulation start and simulation stop time of
t, = 0.0 respectively t,,y= 100.0. If the modeller wishes to use a dérent defaulsimulation
time range, she calls the procediBetDefltGlobSimParérom moduleSimBaseto define it,
e.g. with the statement:

SetDefltGlobSimPars (1989.0, 2000.0,...)

typically in the procedureitSimEny, which is passed as actuafgument to procedur@un
SimEnvironment

When exeuting RunSimEnvironmenior thefirst time (see also sectidnitidizaion of the si

mulation environment ModelWorks assigns automatically alffadts, either preided by Me

deWorks in form of predefinitions or overwritten by the modeller as h&ulis, tothe current
values (Fig. T17, T18). Such an aggnment is called &ll resef correponding to aall to

procedureResetAllfrom moduleSimBase

Via the client interface or a non-standard user interface defaults cadrabged always, even
during a simulation run (s.a. sectidfanipulating the model baaerun-timg Note however,
that such changes will not become effective until a corresponding reset is actually executed.

Unless curve attributes are assigned to the monitorable variables eithectinédr by changing

the current curve attributes in the monitorable variable window ottivéaclient interface by cal
ling the procedureSetCurveAttributesForMér SetDefltCurveAttributesForMWodelWorks
adopts the so-called automatic definition of curve attributes. It has been desighataoves
can be optimally told apart on blaakd white as well as colour devices, such as monochrome
or colour screens, on laser printers or on colour ribbon matrix printers, onrstideders, plot

ters etc. However, this has the disadvantage that fpaiicular monitorable variable the curve
atributes may change too often, i.e. as soon as the automatie attribute of another, pre
viously activated monitorable variable is changet@o avoid the latter, the user has to override
the atomatic definition. Note thathe curve attributes assigned by the automatic definition are
preddined by ModelWorks only and can not be changed by the idedelWorks uses the
values lised in Tab. T1. Attributes are distributed according to the positionthe sequence
which the monitorable variables have been activated for graphical monitoring.

12jis the order of activation of the monitorable variables, the first variable's value i = 0.

T62

ModelWorks 2.2 - Theory

5.1.2.d_Initialization of the simulation environment

Thesimulation sessiogonsists of all activities done by means of firaulation ewmironment
during the existence of the importing module, e.gnadel definition prgram. Intially the st

mulation environment is in statdo model (Fig. T15, T16) and all prelefinitions areassigned.
The simulation environment is now ready to accept model declarations (Fig. T18).

r ~
Samulalion session *

| Assignrmert of predefined values |

I T 2 v

| heru Iristallation |

| Execution o procedure i gmant |

| FReseall & Suwdiaptisctine |
S |

: Drefine sitmu- &
: lation envdror- 2
: mert i

Fig. T18: Flow chart of thanitialization of the simulation environment by a typi
cal model definition program using the ModelWaskandard user interface by a
call to procedurecRunSimEnvironment Unless déults are later change@nly
possiblevia the client interface), the stdiard user interface allows to fully reset a
simuation session's model base to thegimal start-up conditions (s.a. Fig. T17).

largument passed in call to procedRanSimEnvironment

The first successful modetistallation by means of proceduBecIM from moduleSimBase
will bring the simulationenvironment into the statBlo simulation and ModelWorks is now
ready to perform simulations, e.g. by a call to procedsm®Runfrom moduleSimMaster

Typical model definition programs will ugee standard interactive user interface by calling af
ter themodel declarations procedurRunSimEnvironmentrom moduleSimMaster RunSim-
Environmenwill first install the standard user interface, e.g. its menu bar, tah execute the
proceduranitSimEnvwhich has been passed as its actual argument. Then it peddutise-
set corresponding to a call of proced®esetAll from moduleSimBase(Fig. T18). Hence,
the best place to define defaults different figlodelWorks predétitions, e.g. for the snua
tion time, or to extend the user interface, e.g. by installarg adlitional menu, is within prae
dureinitSImEnv. The subsequently executed, automatic full reset ensures thatrahtwalues
to be used ding the subsequent simulation session have exactly the valuesirzsddsy all
defaults (s.a. chapr Predefinitions,defaults, and resing). Finally RunSimEnvironment
calls procedurdRurDialogMachinefrom module DMMaster (FISCHLIN, 1986a,b; KELLER,
1989). Note that the lar will then call implicitly any eventuallyinstaled simulation
environment definition proeduredefineSimEnvsee procedurimstallDefSimEnvfrom module
SimMaste), before remleing corrol to the simulationist. defineSimEnvallows to customize

T63

ModelWorks 2.2 - Theory

the interactive snuation ewironment, e.g. by reading data from a file (sé@pendix e.g.
sample modeSwissPop or opening an additional window, once the "[nig Machine" has
started to run the standard user interface.

Note that as long as the simulatiomemains within the standard simulation environment of
ModeMWorks, a full reset resumes the initial progratate which existed at start-up time. This
IS because, in contrast to the client interface, it is not possiblecess and modify defaults via
the standard user interface. However, if the modeller, by usingctient inteface, has pre
grammed extensions (see subchapieer Interfac€ustomizatiopy which allow to change in
teradively also the dfaults, the reset mehanisms provided by ModelWorks will no longgua
rartee the snuationist to resume thisitial start-up condition. Instead the state as defined by
the last deault specifcaions will be resumed. Note however, the cliecdn install a simulation
ernvironment déinition proceduredefineSimEnv(see proedurdnstallDefSimEnvfrom module
SimMager), which allows to implement this funtiondity: Since ModelWorks will not callie
fineSimEnvas part of the menu conandSettings/Reset all aboveor of the procedurBeset

All; the intial start-up conditions aresamed exactlyf defineSimEnvfirst sets resp. reassigns
all defaults, regardless of their evenal mdification, and thencalls procedureResetAll from
maoduleSimBase The smuationist can then resume exact initial start-up condition by simply
choaing the menu commargkettings/Define simulation environment

5.1.3 SIMULATIONS AND THE RUN-TIME SYSTEM

After successfuinstallation of a model by means of procedDecIMfrom moduleSimBase
the simulation environment enters stle simulation Eventuallyopen 10-windows will then
display the new information, current settings and values of all model(s) and all modgisteb

Once in stat®&o simulation from within the standard user interface the simulatiohis$ the
choice either to change interactively any settings or to start immedatsiyulation with the
predefined default values. THatter is possible without any further action, since the client in
teface has been designed such that the modekahrted to provide all needed valuegjue
red to déne fully the initial value problem of a ModelWorks simulation run.

Simulations may be repeated with the same sahodlels as many times the simulationist
wishes, but otherwise there are no relationships to osirauldion tasks within the same or
different simulation sessiondn particular ModelWorks does not support any communication
of datafrom a simulation session to another one except for the simulation results contained in
the stash file. Neither does the current version of ModelWorks support the direct afatthiag

stash file. However, itis possible to construct a particular model which reads a stash file and
declares the models and model objects neededpgosasimulation analysis. The postrsia-

tion analysis session of the RAMSES shell provides such a mechanism. Modelhiaks

data onto the stash file according to a syntax particularly designed for this purpose.

There hold certain relationships among the tasks which are performdddsiWorks during a
simuation session (Fig. T18,T19, and T21). Tasks such as elementary or structured simula
tion runs or resets can be executed in any ostane tasks such as simulation runs are nested
(compareFigs. T19 and T21) and thus belong to a particular, hierarchicalie The simula

tion session mesents the topmost level of all simulation tasks (Fig. T18), the newer level

is the experiment or structured simulation run (Fig. T21), on the next lower lesgides the
elanertary simulation run (Fig. T19), and on the lowest level the integration step (Fig. T22).

5.1.3.a Elementary simulation run

An elementarysimulation run can be accessed by the simulationist directly withouiggo
through the exp@ment level. Otherwise this level is the next levadlow the level of the struc
tured simulation (this level could also baderstood as a structured simulation with k=1; com
pare Figs. T19 and T21). ModelWorks supports this level lmuieng the modelleto specify
for each model amitialize andterminatg@rocedure. The genizaion ofan elementary siua
tion run is shown in Fig. T19 and in more detaifs Fig. T20. The mechanism to execute-in

T64

ModelWorks 2.2 - Theory

teractively an elementargimulaion runis providedby ModeWorks standard user interface by
the menu comandStart rununder menolveand has not to be pyammed bythe modeller.
Yet, choosing this menu command has exactly the saffext as the execution of procedure
SimRunfrom moduleSimMaster

[N

®

Samulalion run

Iritializ e run

" i Cukput, Input
Crmarnic

—

Ternirate run

- ~/

Fig. T19: Flow chart of the elementary simtilan runconsisting of the run itie-
lization (proceduraitialize), the section dynamicoutput input dynamig¢, andthe
runtermination ferminatg The dynamic section is executed an arbitrary number
of timesi, which depends on the chosen time step and the simulation time.

Normally ModelWorks will executtor every model thenitialize procedures once at the begin

and theTeminateprocedures once at the end of the simulation run. If a model is declared or

removedduring a running simulation, these procedures are called at declaration nespalre
time (for exact moments of execution see Tab. THNote that the execution of thgitialize
procedures happens at a moment wherd&orks has already assigned the initial valtes
all state variables. This design makes it possible to overwrite the valssigned by Model
Works with other vlues or tause these values for calculations. A typical uséntfalize and
teminateprocedures is the opening and slog of a file at the begin respectivedy the end of a
simuation run in oder to write simiation results onto a file different from the stash file.

Note also that in contrast to the procedmtSimEnv passed tdModelWorks as actual argu
ment in the call to proceduRUNSIMEnNvironmenit is called onlyonce), the procedureisitia-
lize and terminatmay be called many, i.e. k, timeduring a simulation session (Fig. T19).
The actual number depends on how many times the simulationist ssartdaion run directly
(or via an experiment, see below) and is not known to the modeller.

Whenever ModelWorks caltéient procedures such as procedundsalize or terminatefrom

several models, the calling sequence is the same as the declaration order of the owning models.

5.1.3.b_ Structured simulation (Experiment)

A structured simulation or experiment can be launched by the simulationist from within the

stardard user interface by choosing the menmmandStart expementunder menwusolve

T65

ModelWorks 2.2 - Theory

Exacty the same result is obtained by a call to proce&uregExperimenfrom moduleSimMas
ter. The experiment level is theext level below that of the simulation session (Fig. T21). A
structured snuation works similar to an elementary simulation run but diffeightly in the
following aspects: Bsically it is aprocedure programmed by the modeller; ¢atly it calls
several elementargimuation runs by calling the procedugmRunfrom moduleSimMagder.
Since it is inplemerted as alient procedurewhere the modeller has anyway mdady full
control, ModelWorks offers no specific support for initialization and termingiiooedures for
expaiments (Fig. T21).

Sitnulation nin

| Inmal nifaliza fon |

Inifialization secian | Inifaliza fon o fstak varabk s |

I Clien tin tialization peo cedure 5 I

Startconsisency check

Tue

| Client0wou tpm e e s |

| Client!ngut pro cedure s |

= - 2
[_] Clien tDynamic proce dires |

MTRAIIZa 1ot o7 5Ll G AN Fg or
IntEgraﬁunIDDp shndard manitmg procedure 5

nializaton o7 clentmonronng or
clientmoniirng proce o res

| Updak of sk variables |

hlse
Start consisency checl

Simukion
killed or Stop ime reached or
Teminaion condfon
tue

n

AN
| Clienttermnafon proce dutes |

I_V_I_}Iél_rlenmna 0T RN TmOnT g
lermination section
I GLILE] nfs!naaﬁmnmﬁnng I

| Inkmal grminafon |

Fig. T20: Flow chart of an elementargimulation runas performed byodel
Works. A run consists of three basic steps: initialization, integration loop, and
temination. Each step calls model specific procedures (s.a. Fig. T19).

Structured simulations are optional and have to be installed first by the modeller igette
intefface before they can be executed by the simulationist fratimn the standard user
interface. The corresponding menu command is only enabled if an experiment has actually
been declared. If several subprogram levels are stacked on top of each{scghesection
Multiple activations of the standard user interfagach level can instalts specific experiment.

The standarduser iterface supports the separate execution of each level's experiment by
installing for each level a parate menu command.

T 66

ModelWorks 2.2 - Theory

The simulationist can execute experiments an arbitrary number of times n (FigA2&iudu-
red simuléion callselementary simulation runs k times, i.e. structured simulations are only of
some inteest if k > 1. The total number of simulation runs then becomér k

s N

e

Structured sim ulati on [Experim ant)

!

Iniialize experment

Smouabion run

Iritialize run

Cukpk, Input
Dyramic

=

Termirate run

Termnirate experimert

\. »

Fig. T21: Flow chart of a ModelWorks structured simulatiar experiment:
From within the standard user interface the simulationist may execwerary
numbern of strudured simulation runs. A structured simulatigexperiment)
consists gelf again of a fixed or also a varialslamberk of elementary simutan
runs, i.e. calls to procedureSimRun as programmed by thenodeller (s.a.
Fig. T19).

The main state of ModelWorks during a structured simulation is al8iaygatingand thesub-
state is always different fromoSubStat€Fig. T16). Normally the environment switchesnly
beween the two substatédo run andRunning The substat®&o run (outsideexecution of
procedure SimRun) resembles the main stat simulation and allows to modify most data
and settings frdg. The substat®unningrepresents the actual stat®irfiulating” (during exe
cution of praedureSimRur) and offers aomewhat restricted modifying access to thauk-
tion ewvironment's data and nuel base (see sectidtanipulating the model base at run-jime

If an experiment is stopped by the simulationist e.g. by chodsamg within the standard user
interface the menu commasalve/Stop(Kill) experimentor by calling procedur&toExperi-
mentModeWorks reaches the subst&®pped Not only the currently running eleray
simulation is terrmaed but also all subsequently eventually following runs are "skipp®#tt-
deWorks accomplishes this by emptying the body of the proc&imBunfrom moduleSim:

T67

ModelWorks 2.2 - Theory

Master hereby avoidingthe use of hardware dependent interrupts. This meansieMtorks
does not actually interrupt the experimpricedure, but allows it to reach its end asgreon
med by the modeller. The latter should make sure thaptbtedure may terminate even if the
body of procedur&imRundoes ndonger execute any statements. For furthernalls see
subchapteProgramming Structured Simulations (Experiments)

5.1.3.c_Integration respectively time step

The integratioror time step resides at thmvest level of all simulation tasks. ModelWorks
supports this level by iiring the modeller to specify for each modelimput output anddy-
namic client procedure ModelWorks will execute for every model toeitput input and dyna
mic proceduresduring every integration step at least once. Qhipamicmay be called from
once up to times the @er of the model'sntegration methodluring a singlantegration step.
Note also that iwortrast to the procedurasitialize andterminatgwhich are called only once
per simulation run), the paeduresnput output and dynamicare called many, i.e. i times
during an elementaryraidation run (Fig. T19 and T20).

In the integration loop, user commands, such as pausing or stopping the simulatipmcee
sed first. This enables an interactive control of the simulatiditer that, the client proedures
of the models are called. Their calling sequence guarantees a correct cotiptiage than one
madel, independently of theinstallation order (see also chapModel formalisms The cat
cuation order which meets all these requirements is shown in Fig. T22:

First, the outputprocedures of all modelshen allinput procedures are called. Thereafter, the
numerical integration is performed. Dependomgthe integraon algorithm, the procedurdy-
namic will be called once or several times for the evaluation ofdBBvatives or new stats.
Note, it is conpleely left tothe modeller's responsibility to compute the derivatives or new
states caecty. In particularModelWorks offers no sorting of statements. This advantage of
this method is that ModelWorks allows to compute derivatives orgtates in any conceivable
way. Every sulmmodel is integrated as an independent unit. Therdfasepossible to integrate
different sumodels withdifferent integréion algorithms. This can be of interest if some-mo
dels are num@ally less stable than others or to solve stiff systems.

Once all dynamic client procedures, i@utput input and dynamic have at leasbeen called
once, all model variables, i.e. input, output, state, plus auxiliary variables, are definedrave

a correct value valid at the point t This is the moment ModelWorks does thenitoring
(Fig. T22), i.e. the current value for any monitorabiglue is written onto the stash file, ba-

lated in thetable, or drawn into the graph if the corresponding kind of monitoring is activated
for the particular veable. The monitoring is followed by additional calls, now only of the
client procedurelynamic in case of higher ordentegration methods used to solve continuous
time models. Disrete time or single step integration methods will skip this step.

Finally all state variabls and théndependent variabléime t) are updated to theiew values at
time t := {41 = t+h. Aftewards the termination criteria is evaluated. The simulatigi be
teminated If either the simulation run was stopfkitled) by the simul#onist, if procedure
StofRunresp.StopExperimenfrom moduleSimMastehas been calledhe termination coati-
tion from the model definitioprogram has returned true, or thensilation stop time has been
reached. Dgerding on the result, the siuation continues or stops, which will resulh a state
trarsition from the stat&imulatinginto the stat&o model respectivelyNo simulationor from
the substateRunninginto the substatéNo run resp. Stopped(s.a. Fig. T15, T16, and
T2New4).

Discrete time models are treated analogously to the continuous time médeldeclaration,
display, and monitoring, ModelWorks treats bealiy boththe same, except that the discrete
time submodels are «integrated» with a differetegnation method, i.ediscreteTimégsee enu
meation typelntegrationMethodrom moduleSimBasg In the declaration of the state-va
riable, the new value of a discrete-time difference equation replacesntiuous-time couer
part, i.e. the derivative (see procedui2ecISVfrom moduleSimBasg However, be aware,

T68

ModelWorks 2.2 - Theory

that the body of the corresponding procediysamicneeds alsto be formulated accordingly,
since expressions defining a system of continuous-time differeqti@tions are fulamentally
differentfrom expressions defining a system of difference equations (s.a. chaptel For
mdismyg); yet it is fully left to the modeller's responsibility to program them properly.

|

|

Atherin of frme step

Tirne At S | SR | Ak e
i L | i) t lifig

y

Calculation of outmt

Tirne A Chigaer | Shbvar | Ak e
1 117 i i 1i .1

Calculation ofinput
Time g | g | Sthtovar | e s
i 1 i I i fi-1

| N Y

Integraion
x
" Calculation of dynamic part 1
= Tirne A S | Shivar | oAb wee
1 1 1 1™ 1
bl it ring
Calculation of dynamic partz =)
Time A Sk | SRbovar | A R
T 1j 1 Tisth 1j/1j+0
v i v
l ¥ l
Updak

Tirne A S | Shbvar | Ak s
1is1 1 I I 1

- 4

Fig. T22: Calculationof time, input output state and auxiliary variables during
anintegration step Thecalculation order guarantees that all calculations are based
on valid values which have been calculated in a previous sfEpe arrows indicate
which values have become valid. At the begin of the simulatiom only time and

the state variables are available fpr Thesevalues are used to calculate the output
variables fortj. Next, the input variables can be calculated, since they depend on
the previously calculated outputs. Next the numeriogdgration respectively the
new state variables for timg4t; are computed. Finally afitate variables are as
signed (updated) to the new values fofsta. Fig. T12).

*) Not defined the first time the integration loop is entered
**) Value for {1 is calculated, but not yet assigned to state variable field

***¥) - Only calculated if an integration method of higher order uded@f1), e.g. f=0.5or Runge
Kutta 4th order)

T69

ModelWorks 2.2 - Theory

The situation is more cgpficated in case of continuous with discrete time migedulations;
since the discrete time step might be several times larger thanebeation step needed for the
cortinuous time sulmodels, it is obvious that the two types of modetsist be treated perate-

ly. Typically the digree time submodels will then not be called as oftethascontinuous time
ones andhe outputof the discrete time submodels will have to be computed at the begin, the
input plusdynamiconly at the end of the coincidence interval.

Time steps usually vary, even if a fixed stegegration method is us€d This is because the

time steps depend not only on the integration step, but also on the coincidence interval and/or
themonitoring interval ModelWorks is computing values exactly at any of the time points
given by the current values of these global simulaparameters. E.g. a fixed integration step

of h =0.75 and a monitoring interval h= 1.0 will result in the following actual sequence of
integrdion step lengths: 0.75, 0.25, 0.5, 0.5, 0.25, 0.75 ...

Symbol| Meaning of variable Action by ModelWorks

State variables

X State variable
overwrite withinitial value during declaration write
overwrite with initial value at begin of run write
integratioh (continuous time only) read and write
update with new value obtained via integration write
@(kﬂ) Derivative (continuous time)/ new value (discrete time)
integration read
Xo Initial valuel4
overwrite with default during declaration write
overwrite with default while resetting initial values write
editing of value via 10-window read and write
M odel parameters
p Model parameter
overwrite with default during declaration write
overwrite with default while resetting parameters write

editing of value via 10-window

read and write

Monitorable variables

o] Monitorable variable
monitoring read
Stash filing, Tabulation, Graphing, or curve attribdifes
overwrite with default during declaration write
overwrite with default while resetting parameters write

editing of value via |0-window

read and write

Tab. T2: Actions of ModelWorks performed omodel objed installed in the model base.

13However, in the current implementation of ModelWorks, at a partitimarthe same integration step length

is used for all models to guarantee a co-ordinated data transfer between submodels.
14variable belongs to ModelWorks not to the client's model definition program

15see previous footnote

T70

ModelWorks 2.2 - Theory

5.1.3.d_Model objects and the run-time system

Any model object is recognized by ModelWorks only if it has been declared, typicailyg
exeution of the declaratiodecIModelObjecctprocedure passed as actual argumebetcM

Otherwise the models and model objects belong fultheomodel definition program. Thanks
to this method the modeller mdgfine and access these variables in whichever way &les,li
e.g. by using state variables as part of an array or a recordtiatéure. Note however, since
ModeMWorks maintains thenodel object also, e.g. during numerical integratidab. T2) it
uses the following access mechanisiVhile executing declarations such BeclSV Model
Works stoes the addresses of the declared variables. Later during SonaldviodeM/orks
will access the model objects and their associatathbles (Tutorial Fig. T2) for reding or
writing (Tab. T2) by assuming that these objects still exi¥herefore the modeller must be
cardul to ensure that anyodel objectontinues to exist within the model definition program
long as it remains declaredd model olject such as a stat@riable remains declared within the
simuation environment until it is roved, e.g. by a call toRemoveSYV or the program is ter
minaed6. Thus, any attempt to start a simulatisill cause the simulation environment to try
to acess all currently declared models and model objects. In case thedebdgion program
should have discarded onliycally any model or model object, an attempt to run a simulation,
will produce unpredictable results or even crash the progranpaticular does this imply that
maodels or model objects su@s state variables must not beckdeed as variables local to a
Modula2 procedure, unless the procedggdls at its end the corresponding remove procedure
for any locallydeclared model or model object . It is recommended to decladelm@and
model olects always globally (s.a. partTiutorial chapterGetting Started with Modelling

Modelsare always calculated in parallel, regardless of the presence of any coupling among
them, i.e. the calculation order of the client procedures is: &lisbutputof all submodels, sec
ondall input of all submodels etc. (Fig. T22). The actual sequence of the computations of a
particular kind of client procedures, e.g. the sequence with which ModelWceaks the
procedureslynamigis given by the sequence of the declarations of their owning models.

In the current version of ModelWorks all types of auxiliaayiables, i.e. input, output, and
internalauxiliary variables, do not appear @iicitly in the ModelWorks caept. Inputs and
outputs were formally defined in chaptdiheay, and the model definitionprogram is
responsible for a correct handling of them by ¢hent proceduresnput respectivelyoutput
The remaining internal auiry variables may be used freely within the scagfethe owning
model definition program. Note, in contrast to state variables ModelWddes neither
initialize norotherwise maintain auxiliary vaables. Ofen auxiliary variables are computed in
the procedure@ynamic hence, they will only hold &omect value if the procedurdynamichas
at least been called oncee. only after a simulation run has already begun (s.a. Fig. T18,
T20, and T22); in particular note, attempts to use them in the procedhti@ize may lead to
wrong results, if their values are only defined in the procedlyreamic

5.1.3.e Client procedures and the simulation environment

Themodelleror client normallyinstalls so-calledtlient procedurg into the snuation erviron
ment, which will then be called by ModelWorks at various occas{da®. T3). E.g. the run
time sysem calls repeatedly sudtient procedurg, e.g. the preadureinitidize to initialize a
run or pra¢zeduradynami¢ which containsthe diferential equéions. Client procedures are-in
staled inro MadeWorks viainstalling preaedures such a®eclMor SeDefltM.

Most of the client procedures aiher called diecty or indirecty from within the stadard
user interface or by thelient interface while executing pésuar pracedures, calledcalee
(Tab. T3). Note first that some of the installing malures may even function as lesd andse
condy that several menu commands of the d&d user interface call often just alea] e.g.

16program termination will cause an implicit removal of all models and model objects owned by the program.

T71

ModelWorks 2.2 - Theory

the menu comman8olve/Start rurcalls preedureSimRun It is thenSimRun which will call
client pracedures such agitialize or dynamic(Tab. T3).

Called Standard RunSim| SimRun| SimExp| DecIM Re Tile- or | Client procedure
] user in | Environ eriment moveM| Stack |installed by
Called client proc.| terface | ment Windowsg
initSimeEnv X RunSimEnviroment
declModelObjeccts X DeclM
defineSimEnv X-D X InstallDefSinEnv
startAllowed i- RE|i- sul X InstallStart
Consistency
initialize i- RE|i- sul X x17 DeclM, SetDefltM
output, input, i- RE|i- sul X DeclM, SetDefltM
dynamic
terminate i- RE|i- sul X x18 DeclM, SetDefltM
about x19 i - Sul DeclM, SetDefltM
initClientMon, i- RE|i- SuUl X InstallClient
doClientMon Monitoring
termClientMon
iSAtEnd i- RE|i- Sul X InstallTerminate
Condition
doExperiment i-E i - Sul X InstallExperment
doAtStateChange i-S |i- sul X X x20 x21 InstallStateChange
Signaling
doAtTileor X-W |i- SuUl X InstallTile-or
doAtStack InstallStackVin-
dowdHandler
DialogMachine i- RE i- X 23 "Dialog Machine'
Task?2 RunDM

Tab. T3: Relationships between callirgglleeandcalled client procedure: Each row lists a

type ofclient procedure which can be installed into ModelWorks by the procedures listed in
the rightmost column and their callees listed in the topmost row. Legend: x - pliecédure
directy called by callee; i - client procedure onlylirectly called by callee, e.g. by choosing

a m&u command such &vlve/Start run rundM - RurDialogMachindrom DMMaster sui

- StardardUserInterface. Menu commands:- Setings/Define simulation environmerre

- Solve/Start ruror experiment RER - SolveéStart runor experimentand Solve/Resume run

or experiment - Solve/Start experiment - all commands of men8olve w - Windows/
Stackwindowsor Tile windows For exact timing of calls see Tab. T4, Figs. T18 till T22.

17DecIM causes for the newly declared model also a call to its procidtiméze in case of stat&imulatingand
substatnoSubStateesp.Running or statePause(Tab. 4).

18RemoveMauses for the model to be removed also a call to its proceduieatein case of stat&imulating
and substateoSubStateesp.Running or statePause(Tab. 4).

190nly callable via palette button in the 10-winddodels Note, the usef this window does not require the
standard user interface.

20| case the simulation environment has been in Btatmodebefore callingdecIM.
21)f RemoveMemoves the last model such that the simulation environment entefSstatedel

22DjalogMachineTaskrom moduleDMMasteris not really a client procedure, however since it dispatches
control to all procedures which have been installed via the "Dialog Machine", it is afssa@ to call
indirectly client procedures.

T72

ModelWorks 2.2 - Theory

Normally it is ModelWorks which keeps the program control, but each ticadis a client pro
cedure it relinquishes the dool. Thus theprogram controlis passed back and forth between
the modeller and ModelWorks. If the modeller calls a non-callesshre she willnot gain
cortrol back until that procedure has bdally completed. However, if she calls a callee, she
will regain control once or even several times. Ithen important that shelmequishes control
from a client procedure as soon as possible, so that the calleetaalyaontinue and finish.

5.1.3.f Manipulating the model base at run-time

All functions offered by the client interfaceay also be used while a simulation is running.
This is particularly important when programming structured simulation annexperiments
(s.a. sulzhapterProgramming Structured Simulations (Experimgntspwever, since some
procedures affect values currently in use or already useah as the sination start time 4, a
few additional rules are needed to handle firstlyaghanges of the structure of theodel base
i.e. the declaration or removal of models and modejects, and secondly the clgas of
current vdues and defaults.

The following rules apply only while proceduBmRunis executing, i.e. in the stateSimua-
ting or Pause(Fig. T15), whereby the main stat&imulatingmay or may not be subdivided
into substates (eteentary vs. structured simulation runk case of structured simulation runs
or expeiments the restrictions apply only to the subsRataning(Fig. T16):

If models or model objects adeclared or removed in a client procedure such asepuoe
input the overall system structure changes while procedsir@Runis still executing (s.a.
sectionClient procedures and the simulation environneht this case théasic prigiple is
not to disturb the on-goingtegration for the current time step and to allow for its plation
as if the sym would not have been modified (Tab. T4). Thus any integratiesult available

at the end of a single integration step is that which would have been prodycid system
which has been present at the begfinhe step. Only in the next integration step will the-sys
tem malifications become effective (Tab. T4).

Moreprecisely, if a model is declareduringan elementary simulation run, e.g. in the peo
dureinputof an aleady existing mael, the new model and alls objects which are declared in
its pracaeduredecModelObjectsare instantiated immediately (Tab. T4). Hence, theodeller
may subsequentlgpeaate freéy on them upon terning from procedurdeclM However
note, acording to above metionedprinciple, nether the model's state variables nor its ggo
duresinput, output or dynamic will be involved in the integration of the current time step.
Moreover note alsothat the proedureinitialize, which has been passed as actual argument to
DeclM will be executed as a direct consequen€¢he call toDeclMwhile executingSimRun
Procedureinitialize will be called individually for anynewly declared model, despite the fact
that the run has already been started. Similarlyjrdua simulation,the terminate proedure
teminateof a model to be moved is cded immediatelybefore the model is actually removed,
again as a direct consequence of the call to proc&kmoveMTab. T4). Sincethe praedu-
resinitialize or terminatanay contain additional calls the procedure®eclM or RemoveM
this will lead tofurther calls of the procedurastialize or terminatérom the involved new or
obsolete models. ModelWorks repethiis process until there remain no more procedunies
tidize or terminateo be executedlt is left fully to the modeller's responsibility to ensure that
this condition is always met.

23Can not be installed by tiutient, but only imported fronDMMaster and is always in use by any "Dialog
Machine" program, i.e. any Modula-2 program like ModelWorks which imports from the "Dialog Machine".

T73

ModelWorks 2.2 - Theory

Moment of During During integration During Otherwise
execution of initialization step termination
the callee | band (output input, (terminateor (initSimEny
___In-between dynamic termClientMor) | defineSimEny
Integration steps| jnitclientMon or decModeDbjects
Call (initialize, DMTask doClientMor) dExperimentdo
(Callee) initialize, or AtState€hange
terminatg DMTask
Called procedure
DecIM immediate immediate immediate immediate
declModelObjects immediate immediate immediate immediate
initialize afterinitialize of all after completion of | defered tofaiarzation | deferred 1o am -21°"
not yet initialized | current intgration step,
models
output input, defiﬁ{(r;:-gdrégos#&seegsuent d‘eferred -to subsecjluent deferreié?(tir;her?ration of| defer(r)?%(tac;(tir:t&?ration
dynamlc integration Step%
terminate deferred t?utﬁrmination of | deferred to termination of run deferre%g(tterLT]ination of defer(r)?c:wteoxzerrlmination
RemoveM?> afterterminateof all after completion of | afterterminate of immediate
models to be current intgration step all models
removed
initialize - - - -
output input, - (if involved in ongoing - -
dynamic integration step)®
terminate afterinitialize of all after completion of - -
models current intgration step

Tab. T4: Effects of callgo DeclMor RemoveMduring a simulation run: The table lists the
indirect calls of the client procedurastialize, input output dynamic, terminateand dect
Modelbjecctdoy ModelWorkglus some effects such as model instantiations or sorme pro
caure calls. Such calls partly take place wHideclMresp.RemoveMare still executingif-
mediate), partly they happen at a later momeater), partly their execution is even deferred
more to take place at the ordinary timeegécution deferreg, €.g. the initialization of the next
run. The tédulated sequences warrant that sttwred modekystems can be solved s
tently at all times, even if thanodeller changes the system structure in the middle of a
simulation.

Via the client interface or a non-standard user interface current values can be manipdbted
however note the following particularities:

* The current substate of the simulation environment determines the exact effeet of
calledSekyzprocedured. The following rules hold whileSimRunis executing:

- Depending on the curresitnulation time t resp. k an attempt to change the si
mulation start time J resp.K, or stop timed,qresp.ks may result in a different

24The current integration step is completed without considering the newly declared model; hermethdsees
will only be called during the next integration step.

25Removal of a model implies the removing (including memory release) dé@tred objects belonging to the
model.

26| case of a mixed continuous adidcrete time structured model the discrete time model's procenlutyas,
input, dynamicare not necessarily called during every integration step.

27sincea reset is defined aBetDeflty{V) followed by aSetyAV), i.e. the default value v is made the current
value, the mentioned particularities apply also to the correspoRésety- procedures.

T74

ModelWorks 2.2 - Theory

seting of the time domain than this would be the casgniother state. The call
SeGlobSimParf,t.g-..) IS handled as if the following calSeGlobSim
PargMIN(t,,t), MAX (tongt)-..)would have been made (wherliN andMAX are
fundion procedures, which returthe minimum respective maximum of their
actual parameters). This allows either tolprm, shorten or even tend the si
muation if t,4< t, but not to jump to a new time domain whegt t (proce
duresSeGlobSimPars SetSimTimgResetGlobSimParfesetAl).

Changes to the current values will never affect dimegoing integration step but

will only have an effect inthe subsequent integration step. In particular this
means that the effect of the procedu=tM SetDefltM SetSV SetP and
SetMV plus all correspondingeset procedures such &eseAll Integraion
Methodswill be delayed until the current integration step has been coliyple-

ted. This behaviour matches the rules which apply to changes in the structure
of the system, i.e. declaration of removal of models or model objects (Tab. 4).

Changing cuent values of monitorable variables, i.e. their minimum anexk
mum for the scaling and their settin@gash filing, tabulation, and graphing)
(procedures SetMV, ResetAllStashFiling ResetAllTabulation Resefll-
Graphing ResetAllScaling may have particular effects:

a) Changes to the attribute filing, i.e. adding or removing a monitoredliable
from resp. to the current set of monitorable variables to be written th@o
stash file $etMV, ResetAllStashFiliny leads to a so-callesubrun breaki.e.
the begin of a newsubrun Since the stash file is written emding to a
formally defined syntax, which muires to write the simulation selts always
in form of a matrix (i.e. each row must contain the same nurobealues, s.a.
sectionMonitoring, altering the nurber of columns in the middle @f run is
disallowed. However, if a run is subdivided into subruns, where each adopts
the syntax of a full run and ctansthe reults only in form of a matrix with a
fixed number of columns, MieMorks can agairsupport changes to the
attribute filing.

b) Changes to the attributesabulation or graphing SetMV,
ResetAllTabulationResetAllGraphingmay lead to a full redrawing dlfe table

or the graph, hereby loosing all previously monitored results. Notedvew
curve attributes can be changed without disturbing already existing monitoring
results and it cabe useful for the marking of digrent types of measurements
in the middle of a simulation run by changing the colour of a curve on the fly
(procedureSetCurveAttrForMY ResetAlCurveAttributes.

» The following rule holds whiléSimRunor SimExperimenis executing:

Changes to the stash file affect the currently opened stash fildyye rgnaming

it. Note that this results in a slightly differds¢haviour opposed to calls in the
statedNo model or No simulation In thelatter caseSetStashFileName/ould
produce a stash file with different name and leave an eventually already-exis
ting stash filewith the old name untouched. U$avitchStashFileto force the
closing of an already opened stash file and the opening of anew How
ever, if there is currently no stash file opeBwitchStashFilewill have the same
effect as a call t&etStashFileNamroceduresSetStashileName SeStash
FileType ResetStashFileSwitchStashFile).

* The following hints or recommendations are valid in general:

Current values shouldot be changed directly, e.g. the modeller must not
assign a new Jae to a state variablen the middle of an integration step,
despite the fact that thetate variable dengs fully to her model definition
program. Instead the modeller isged to call always the safe jpedures
SetSVor SetP Thisis because only ModelWorks run-timetsys can assign

T75

ModelWorks 2.2 - Theory

a new vdue to a state variable at the riglbment, i.e. when the assignment
won't disturb any other calculations, e.g. the integration obther model
which uses an output gerding on the state variable to be changed (se&tion
Integration respectively time sep

- Some procedures hawetually the desired effect, i.e. changing the current va

lues, yet this will have no immediate effect, but only a delayed oRer ingan

ce the proedures SetProjDescrsSetTabFuncRecordingr SetindepVarldent
and the corrgmonding reset procedures all cause changgesome current va
lues, but this has no visible fefct until the next time these new values ae
tualy used, often only in the nextrsidation run. For ingance the project des
cription is written to thestash file merely once at itsdpe, and it can't be cor
reded once written. Or if the siuation has aleady started, the start timg¢an
not be altered anymore and the chaofg does not become feftive until the
next simulation run is actually started.

All changes affecting default values (procedugedDeflkyz will not becomeeffective until a
corresponding reset is actually executed.

5.1.3.g_ Monitoring

ModelWorks displays simulation resustdly via a monitoring concept. It is based on the-so
caledmonitorable variable, which are declared ithe model definition program. Once a vari
alde has been declared as monitorable variable via the client interface, it can be sekectet-
vely in the corresponding 10-window in order to activate a certain kind of monitorgy va-
riable can be monitored as long as it is a real numlmethis way the simulationist may sbr

ve the values of any variable, miglit be an input, state, auxiliary or output variable. Kito-
rade variables might beinderstood as nothing else than probes attached to any ititorma
flow circulating within the model systemlhey measure anytime anywhere any quantity with
out digurbing the dynamics of theystem, regardless whether this variable is an internal state,
auxiliary, input or output variable. This is different from conventions in systdmasry, where
often additional outputs must be first introduced to monitor internal variables.

Since continuous time measurement would result in an exorbitant amalatapmontoring is
possible only at discrete points in time, theonitoringtimes. The time itewval between mai-
toring times is global, i.e. the same for all models aidkinds of monitoring, the so-cld
monitoring interval h,,. Although h,, is normally kept constant, via the client interface the
modeller may change this global simulatiparameter freely. ModelWorks computesues
exacty at the time points,{ for which manitoring is requested. In case of a constaptthe
monitoring occurs atd, = t, + iCh,, where (t - simuation starttime; i = 0, 1, 2, ... i may PIUus
an adiitional time for f,qIn case thatg hm # teng The monitoringtakes place during an
integration step only (Fig. T22). For instance ift= tohgeven the very last matoring occurs
during the calculation of an additional lastegration step, which isot fully conpleted, i.e.
not updated, in order to retain the state of the systeg@t t

Standard monitoring of ModelWorks is available in onamy combination of the fldwing
three kinds: The simulation results, may be written and storeal so-cdéd stash filefor later
usage, tabulated as numbers itable or shown as curves in graph

During simul#ions, i.e. in stateSimulating unless disabled three windows, the graph, tiable
window, and the time window, are automatically opened and brought tdrtire to display the
simulation results and the current simulation time.

At the begirrespectively end of each elementary diaian run, the time wirdow will always
appear respectively disappear automatically in the upper right corner of the main stheens
also the case in structured simulations or experimerastacilitate the orientson of the simu
lationist during experiments, ModelWorks displays intilhee window not only the current si

T76

ModelWorks 2.2 - Theory

mulation time t, but also the number k (Fig. T2Df the current simulation run (format: k: t).
k can also be obtained by calling ftna procedureCurrentSimNifrom SimMaster

Thestash filecan store an arbitrary amount of information abouttheent status of the model
base, i.e. onmodels, model objects, and their associated curreriies and it is usually
produced for further numerical, e.g. statistical analysis, of the sitiutaresults or fofuture
report generation to document simulation runs in any detail. Theciadich the stash file
may grow is limited only byhe available disk space. The file is written in a formally defined
syntax and contains several typesirdbrmation, partly always included and partly included
only selectively by means of the so-called recording flags. The content consists of:

- General information on the simulation session consistihga) the ModelWorks
version, type of computer, and the date and time of theise%s begin, b) dateand
time of begin an@nd of simulation runs, c) project title, marks and footer, d) date
and time when the file was closed. This information isals written.

- Values of all global simulation parameters (Startl stop time of simulationfk,,
tendKs), integrdion step (h) respectively maximum integration stepa(h plus max
mum local relative error (g discrete time stepespectively coincidence interval (c),
and monitoring interval (f)). The paameters actuallyvritten on the stash file de
pend on the type of models currentlygeet: continuous time only, discrete tirogly
or both types mixed as well #ise used irggration methods (with or without variable
step length methods). This type ofarmation is written always and iparticular also
repeatedly for every simulation run.

- Lists of all models and their integration methods, of all state variableshadcurrent
values, of all model parameteesd their current values, of monitorable variables and
their settings, curve attributes and scaling are written selectively under conttbeof
recording flags. Note that not all monitorable variables are recorded but onlyftrose
which either the stash filing is currently sefwriteOnFile orthose which are present
in the graph, given that the recording flag for graph dumping is currently set.

- Lists of the parameters of all table functions declaredhbgns of moduldabFunc
under cotrol of the recording flagable functions

- Numerical simulation results tabulated for those monitorahi@bles for which the
stash filing is currently seEfwriteOnFile.

- Messages (procedukéessaggeor changes dahe current vales of models or model
objects (procedures with identifiers commencing wbkyz e.g. Setb.

- Graphical simulation results (encoded, only macheedable), dumped under dool
of the recording flagsraph

- Atable of byte and line numbers at which an individuait starts and ends for sgee
ing-up the reading from the stash file during a post-simulation analysis.

ModelWorks can handle only one stash fila eime. In the statelo model andNo simua-
tionit is always closed to allow for the inspection of its content by the simulationistdeMo
Works automatically opens respectively closes the $ilasat the begin respectively at the end
of an elementary sidation run. However, this is not thease in a structured simtitan expe
riment, where the stash file is only closed at the very enthi@fexperiment. This k&ws to re
cord the results odll elementary simulation runs involved in the experiment as glesise
guence. Unless the stash file name is changedditilt name isModelWorks.DAY, Modet
Works will use alvays the same file, i.e. i file with the same name already exists, that file's
old content will be lost and completely rewritten!

The stash file is written in a format which can be read by the useelhss scanned by a cem

puter program (post-simulation analysis). Furthermorealiss possible to trafex the results
into another program, e.g. a spreadsheet program, or intth@ment proesing program

T77

ModelWorks 2.2 - Theory

which understands the R#¥¥format. These formats are fully controlled by Maferks and
can not be changed by the user.

At the heart of the information written to the stash file is the writing of the valtiése monio-

ralde variables for which the stash file monitorilgs been set at every monitoring timg t
The format is sucthat these results can be transferred directly, for instance via the clipboard,
into another application: Only horizontal tab charactg&SCIl ht = octal 11C) separathe
values and all values at a particular monitoring time are written osdhree line terminated with

an end of line symba@ (p = string\parfollowed by ASCII cr = octal 15C). E.g.:

"Ident var 2"
0.9025031
0.6883310
0.4211738
0.0882961
-0.3198467

“Ident var 1"
1.0000000
1.1764115
1.2954322
1.3516583
1.3498297

('t

0.000000
0.200000
0.400000
0.600000
0.800000

*)

T
T
T
T
T
T

A A A A A A

T
T
T
T
T
T

A A A A A A
T © © © T O

Normally the stash file is only openadd written if at least one monitorable variable has been
requested for the recording. However, if the particular simulation environmmatte (see pref
erencesis set appropriately, the stash file is opened during every simulation run and data are
recorded according to the current settings of the recording flags.

Unless disabled thablewindow is used to tabulathe values of monitorable variables during
a simulation. Values are written a similar way as shown above under the stash filaitoo
ring. Currently, only the values which fit into the windoare displayed. Once the vdaw is
full, ModelWorks erases most of its cont&nandrestarts tabulating from the top again lgdl
a «page up). Inthe current version of ModelWorks any erased vamedost and the siua-
tion has to be repeated to display them again.

ModelWorks can display in tlggaphwindow one graph only. The gragtas a linear abscissa
(x-axis) with time or any monitorable variable iaslependent variabléallowing for state space
curves), and a linear ordinate (y-axis) with a fixed scaling from [0,1]. Accordinght cuf
renty set minimum and maximum values for the range of integestarbitrary nurber of de
perdent variables (range shown in the legend), caplogted simultaneously in the graph. An
unlimited number of simulation runs can be recorded in one graph. The grajbe w&ilitomati
cally cleared after changestbke graph definition, the global simulation parameters (e.qg. if the
start or stop time has been changed and time is the abscissaheoniindow is resized after a
simulation. However, this behaviour may differ depending on the curresgtymode of the si
mulation environment (preferences). An example graph is shown in Fig. T23.

The graph's size is automaeadilly fit to the window's size. The actual graph is drawn as laage
possible, which depends on the number of curves to be listedénegend at the bottom of the
window. However, if there are too many curves requested so that the legenltl become
too big and there would not be left a minimal space for the panel of the graph, Modeiviforks
not be able to list all curves in the legend. Only the firsts will be visible, the remaining
ones at the bottom of the list will be missing.

If another tharthe standard monitoring of ModelWorks is required, the modeller can program
and install such alient monitoringby calling the procedurénstallClientMonitoring Any type
of manitoring will then be possible, e.g. the writing of simulation results onto a file or the

28RTF stands foRich Text Format. It is basedn ASCII characters only but contains coded formatting infor
maion and can be interpreted by many commercially marketed text processing applications.

29 Actual number of rows erased depends on the currently set preferences or simulation environmeritreodes:
number specified a€ommon rows between page ups in taldénes what happens duringgage up: First it
speifies how many rows at the bottom are not erased but copied to the top of thageextSecond only the
space below these now top rows will be used tonasddrows. Hence this number specifies how many rows
are common to two consecutive pages.

T78

ModelWorks 2.2 - Theory

Sl Graph mE|
1.8
9.5
I
1
1|
B.6 7
1
8.4 ;
]
4
' |
8.2 1
] Lo
B-a-l""I""I""I""I""I""I""I'
1949.6 1954.0 1950.8 1964.8 1960.8 19748 19796 1984.0
Ime
Curues Minimum HMax i mum Uit
— Lhcyy -4 665 f.297 1bmika
eme LeY -4 BES 6.207 larvas kg branches =3

Fig. T23: Thegraphwindow of ModelWorks (produced kihe research sample
model LBM from theAppendiy.

drawing of animated grapbal objects which move within a window according to compupes
sitions etc. In order to accomplish such tasks, the modeller uses the "Dialabindg to
which she has full access. Concerning values of state and other variditd@edjent maitoring
will be done as often and at the same tasethe standard monitoring. The exaejuerce ob-
sewred is that the client monitoringpmes last, i.e. after ModelWorks has done itsnitooing,
so that it can also be used to customize or extend the standard motiyoNMualeMorks, e.g.
by drawing tangents along a solutionaotlifferential equation. Note however, at the end of a
simulation run this sequence is reversed, i.e. the termination oflteet montoring occurs be
fore ModelWorks terminates its mitoring; this offers the advantage that aljects such as
the graph or table window, or the stash file can still be used foclteet monitoring. Besides,
the client mortoring is terminated only after abrminatgrocedures have been executed.

5.1.4 STANDARD USER INTERFACE

The ModelWorksstandard user interfaggovides menus, menu commandsput-output-wir
dows (IO-windows) and a series of entry forms which allow to edit various data.

The main purpose of tregandard user interfadgto allow the simulationist to issuecammand

to ModelWorks and to observe simulation results. She hdsltbwing options to enter com
mands: First an ompresent menu basffers a set of pull-down, pop-up, or tear-off menu
conmands; secorsbme menu commands (their text iddwoled by "...") will open so-cdéd
entry forms dering from one to several editaldields to eter numbers or change segs via
check boxes etc. Thirdlghe so-called IO-windows allow to select particular models or model
objects for mdaifications oto issue further commands. f&its have been put into the sign

of menus, menu commands, button palettasd entry forms to support the convenient use by
researchers and to make the use as siaupdeas ituitively appealing as possible. Thesiign
follows the general purpose user interface of the "DialochMa”, which is hardwarend sys

tem software independenfEISCHLIN, 1986a,b; FISCHLIN et al, 1987; FISCHLIN & SCHAU-
FELBERGER 1987; MANSOUR & SCHAUFELBERGER 1989).

Thestandard user interfacg invoked by a call to proceduRuUnSimEnvironmentfrom module
SimMaster ModelWorks installs then its menus and opens the IO0-windoeding tothe
modeller’s specifications or internal predefinitions (s.a. Fig. T18). From momand until the
interactive envronment is quit, all operations on the client interface witirmally become \gib-

le on the user terface, e.g. as changes in the status of meonmands, updates in the 1/0O

T79

ModelWorks 2.2 - Theory

windows and by display of simulatioesults into the table and graph wows. Once the in
teractive envirorment is quit, the client programmay proceed with calls to any ModelWorks
functions, thepreviously defined model base and the simulation environment's global settings
remain uchanged and are still available until the calling program is actually terminated.

5.1.4.a Multiple activations of the standard user interface

The interactive environment may be started (again) at any time from amiegram, given that
it is not already running on th&ubprogram levein which the client program resid®s This
mechanism allows to stack model definition prograors top of each other, a behaviour which
may be useful for research purposes. For instance it is possitdplace suimodels at run
time, while retaining its super model loaded; or it is posstblesolve several mdels, which
were developed independently from each other, simultaneously in otdecompare their
behaviour. The following program illustrates such a use of the simulation environment:

MODULE SimShell;

FROM DMOpSys IMPORT GetFileDialog, CallM2SubProg, ProgStatus; FROM DMStrings IMPORT Concatenate;
FROM DMMenus IMPORT Menu, Command, AccessStatus, Marking, InstallMenu, InstallCommand,

InstallAliasChar, InstallQuitCommand;
FROM DMMaster IMPORT RunDialogMachine, CallSubProg, SubProgStatus; IMPORT SimMaster; (*for preloading*)

VAR theMenu: Menu; compCmd,editCmd,loadCmd: Command; pst: ProgStatus;

PROCEDURE CompMDP; BEGIN CallM2SubProg('Compile', TRUE,pst) END CompMDP;
PROCEDURE EditMDP; BEGIN CallM2SubProg('Edit2', TRUE,pst) END EditMDP;

PROCEDURE LoadMDP;
VAR path,mdp: ARRAY [0..127] OF CHAR; spst: SubProgStatus;
BEGIN
IF GetFileDialog('Select a model definition program','MOBJ|Mobj',path,mdp) THEN
Concatenate(path,mdp,mdp); CallSubProg(mdp,spst)
END;
END LoadMDP;

PROCEDURE Quitting(VAR rg: BOOLEAN); BEGIN rq:=TRUE END Quitting;

BEGIN
InstallMenu(theMenu,'Shell',enabled);
InstallCommand(theMenu,compCmd,'Compile',CompMDP,enabled,unchecked); InstallAliasChar(theMenu,compCmd,'C');
InstallCommand(theMenu,editCmd,'Edit',EditMDP,enabled,unchecked); InstallAliasChar(theMenu,editCmd,'E’);
InstallCommand(theMenu,loadCmd,'Load...',LoadMDP,enabled,unchecked); InstallAliasChar(theMenu,loadCmd,'L");
InstallQuitCommand('Quit shell',Quitting,0C); RunDialogMachine;

END SimShell.

ProgramSimShellallows to load any number of model definition programs on top of each
other, each on a different subprogram level. Once loaded,dhayall be solved simtdn®us

ly, despite the fact that they belong to differeabprogram levels. For example this technique
allows to compare directly the trajectories of #aene model equations, but produced with two
different integration methodsA possible way to accomplish such a task is to follow these
steps: First, prepare and compile two separate instantiations of the same model, where the
second is just aopy except for the differently named program module. Then, load both
modulesy means oSimShellinto the same simulation environment. Both models can now
be solved simultaneously by cleog menu comman&olve/Start run Solving one with
integration methodtuler, the other with methodRunge-Kutta 4thorder allows to compare
directly the performance of the two integration methods.

Note that the subprogram levels form a somprfgram stackwhere each level receives iswn
about entry in the Apple menu, its own menu commands(foit Settings/Define simulation
environment and Solve/Starexperimentall other standard menu commands are shared by all
levels. As a consequence it is possible to unload individually the top-magstagmamlevel by
choosing its specific menu comma@Qdit The quitting of a program levebill result in a se
ledive removal ofall models, model objects, and equations belonging to this level outhaf

30separate (sub)program levels are only availabtaef ModelWorks version is based on a Dialog Machine
which is implemented by means of a dynamic linking-loading Modula-2 language syStemMacMETH
Modula-2 Language System for the MacintodhRTH et al, 1992) is such a Modulas¥stem and fully sup
ports the here described behaviour. Ignore any reference to subprogram levels if you arelB&InB@rver
sion, which supports static linking only.

T80

ModelWorks 2.2 - Theory

feding any other parts of the simulation environment's model base. It is even pdssipé a
sulprogram level which is currently not on the topthe program stackhowever this case ac
tualy results first in the quitting of all levels above, i.eop-most levels are moved rgpededly
till the chosen one becomes the top-most one and can now finally be removed also.

No model
1/0-window status:

(all windows
closed)

Menu status:

No simulation

1/0-window status:
O==Models
(= State variables =

Menu status:

Start run
A~ 1
Start experiment

C=EMonitor. variabless

Stop (kill) run Stop (kill) run Stop (kill) run

Stop (Kill) experiment Stop (Kill) experiment Stop (Kill) experiment
) 1
(0 model) (=1 model) (=1 model) (0 model)
Simulating Pause

1/0-window status: Menu status: 1/0-window status:

Mgy

Halt run (Paus

Resume run

(a) Program states and transition commands of menu Solve

File Edit

Settings

Windows

Solve

Undo
Cut
Copy
Paste
Clear

Page setup...
Print graph...
Preferences...
Customize...
Quit

Set:

Project description...
Select stash file...
Reset:

Global simulation parameters
Project description

Stash file

Windows

Global simulation parameters...

Tile windows

Stack windows
Models

State variables
Model parameters
Monitorable variables
Table

Clear table

Graph

Start run

Halt run (Pause) or
Resume run

Stop (Kill) run or
Stop (Kill) experimer]t

Start Experiment

All model's integration methods
All model's initial values

Clear graph

All model's parameters

All model's tabulation

All model's graphing

All model's scaling

All model's curve attributes
All above

Define simulation environment

(b) Menubar and menu commands
\

Fig. T24: (a) Statetrarsition diagram of the simulation environmeot Mode}
Works and its effect on the standard ustarface. The simlation ewironment is
alays in one othe following four states:No model the state when no model is
installed;No simulation the state in which at least omeodel is present and no-si
mulation is running. In this state the siuationist may change values or settings,
e.g. simulation time, initial values of state variablegyr values of model pamae
ters. During a sauation run or a struared simulation egerimentModeWorks is
in the stateéSimuating. In this state the simulationist may only temporarily pause
or stop (kill) the running simulation. The st&ausealows to change model pa
meers with the attributd)RTC (Run Time Change$et, or toresume respectively
abort the snuation. For every state the statobthe menu commands is skoli-
zed as fabws: A black line signifies an active, a grey an inactiwe unavailable
menu comand(for the actual menu camands see (b)). The availability of the
buton conmands of a particular I0-wttow is indicaed by a black (objectelee
tion with mouse clicks possible, palette buts can be pushed) grey (disabled
sdedion, inactive palette buttons) wdow title bar (s.a. Fig. T15, T16). (b) All
menus and menu commands (separators omittedhe standard user interface
(except for the enlargement the same as in (a)).

T81

ModelWorks 2.2 - Theory

Experimentsan also be executed individually, yet note, that all involved simulation runs will
be executed in the same simulation environment. In particular this impliethéndodalVorks
run-time system willsolve all currently declared models for a common domain of tde in
pendent variable, i.e. the currently sgiobal simulation parameters,(tnghm €etc.), regardless
of their subprogram level. Any program level modifying th®balsimulation parameterer
other global settings, such as a window position, will affect the simulation environmeninand
mediately override any valuesyhich might have been set by another program level, e.g- du
ing earlier loading. However, to preserve current values already presehte simulation en-
ronment, every additional calo RunSimEnvironmenbn a new program level will only sault
in aconditional reseti.e. in contrast tothe very first initialization (Fig. T18)RunSimEnviron-
mentcallsResetAllonly if the simulation environment is in stat® model. Wherever full co
operation among mathematically well co-ordinated submodeis ise inplemeried, proper
meaures can usually be programmed to overcome conflictwelea multiple acesesto
shared items of the simulation environment (fppendix chapterSample Mode)s

5.1.4.b_ States of the standard user interface

In thestandardiser interfacahe states of the simulation environment (Fig. T15 and T16) are
chaaderized by theavailability of certain cormands (Fig. T24).

In the statédNo model it isnot possike to choose any menu command, which requires at least
one model to operaten (e.g. Settings/Reset all model's paraméterns the statdNo simua-

tion model and model géct attributescan be iteractively changed. In the stat8imulating
user interactions are lited, e.g. |I0-windows are iactvatedand will not repond to mouse
clicks. In the stat®ausehe simulation is temporarilyrought to a halt to allow for interactive
change®f parameters only (s.a. Fig. T15, T16). Note that every state transitiogardless
whether it is caused via the user or the client fiats, will cause the simulation @monment to
reflect this fact properly in all its parts, in partlaualso in the standard menus.

5.1.4.c

|O-windows (Input-Output-windows)

Unless customized the standard user interface proviegindows (Fig. T25). They serve
two purposes:

&} 6
¥ sz
[EES = Model Parameters EE
E.'_'.EJ Pararneter names + l']’] & _} Ident Unit Malue £
Potate model &1 [j e
kGrowth kGrowth g dw/plant S0.000 M
sLeaf 1.000 "
T kStem kStem - &.000 i
kRt 1] (E kRt - 1.000
@ kTuber kTuber - &.000
ﬂ + rmaxPlantP dge rmaxPlantP Phys.age-unit &75.000
rmaxLeafF dge rmaxLeafP ¢ Phys.age-unit 425000
[Ee?
Fig. T25: Basic structure ofO-windows subdivided into three fields: In the

middle the list of model objects (1), on the upper left cornerpdiette of button
conmands (2), and on the upper right corner the scrollers to scratktis in lists
too large to show all items at once (3) (s.a. text).

Firstthey diplay all models and athodel object plus their current values and settin@uitf

put). Second they allow to modify interactively tbarrent values and settings of these objects
(Input). For instance, the value of an individual model parameter can be changed or reset, or

T82

ModelWorks 2.2 - Theory

the kind of monitoringor a particular variable during simulations can be specified. There are
four 10-windows: The first 10-window with the titleModelslists all models MdeMWorks
currently holdsn its model base, i.e. which have been declared by the modeller via the client
interface. The second IO-wdiow State variabledists all declared state variables, thieird
Parameterall parameters, and the fourtonitorable variablesll monitorable variables.

All lO-windows havea common structure: The content area of any 10-window is subdivided
into three fields (Fig. T25). First théeld in the middle of the window contains a list of Mo
deWorks objects (1). Its title line (1a) displays the headers of the coloamrently in use,
which describe, display, andesignate ModelWorks objects and their values. Below, there is
the actual list of the objects, e. g. the parameters, whieke been installed in ModelWorks by
the modeMefinition program. The order follows the declaration order in the model definition
program, and objects belonging to the same model appear together untetdhele of the
corresponding model (1b). An object in the list can be selectad aperand by a mouse click
on the corresponding line, which is confirmed by inverting the line (1c).

From the described behaviour follascoperules for the selection of operands (Fig. T26).

ALL

model

[model object |

[model object |

[model object |

model

[model object |

[model object |

[model object |

model

| model object |

| model object |

[model object |

Fig. T26: Scopes used for the selection of operandsenO-windows. Seleting
a model implies the selection of all model's objects.

Since modeobbjects belong to models, treelection ofa model in the models 10-window can
beinterpreted as the selection of all its objects. Henceséhection scopein the models 1O
window are:

- individual model respectively all objects of a model
- all models respectively all objects of all models

For the 10-windows of the state varials, model parameters, and monitorablariables exist
the following selection scopes

T83

ModelWorks 2.2 - Theory

- all objects of a particular kind of all models
- all objects of a particular kind of a model
- individual object of a particular kind

Note that the operands actually affected by an operator are determined also by the ibperator
self. For instance: The selection of an individual mattes not only allow to change artrat

bute such as the integration method of this mooled,also to reset the values of all itsjeslts,

such as the resetting of all initial values of the model's state variables to their defaults.

Second théutton palette(2) on the left side contains a palette of adjacent, square buttons.
Eachbuttonhas a separate functioapgeratoy, which can be activated by clicking on the little
buton picture with the mouse. There daveo kinds of functions: basic window functions not
requiring anoperangde.g. a window set up, and functions (operators) operatingthe selected
elements (operands). Two kons are common to all windowsThe buttoni¥]| activates an
entry form where the columns to be displayed in the object field can be sel@tteduttoni
serves to select all objects of the particlliand listed in the 10-window, e.g. all parameters of
all models §copeAll in Fig. T26). The simulationist will be informed while ModelWorks is
executing a button function, e.g. bypverting the buton picture or by any other appropriate
mean.

Third on the right side, there are the scrollers to scroll lines individu:lyt/]) or wholepages
(A, M) of the ofect list field up and down in case, that the window is too small to show all
objects at once (3). During the actual scrolling the button picture will be shown inverted.

In an inactive 10-window no selection of operands is possible, nolachuatton function be ac
tivated, nor is any scrolling possibl@he simuldéionist can recognize this status if neither lic
king within the list field nor on buttons or scrollers does invert the clicked object (Fig. T24).

The last group of elements aret specific to ModelWorks but are general and may be present
in any window (Fig. T25)31: the title bar to move the window (4), the close btax close it

(5), the zoom box to enlarge it to the size of the screen or back (6), agdawebox to change

the size of the window to any shape (7).

5.1.5 USER INTERFACE CUSTOMIZATION

The standardser interfac@f ModelWorks can be customized. adapted to the users needs,
in various ways:

First, it is possible taverride the predefined settingsuch as the default position of windows
or the display othe lists in an I0-window. To this end the mod@enBaseexports various
routines such aSetDefltWindowPlacer SetDefltiOWColDisplayfor an application of this
technique see in thppendixthe sample modéHarkoy).

Second, it is possible tdisablecertain functions within thetandard user interface, e.g. the ta
bulation of simulation results. To this end the modBienBaseexports the routineBisable
Window andEnableWindow The corresponding menu commandi then still remain viib-
le, but the simulationist can not choose them since they are disabled (dimmed).

Third, when the modeller uses also the optional table functions, the standardhieséce is
extended also by a graphical table function editor (8 pendix chapterAuxiliary Library
sectionTabFung for an application of this technique see the sample m&iglssPopand
UseTabFunc

31The actual appearance of these elemeray differ with the computer on which ModelWorks is running.
However, thanks to the underlying 'Dialog Machine' the basic functiormlityanaging a window's position,
size etc. remains the same.

T84

ModelWorks 2.2 - Theory

Fourth, the modeller caoustomize thenitialization of the standard user interface by installing
an initialization procedure with a call to the procedunstallDefSimEnvVrom SimMasteibefore
caling procedureRunSimEnvironment ModelWorks will then call the installed proceda®
the very first step taken before awaitingmmands from the simulationist (Fig. T18). The si
mulationist can request the execution of the installed procemhae more by choosing the eor
repording menu comman8ettings/Define simulation environmégfdr an application othis
technique see in thisppendixthe sample modeBwissPop, Sensitivityand Markoy).

Fifth, it is possibleto insert before or to add after the menus of the standard user interface
additional menus In the first case the calts the routinednstallMenuand InstallCommand
from moduleDMMenusmust precedthe installation of the ModelWorks standard menus, i.e.
the call ofRunSimEnvironmen{Fig. T18). In the latter case, i.e. adding menusttee right of
the ModelWorks standard menus, the routimssallMenwand InstallCommandanust be called

in the routinanitSimEnvwhich has been passed as its actual argumddtatSimEnvironment
Such additional menu commanzkn then be associated with any kind ofgettures, e.g. the
opening of additional windows to display simulation resulte reading of data from files, the
loading and unloading ahodel definition programs, the calling of a compiler etc. Since Mo
deMorks is only based on the "Dialog Machine", a co-operatoexistence of MibeM/orks
objects with other "Dialog Machine" items is already guaranteed by the "Dialog Ma&hine"
(s.a. below subchapteModule Structure of ModelWonkgs.a. Appendix chapterAuxiliary
Library sectionStructModAux for an application of this technique see in fkgpendix the
sample modelMarkovy, GreenHouseCarPollution LBM, and ForestYield.

Sixth, it is possible to associate a handler with a ModelWorks window, e.g. the gvaqolow.
This handler will then be executed as soon as the simulatidiuks into the content of that
window (s.a. AppendixchapteModelWorks Optional Client InterfasectionSimGraphUtils
for an application of this technique see in Appendixthe sample mod&/DPo). .

Seventh, it is not possible ttemove a menu from the standard user interface; yet, with the
"Dialog Mzhine" and ModelWorks it is possilitebuild a completely newser interfacavith
relatively little effort, as the program moduMySimEnv(following below) illustrates.

The user interface dflySimEnvprovidesall basic, i.e. the most frguenly used functions,

which arerequired for interactive simulations. Educational or demonstration programs can be
built similarly, if they ought to offer only a few menu commands instead of the possibiéaes

tured bythe ModelWorks standard user interface, because the latter might only confuse the
beginner.

320n howto work with the Dialog Machine see ti@pendixsectionQuick Referenceshe separate booklet
«InstallationGuide and Technical Reference of the RAMSES software»,F#@HLIN (1986a, b;et al,
1989).

T85

ModelWorks 2.2 - Theory

MODULE MySimEnv;

FROM DMMenus IMPORT Menu, Command, AccessStatus, Marking, Separator, InstallMenu, InstallCommand,
InstallAliasChar, InstallSeparator, DisableCommand, EnableCommand;

FROM DMMaster IMPORT RunDialogMachine;

FROM DMEntryForms IMPORT FormFrame, WriteLabel, DefltUse, RealField, UseEntryForm;

FROM SimBase IMPORT MWWindow, GetWindowPlace, SetWindowPlace, ResetAll, GetGlobSimPars, SetGlobSimPars;
FROM SimMaster IMPORT SimRun, StopRun, InstallStateChangeSignaling, MWState, GetMW State;

FROM MyMDP IMPORT ModelDefinitions;

VAR
simMenu: Menu;
setTCmd, resCmd, openWCmd, runCmd, stopCmd: Command;

PROCEDURE AskForGlobSimPars;
CONST lem =5; tab = 35;
VAR ef: FormFrame; ok: BOOLEAN; cl: INTEGER; to,tend,h,er,c,hm: REAL;

BEGIN
cl := 2; GetGlobSimPars(to,tend,h,er,c,hm);
WnteLabeI(cI lem,"Global simulation parameters:"); INC(cl);
WriteLabel(cl,lem,"t0"); RealField(cl,tab,7,to,useAsDeflt, MIN(REAL),MAX(REAL)); INC(cl);
WriteLabel(cl,lem,"tend"); RealField(cl,tab,7,tend,useAsDeflt, MIN(REAL),MAX(REAL)); INC(cl);
WriteLabel(cl,lem,"h"); =~ RealField(cl,tab,7,h,useAsDeflt, MIN(REAL), MAX(REAL)); INC(cl);
WriteLabel(cl,lem,"hm"); RealField(cl,tab,7,hm,useAsDeflt, MIN(REAL),MAX(REAL)); INC(cl);
ef.x:= 0; ef.y:= -1 (*display entry form in middle of screen*);
eflines:= cl+1; ef.columns:= 55;
UseEntryForm(ef,ok);
IF ok THEN SetGlobSimPars(to,tend,h,er,c,nm) END;

END AskForGlobSimPars;

PROCEDURE OpenWindows;
VAR x,y,w,h: INTEGER; enabl: BOOLEAN;

BEGIN
GetWindowPlace(MIOW, x,y,w,h, enabl); SetWindowPlace(MIOW, x,y,w,h);
GetWindowPlace(SVIOW, x,y,w,h, enabl); SetWindowPlace(SVIOW, x,y,w,h);
GetWindowPlace(PIOW, x,y,w,h, enabl); SetWindowPlace(PIOW, x,y,w,h);
GetWindowPlace(MVIOW, x,y,w,h, enabl); SetWindowPlace(MVIOW, x,y,w,h);
GetWindowPlace(TableW, x,y,w,h, enabl); SetWindowPlace(TableW, x,y,w,h);
GetWindowPlace(GraphW, x,y,w,h, enabl); SetWindowPlace(GraphW, x,y,w,h);

END OpenWindows;

PROCEDURE StateHasChanged;
VAR s: MWState;
BEGIN
GetMWState(s);
CASE s OF
| noSimulation: EnableCommand(simMenu,runCmd); DisableCommand(simMenu,stopCmd);
| simulating: DisableCommand(simMenu,runCmd); EnableCommand(simMenu,stopCmd);
ELSE
END(*CASE¥);
END StateHasChanged,;

BEGIN
InstallMenu(simMenu,"Simulation",enabled);
InstallCommand(simMenu,setTCmd,"Set time...",AskForGlobSimPars, enabled, unchecked);
InstallSeparator(simMenu,line);
InstallCommand(simMenu,resCmd,"Reset all",ResetAll, enabled, unchecked);
InstallSeparator(simMenu,line);
InstallCommand(simMenu,openWCmd,"Open windows",0OpenWindows, enabled, unchecked);
InstallSeparator(simMenu,line);
InstallCommand(simMenu,runCmd,"Run”,SimRun, enabled, unchecked);
InstallAliasChar(simMenu,runCmd "R")
InstallCommand(simMenu, stopCmd Stop (kill)",StopRun, enabled, unchecked);
InstallAliasChar(simMenu,stopCmd,"K");
InstaIIStateChangeslgnallng(StateHasChanged),
ModelDefinitions;
ResetAll;
RunDialogMachine;

END MySimEnv.

Finally it is also possible to use only some parts of the stamdardnterface, e.g. just the O
window for the parameters, or even no user interfatall. The latter, a batch-type simulation
program, might just declare a model and the corresponding model objegtgrticular some
monitorable variables with the stagling activated (vriteOnFile and will then callSimRun
from SimMastetto solve themodel. The simulation results will be written to the stash file
only. In combination with the "Dialog Machine", almost endless possibilities open up for the
implemertation of simulation tools tailored to specific applications.

T 86

ModelWorks 2.2 - Theory

5.2 Modelling

5.2.1 THE MODEL DEVELOPMENT CYCLE

The modelling process consists of the model development cycle with theegigpg, compila
tion, and execution of the model definition program (Fig. T27).

This process begins with a mathematical model given in form of the Equ. (8) c@spectively

(6), (7) to (10). Then the modeller or client has to write the so-caltemtiel definition
program which represents an ordinarllodula2 program, consisting of one or several
modules,which import from ModelWorks client interface and are programmed accordingly to
the rules described in this text. Typically at leas¢ model with at least one state variable and
at least one dynamic equation (Eq. 4.1, 5.1, or 6.1) already represents such a dediéion.

The resulting program is then capable to solve numerically the ingiale problem of the
currently declared system of differential etiolas (DESS), and/adifference equigons (SQM),
and/or discrete event system specification (DEVS). This corresponds to a translationqfrocess
the initial value problem of thenahematical model to a simulation model. The latter may also
be termed aumerical problem with the initial vaks, model and global simulation parameters
as inputsplus the monitorable vaales as oytuts. The algorithms are given by the run time
system of ModelWorks.

Y

Edit

\

Compile

!

Si mulation

|

Fig. T27: Flow chart of the development cycle ModeWorks model defition
programs. The modellevrites model defition programs by means of an editor,
compiles and eventually links them, and executes them to olsiamulation
resultss.

The «Mini RAMSES Shell» and some sessions of the «<RAMSES Shell» provide tmeans
facilitate the development cycle. particular does the «Mini RAMSES Shell» automatically

33Note, the <RAMSES Shell», in particuthe «Mini RAMSES Shell», substantially simplify this cycle for
the modeller and perform many tasks automaticatlpwever, in order to obtain maximum efficiency during
simulations, the principle remains the same.

T87

ModelWorks 2.2 - Theory

switch between the steps shown in Fig. T27 and even hides the compilation step completely.
The user just switches between the two roles (padtbrialFig. T1) simulationist (simulation)
and modeller (edit) only.

5.2.2 STRUCTURED MODEL DEFINITION PROGRAMS (MODULAR MODELING)

A model definition program may be built from as many modules asthkeller wishes. Tpi-
cally structured modslare built fromseveral modules (external or library modules), each sub
madel corresponding to a Mode?amodule (Fig. T28; see alsédppendix chapter Sample
Modelsthe sample mod&reenHous@r LBM andFISCHLIN, 1991).

If the modeller makes use efiodular modelingthe only thing to pay attention to, is to make
sure that outputsom one submodel are cquited in its procedureutput and the depending
inputs of another submodel in its pedureinput(Fig. R16).

The structure of the model The structure of the Modula-2 prog ram

ModelMaster.MOD

Input to Model 1

Model 1 v Output of ModelDeclarations
x1 Model 1

Declaration of Model1 I I Declaration of Model2 I

| |
Qutput of Qutput of
Model1 (y1) Model2 (y2)

Modell.DEF

Modell.MOD

Model2.DEF

Model2.MOD

IE> Model 2 E>
x2 Output of

Input to Model 2 Model 2

Fig. T28: Mapping of a structured model composed of subsystems (left) onto
a Modula2 model definition program (right). The outputs are exported byldfe
nition modulegDEF) and imported by the implentation modules (MOD) of the
other submodel.The program modul®odelMastelinks both submodels by in
porting and executing the submodel declaratiomdl modules together form the
madel definition program.

5.2.3 STRUCTURED SIMULATIONS (EXPERIMENTS)

The modeller may also programstiuctured simulatigna so-called ModelWorkexpenment.
Typically an experiment consisté many simulation runs and will call ModelWorks ftinas
similar to the way thesimulationist would use them. The latter is useful to relieve theist
tionist from cumbersomagpetitive command sequences or if simulations are used as parts of
complex algorithms. For instance in ordercreate a phase pi@it the simiationist would
have to assign a series of different initial values to the state Vasiab well as to start after
each assignment a simulation run. The same can be plisbed by prgramminga structured
simulation which the simulationist then can activate by a singlencand fromwithin the simu
lation environment. During the development phase modeleftega thoroughly explored inter
actively; whereas, once fully developed, there arises the need for a sensaindlysis or pa
rameter idetifications etc. Adding the needed program section in form ekpariment allows
to accomplish such tasks without having to modify the existing model definition code.

T88

ModelWorks 2.2 - Theory

An elementary simulation run can be started via the client interface by calling pro&aechiRen
from moduleSimMader. A structured simulatioror experiment consists typically of se
qguence of calls to poedure SimRun, but all functions offered by thelient interface may be
used to program a structured simulatexperiment (for the few exceptional effects of some
functions see sectioManipulating the model base at run-JimeThe following example
illustrates a situation in which four initigtate vectors ([x,y] = [1, 1], [2, 2], [-1, -1] and [-2,
-2]) for a second order system of differential equations are to betaspduce a phase
portrait. Each combination will be used in a separate lsitian run:

PROCEDURE MyExperiment;

BEGIN

SetSV(m,x,1.0); SetSV(m,y,1.0); SimRun;
SetSV(m,x,2.0); SetSV(m,y,2.0); SimRun;
SetSV(m,x,-1.0); SetSV(m,y,-1.0); SimRun;
SetSV(m,x,-2.0); SetSV(m,y,-2.0); SimRun;
END MyExperiment;

For more details see ithe chapterSample Modelf the Appendix the sample model
LVPhasePlat

Structured simulations are useful for a sensitivity analysse alsdppendix chapterSample
Models the model Gauseldentjf or a parameter identification(s.a. the sample model
Gauseldentjf To illustrate this point the exampte a little sensitivity analysisis presented
here: Given a set of n model parameters and for each parameter a triple of valubs, liogver
boundary of a confidence interval, the mean, and the uppendary of the confidence interval
(a = 5%) we can declare the following data structure:

CONSTn=3;
TYPE PVal = (cur, min, mean, max);
PType = RECORD
v: ARRAY [cur..max] OF REAL;
descr,ident,unit: ARRAY [0. 64] OF CHAR;

END;
VAR p: ARRAY [1..n] OF PType;

The sensitivity analysis may then be implemented by the following procédyExperiment
which represents a generic recursive solution for any number of parameters:

PROCEDURE MyExperiment;
PROCEDURE Sensitivity(i: CARDINAL);
VAR j: [min..max];
BEGIN
FOR j:= min TO max DO SetP(m,p[i].v[cur], pli]. v[]])
IF i<n THEN Sensitivity(i+1) ELSE SimRun END
END(*FOR*);
END Sensitivity;
BEGIN
Sensitivity(1);
END MyExperiment;

For more details see ithe chapterSample Modelof the Appendix the sample model
Sensitivity.

5.2.4 MODULE STRUCTURE OF MODELWORKS

The ModelWorkslient interfaceused by thenodeller consists of a mandatory and an optional
part The mandatory part (kernel) csts of théwo library modulesSimBaseandSimMaster
and the optional part ehe modles SimDeltaCalc SimGraphUtils Simintegrateand SimOb-
jects(Fig. T29). Any model definition program has to import at least from the mandatory
client interfaceand may import from the optional client interface and doeiliary library
AuxLib.

ModelWorks itself consists of the 5 modules providingdient interface and in the current
implementation of 23 iternal modules. All these modules import only from tBealog Ma
chine", i.e. from the 11 kemel malules OMConversionsDMLanguageDMMaster DMMe-
nus DMMessagesDMStorage DMStrings DMSystem DMWindowlQ DMWindows and
DM2DGraph}y from 10 optional mdules PMClipboard DMClock DMEntryForms DM-
Files DMMathLib resp. DMMathLib2Q DMFloatEny DMPrinting DMPTFiles DMWPict-
10), and from the auxiliary libary AuxLib of the RAMSES software, i.ethe modulesMatrices

T89

ModelWorks 2.2 - Theory

andJumprah Note that all modules from thauxiliary library do import only from the client
inteface of the"Dialog Mahine", from other auxiliary library modules, or from the
ModelWorksclient interface. Thus, ModelWorks together with the auxiliary library can be
ported witrout modification to anynew computer system on which the "Dialog Machine" is
available, regardess of the hardware and operating system.

Model Definition
Program

Optional
Modules:

SimDeltaCalc

SimGraphutils
Simintegrate
SimObjects

ModelWorks
internal
modules

IR

|

Dialog Machine

""Fig. T29: Module structure d¥lodelWorksprograms: Thenodel definition
programimports from theclient interface which consistsat least of the modules
SimBaseandSimMaste(mandatory part).The model definition program may-ac
tually consist of just one program module up to any numberoofules. Some in
ternal ModelWorks modules are prelinkedSimMaster.OBM —— mandatory
imports; - - - optional imports.

Each module of the optional client interface serves a particular purfas®eltaCal@llows to
catulate deiations between simulated and observed data series, wikigequired for model
validations or peameterndentifications (see e.gAppendix sample modeGausédertif). Sim
GraplUtils can be usetd draw into the standard graph window. This tig@ can be used to
draw meauements with error bars into the graph or to customize the graphy dsired way
by using also raines from the "Dialog Machine" moduMWindowlO (see Apperdix
sample model¥DPol Gauseldentjffand Loren3. Simintegratecan be used to integrate a
model only numericallywithout actually ruming a gnuation, in particular without any
monitoring and without affecting the globaldeperdent vaiabde of the simulatiorenvironment.
SimObjectsallows an efficient access to thmodels and mael olects contained in the
simulation environment's model base, for taaceto associate atitional data, such as an
index, an identifier, or measurements, with a ol or model object.

Theauxiliary libraryconsists of many modules, of which the following arepafticular interest
for simulationsidentification JulianDaysRandGenRandNormalReadData StrucModAux,
TabFungand WriteDatTim Identificationprovides optimizatiomoutines which allow to iden

tify unknown malel paamders. Given someneasurements and specific model equations, the
exported aorithms allow to mnimize a performance index, e.g. the swhsquares of the dif
ferences bveen measured and simulated values @&ppendix samplemodel Gausédentif).
JuianDaysprovides functions useful for the m@pg of the simulation time to ndardates
and vice versa. RandGemandRandNormaleturn uniformly(within (0,1]) respedively nor-
maly (N~(u,0)) distributed variates to support sfeasic simulations (seé\pperdix sample

T90

ModelWorks 2.2 - Theory

madels such aBiversity Markov, StochLogGrow,or CarPollutior). ReadDatdacilitaes the
reading of datérom text files (seAppendixsampe modelSwissPoy), for instance when the
user wishes to enter m&aed data into the siuation environment to copeare themwith simu-
lation results (s.a. Apperdix research sample rdel LBM). StrucModAux supports the
implementation of struared models wheréhe submodels reside in separatedoies (sed\p-
perdix sample mdels suctas GreenHouser LBM). TabFuncis usdul if the modeller uses
non-linear funtions, which are defined by a table efipporting points, so-called table func
tions. During smuations the modeller canniealy intempolate or extrapolate needed values
(seeApperdix sample modelSwissPop or UseTabFunc WriteDatTim together with the
optional "Dialog Machine"madule DMClock allows to acessthe built-in computer clock in
order to reord real time events such as tiegin and end of a long simulation experiment (see
Appendixsample modeWarkoy).

Since the auxiliary bray is only based odefined client interfaces, i.e. either the "Dialog Ma
chine" or ModelWorks, the modeller is free to add amdules she wishes. Note also that
some of these auxiliary library modules may deptrahselves again on some not yet used
"Dialog Machine'parts, some ModelWorks clienttéfface modules, or other auxiliary library
maodules. E.g.TabFuncrequires optional "Dialoglachine” modules not used by Kie+
Works, i.e. DMEditFields and the auxiliarylibrary modulesMatrices A parameter idetifica
tion moduleldentification may import from the "Dialog Mhine", from the ModelWorks mo
dulesSimMasterSimBase SimObjectsSimDeltaCalcplus SimGraphUtils and someauxiia-

ry library modules such ddatrices Lists, and Optimizations

For detailed information on the aforementioned library modulepagdll Referencesulrhap
ter Client Interface the Appendix subchapter®efinition Modulesand Quick Referencesnd
for a complete list of all technical aspects the separate bedkkdtllation Guide and Technical
Reference of the RAMSES software».

T91

ModelWorks 2.2

T92

Part Ill: Reference

This reference part contaiasdescription of the usage of every feature ModelWorks offers.
However, it contains onlylittle information on the elementary and typical usage or the
theoretical concepts of ModelWorks. In case you should not be familiar with thecbasapts

of ModelWorks, please read first the ModelWorks tutorial (partin particular you should
read the first chapter of the tutori@eneral Description

The descriptions givein this reference are brief and relate only to specific properties of
individual commands. In order tavoid redundancy they do not explain the general principles
behind a clasef commands and functions of ModelWorks which are described in the part Il,
Theory in particular in the chaptdfunctions

This part contains two chapters:

The chaptelser interfacéists all commandwhich are available to the simulationist via
the user interface.

The chapteClient interfacecontains the specifications of the client interface used by the
modeller. All functions and the usef all program objects exported by the
ModelWorks moduleSimMasteandSimBaseare explained.

Any serious modelling with ModelWorks requires to readeast the Part [IModelWorks
Theoryand the second chapter on the client interface of the PRefirence

Reading Hint: For easier orientation, the pages, figurestaibtes of Part IlIReferenceare prefixed with the
letter R. Within this part figures and tablase numbered separately, starting with Fig. R1 respectively
Tab. R1.

R 93

ModelWorks 2.2 - Reference

6 Standard User Interface

The standard user interfaces of the varibaglelWorks versions differ slightly. This text has
been made for the standard Macintosh vergeeAppendi®y. As long as just the appearance
Is affected by the differing implementations (holds in particular for the IBM PC versidmsh
have a slightly different appearance), the followimjormation should be easy to interpret. In
all other cases particular explanations have been added.

Reading Hint: If there is a functional difference to the standard version, this fact will be stated in a phrase
within brackets with the same font as this exam|iNot available in Reflex and PC versions].

This chapter describes all features and implementational detdMedé|\Works standard user
interface and all its parts. This standartéractive environment is activated by calling the pro
cadure RunSimEnvironmenfrom moduleSimMasterin a model definition prgram [MDP];
since the modeller may customize or extend it easily, it may diffsoine cases; in particular it
may offer more functionality to th@mulationist than provided by the standard interface, func
tions which of course can not be described herein (see also part Il Theory chigger
Interface Customizatipn

Note: In the Macintosh versions it is possible to load several mdeéhition programs
[MDP’s] which all callRunSinEnvironmenton top of each othér[feature not available in static
linking versions such as the PC versions]. Thisallows for example taynamically replace a model
by simply quitting the tomost program and by loadirg alternative model definition pgoam
instead, hereby leaving models declared on lower program levdisuched. For each adid+
nal programoaded dynamically, now calledubprogramthe standard user intiace is exen
ded by four additionahenu commands namebout MDP n...,Quit MDP n Define sinua
tion environment randExecute Experiment of MDR , which are again removed when the
program is quit(n counts the nutver of subprograms loaded which have calRagnSintEnvi-
ronmenj. In particular, the last two commands allow the simulatiotisexecute a sepate si
mulation environment definition procedure or an experinfenteach progm level currently
loaded. For more information on running the interactive simulation environmenfanida
ding of several subprograms on top of each other see alsdl paneory sectionMultiple
activations of the standard user interface

6.1 Menus and Menu Commands

This section explains all menu commands in detail. Margd/often used menu commands can
also be invoked by using the keyboandtead of thenouse. For easier membering the keys
to be used for the keyboard shortcuts are shown togethetheittexts of the menu commands
(Fig. R1). Keyboard shortcuts or so-called keyboard equivalents daezeghby pressing the
conmand key (clover-leaf key) simultaneously with another key "X

Reading Hint: Throughout this reference manual such keyboard equivalents are abbreviate&X4as "/

The following keyboard commands are globally availahléhe simulation environment: In all
entry forms the simulationist may press the Regurnor Enterinstead of clicking into thpush

butonOK. Pressing the keys "." or Escapes equivalent to the clickingto the push button

1A new Modula-2 program moduleladed by calling the proceduBMMaster.CallSubPragnoduleName...),
e.g. via an extra installed menu.

2 |n the PC GEM-Version press the Ctrl-key simultaneously with the key "XheinrPC Windows-Version
press the Alt-key simultaneously with the key "X".

R 94

ModelWorks 2.2 - Reference

Cancel. The latter two keyboardquivalents may also be used to stop a simulation Stmp(
(Kill) run). Pressing the ketabin an entry form allows to move to the next edit field plus to
fully select its content. In some edit fields the key combingsbift tabis available to move
backvards from field to field (e.g. in the data table provided by the modaleFung. While a
sdection is currently made, the simulationist may use within an #eld the key equivalents

" C" for copying the selection into the clipboard, X" to cut (copy plus delete) the selection
into the clipboard, and " B" to blank(delete without copy) the selection. The current content
of the clipboard (if textinay be pasted into an edit field at the current location of the insertion
bar or as a replacement for the current selection by préssiy This technique allows also

to transfer textual dataetween different entry forms and between different applications (given
they support the clipboard for text). If no entry foomother dialogue box is currently in use,
the clipboard accessing keyboard equivalents have the usual meaning (seévisgiovdit).

By pressing " W" the currentlyactive window will be closed, if ModelWorks is run from
within the RAMSES Sheil

6.1.1 OVERVIEW OVER MENUS

Fig. R1 shows an overview of all menus andenu commands of ModelWorks' standard user
interface [n the PC GEM-Version any of the menu commands starting with the phrase All model's...

are missing, but note that these functions are also available in the 10-windows]. |f the modeller im
ports from modul@abFun¢an additional menu will appear (see Fig. At the Appendix see

tion Auxiliary LibrarymoduleTabFung. A detailed explanation of all menus is given below.

Page setup... Hagn 7 Set: Tile windows Start run ®R
Print graph... Global simulation parameters... | Stack windows Halt run (Pause) #H
Cut ®H Project description... #0 & Resume run (#R)
Preferences... Copy #C
Customize... Paste U | Select stash file... #F | State variables %s | Stop (Kill) run #K
Clear #B Model parameters #P | or Stop (Kill) experiment (%K)
Reset: Monitorable variables #M
Global simulation parameters start enperiment EE
Project description Table ®T
Stash Tile Clear table
Windows
Graph ®06
All model's integration methods Clear graph #B

All model's initial values
All model's parameters

All model's stash filing

All model's tabulation

All model's graphing

All model's scaling

All model's curve attributes

All above

Define simulation environment

Fig. R1: All ModelWorks standard menuBhe two grey menus at the very left
indicate menus whictare oty present if ModelWorks is run from within the
«RAMSES Shell».

6.1.2 QUIT COMMANDS

TheQuitcommand appears at the bottom of the second leftmost menu, i.e. the menugbthe
of the " "- or "*"-mena.

3 In the PC GEM-Version keyboard shortcuts function only if a letter is invohente the cancel function
with "Ctrl*." is not available. UsEscapenstead.

4In the PC Windows-Version use the keyboard shortcut "Ctrl*F4" to close a window.

SThis menu will correspond to the ModelWorks mdfile., unless ModelWorks is used from wittémother
environment which has already installed menus to the left of Fide.g. as doethe simulation session of

R 95

ModelWorks 2.2 - Reference

Indeed, thismenu will offer as manyQuit commands as program levels currently existie
PC versions only one program level is supported]. Selecting a quit command whick not the cur
rent top-most program level, results in quitting at once all sub-programs frosetbeted till
the top-most program levelThe keyboard equivalent Q is always assigned to the last com
mand of the menu and allows quitting of the currentrtogt program level.

Quit / Q: Quits the interactive simulation environment of ModelWorks.cdkding to
how ModelWorks is currently used, the application wihange either to the next
lower program level withinthe interactive gnuation envirooment, or to the calling
program of the model definition progrrfPC versions: The MDP is an application which
always returns to the calling program, for instance the operating system].

6.1.3 MENU FILE

Allows to control theprinting of the content of windowGraphand the current settings and
modes of the simulation environment (preferences) (Fig. R2).

Fiie

Fage setup...
Print graph...

Preferences...
Customize...

Fig. R2: MenuFile.

Page setup... Usual page seip dialogue box used for the printing of thie@phon the
currently chosen printerNot available in Reflex and PC GEM-Version].

Print graph..: Prints thegraphon the currently chosen printefNot available in Reflex
and PC GEM-Version].

Preferences.:. Allows to set the modes of the simulation environment (Fig. R3).
Filing

If the simulation environment modAlways document run ostash fileis active, the
stash file is opened at the begin of every simulation regardletbe afurrent setting
for stash filing of the monitoring variables. If this modanactive, the stash file will
only beopened in case that at least one monitoring variable has the stash filing
currently setk). In case you rather use the stéhfor run documentation purposes
than for post run analysis purposes, itrecommended to have this simulation
environment modective. It will then force the opening of the stash file always and
document every simulation experiment, e.g. by documenting dlmgent parameter
settings together with some key results. The recording flags arstiatbie file settings
(F) of the monitorable variables will then no longer affect tie opening, but only
determine which data are to be written to the stash file (s.a. belewu comman®et
Project description. recording flags in sectioMlenuSetting3.

the «<RAMSES Shell». However, note the «<MRAMSES Shell» suppresses this quit command; instead it
offers the menu commarghell/Exit simulation

6 Typically the RAMSES- or the MacMETH-Shell

R 96

ModelWorks 2.2 - Reference

If the modeAsk for stash file typeis activated, every time the simulationist selects a
new stash file, a dialogue is displayed allowing to specifyfiless type and signature
(s.a. below menu commar@elect stash file.).

Preferences for simulation environment modes
Filing (] Always document run on stash file
[] Ask for stash file type and signature
Tabulation [<] Once changed, immediately redraw table
Common rows between page ups in table
Graphing (<] Once changed, immediately redraw graph
(<] Restore graph with colors and high quality

vector graphics for printing and clipboard

Fig. R3: Entry Form otthe menu commanBreferences..shown with settings
recommendeébr the beginner.

Tabulation

If the simulation environment mod®nce changed, immediately redraw tabkctive,
the table is redrawn immediately after each change in the tabusttings. Other
wise the last table will be kept untouched until the next simulation retarsed. Only
at that time the old table is cleared and a new one will be drawn.

The numbeCommon rows between page upsabledefines what happens during a
page up A page up occurs when the table window is full but more rows should be
written; then ModelWorks attempts to erase mosheftable and restarts tabulating
from the top again. This number specifies firetv many rows at the bottom are not
erased but copied to the top of the next pagk.remaining space below is then used
to add the rows of the new pagelhus this number specifies how many rows are
conmon to two consecutive pages.

Graphing

If the simulation environment mod®nce changed, immediately redrgmaphis ae

tive, the graph is redrawn immediately after each changie graph settings. Other
wise thelast graph will be kept untouched until the next simulation run is started.
Only at that time the old graph is cleared and a new one will be drawn.

Activating thesimulation environment modeestore graph with colouandhigh qua
lity vector graphics for printing amtipboardis active, the graph is restored with co
lours when a previously covered grapbrtion becomes visible again or will be prin
ted or transferred to the clipboard in colours and with high quality. If this mdde is
ned off, a bitmap is used for restoring, printing, or transfer into the clipbdpixel
based raster graphics). Graph restoration becomesssary whenever the sifatio-
nist moves, rearranges, or closesndows and the graph window is involved. Note

R 97

ModelWorks 2.2 - Reference

that with this option active, graphs may bestored slower and more memory may be
neeled. Otherwise graphare restored in black and white ohly Vector graphics
cortain data about particular objects and the coordinates defining them; lng. ia
stored as a line object together with the coordinates beggn and end point. Hence
vector graphics areisually of a higher quality than raster graphics. However, the
printing of a vector graph may require too much timerdft quality of a graph would
be sufficient. Note that with this option active complicatgdphs, particularly if
drawn during large experiments, may usetogmendous amounts of memory. On
black and white monitors activate this mode if you wish to use cofwinters or
tranger the graph via the clipboard to otremlour devices. [Not available in Reflex and

PC GEM-Version].

Customize... Allows to customize alias characters (i.e. keyboard equivalenshort
cuts) for the ModelWorks menu commandsirst the simulationist is asked which
type ofcustomizatiorshe wishes to perform (Fig. R4).

Customization of keyboard
shortcuts for menu commands:

[Reset] [Eﬂncel]

Fig. R4: Initial question asked when customizing keyboard shortcuts.

Customization of keyboard shortcuts for menu commands
Settings Windows
Set/Glob. sim. parameters Tile windows

Set/Project description Stack windows

Select stash file... Models
Solve State variables
Start run Model parameters

Monitorable variables M

Table Clear table

Graph IE' Clear graph

Halt run (Pause)

Stop (Kill) run

I=E=EE EIEE
HNEHEE NN

Execute Experiment

Cancel

Fig. R5: Customization of keyboard shortcuts.

The choice’Edit” allows to modify thé&eyboard shortcst for the frequently used
menu commands (thedte menu commangslisted in the entry form shown in

"Notethat these simulation environment modes have no default values. The current values are written in the
resource forkof the MacMETH-Shell. They are read from there at the start-up of your model definition
program.

R 98

ModelWorks 2.2 - Reference

Fig. R5. For the actual meanings of these commands see the explanations of the
menusSettings SolveandWindows

Reset keyboard shortcuts for
@ core menu commands as interactively customizable

v all menu commands

Fig. R6: Resetting of keyboard shortcuts.

“Resetbffers the possibility to reset the keyboard shortcuts for the core menu com
mands, or for both, the core and all other ModelWorks menu comntareleined
values (Fig. R6). Thepredefined values for the core menu commands are shown in
Fig. R5. For the other menu commands, which may be moditiedugh the Model
Works client interface, the default consists in no keyboard shortcuts being installed.

6.1.4 MENU EDIT

MenuEdit allows to transfer texts such as parameter values or the contentvahtt@v Graph
within ModelWorks' simulationenvironment respectively to import or export such objects
among ModelWorks and other applications (Fig. R7).

El

Bengdny RS

Cut #H
Copy #C
Paste 2D
Clear B

Fig. R7: MenuEdit

[The whole menu is not available in the Reflex and PC GEM-Version].
Undo/ Z: not available (present only for compatibility with user interface guide-lines).

Cut / X: Clears the graph and copies it into the clipboard if no other window @han
ModeMWorks window is the front most window Otherwise, e.g. if a desk accessory
is the front most window, this command will perform the stand&udt command as
degribed in the compute@wner's handbooks The quality of the transferred graph
depends on the current simulation environment mode as described undecomnu
mandFile/Preferences...

Copy/ C: Copies the graph into tlepboard if no other window than a ModelWorks
window is the front most window. Otherwise, e.g. if a desk accesseryhe front
most window, this command will perform the standa@bpy command as described

8For instancévacintosh owner's guide

R 99

ModelWorks 2.2 - Reference

in the computer owner's handbooks. The qualityhe transferred graph depends on
the current simulation environment mode as described ungemu command
File/Preferences...

Pasted V: If a ModelWorks window is the front most window, the current content of
the clipboard is pasted into the graph window.

Clear/ B: Clears the graph if no other window than a ModelWorks window i$rtre
most window. Otherwise, e.g. if adesk accessory is the front most window, this
command will perform the standar@learcommandas described in the computer
owner's handbooks.

Keyboard equivalents of these commands are available often even whemitklation ewiron-
ment is in a mode which prohibits choosimgnu commands, e.g. when an entry form is-mo
mentarily in display. The meaning of these commaisdthen such that textual objects such as
paameter values and not the graph are exchanged witblifni@oard. For a more detailed des
cription of these commands see the first section of this chapter.

6.1.5 MENU SETTINGS

This menu consists of four parBet, Select stash file.. ResetandDefinesimulation environ
ment (Fig. R8).

Set:
Global simulation parameters... I
Project description... 0
Select stash file... #F
Reset:

Global simulation parameters
Project description

Stash file

Windows

All model's integration methods
All model's initial values
All model's parameters

All model's stash filing

All model's tabulation

All model's graphing

All model's scaling

All model's curve attributes

All abope

Define simulation environment

Fig. R8: MenuSettingsusedto set or reset current values and to define current
settings of the simulation environment.

R 100

ModelWorks 2.2 - Reference

The first part lets you set tlygobal simulatiorparametes such as the simulation start and stop
time, plus the project description. The second determivigsh file is going to be used as the
stash file. The third is used tesetthe current values of global parametessftings, and of
madel objects; resetting means to copy the defaults toctiheesponding current values
(Fig. T17 part Il Theory. [The PC GEM-Version will not offer any of the menu commands starting
with the phrase All model's...(but note, these functions are also available via the 10-windows)]. The
menu’s last part lmiws you to execute a pcedure whichmay have been installed by the
modeller via the MdeMorks client interface and which is tgaily usedto (re)define
simulation environment sigs according to your individual needs.

Set

Set Global simulation parametefs |: Displays an entry form (Fig. R9a-b) to set the
global simulation parameteisuch asheintegration step. Note that all of thesaagpa
meers are valid globally, i.e. they determirtene and integration parameters for all
present (sub)models togetheHereby, the start and stop time for the simulation and
the monitoring interval can always be edited, whereas all remaining parametefisemay
ignored in the entry form, depending on the kind of models whiclpegsent (see ex
planations below and Fig. R9a-b).

Start time for simulatioft/ko]: The next simulation run will start with thigme.
Stop time for simulatiofte,{k¢]: The next simulation run will stop with this time.

Integration ste [h]: If at least one continuous time (sub)model is presenttlineis
fixed time step for the numerical integration of thaifferential equéons.
Moreover, if a variable step lengtimtegrationmethod is in use by at least one
of the continuous time (sub)models, this simulation parameter becomes the

Maximum integration stef,5: The actual integration step wile deter
mined by the variable step numerigaegration algorithm and globally used as
the integration step for all otheubmodels, even if they should be solved with
a fixed step length method.

Maximum relative local errge,]: If at least one continuous time (sub)model is
using a variable step length integration methits simulation parameter s
minesthe maximum relative local integration erestimated by comparing a
higher orderesult with a lower order result. If a norm of this error vecgpr |
divided by a norm of the state vectg} ¢xceeds,ethe integration step length h
is halved till §| / | x| <= e . Otherwise hs doubled unless one of the [fok-
ing two conditions would become trug | | x| > e, or h>h 5

Discrete time stefg]: If only discrete time (sub)models gyeesent (case B) ¢ may
be edited in place of the integration steplin.this case however, the actual va
lue of c is irrelevant, since the length of an interval between two disdrete
points has no true meaning. nbtonly discrete time, but also continuous time
(submodels are present, ¢ may be edited in additiom tand becomes the
Coincidence intervalc] (see also part TheorychapteModel Formalisms

Monitoring intervallhy): Interval atwhich the values of all monitorable variables are
either written onto the stash file, tabulated in the table, or drawn into the gdegen
ding on their currenonitoring settings. Note, that if a discrete event model is pre
sent with at least one monitorable variable activated for stash filiagulation, or

9The smaller the step h is, the more accurate is the calculation (unless h gets soasrtralhcation errors
become dominant); the larger h is, faster runs the simulation. Therefore the simulationist has to select a
good compromise, which gends on the integration method ugedon the nature of the model.

R101

ModelWorks 2.2 - Reference

graphing, in addition to the regular monitoring givenlyy, monitoring will also take
place at every occurrence of a discrete event.

Start time for simulation:

=

S$top time for simulation: 30.

Integration step h:

Maximum relative local error: (ignored)
Coincidence interval c: (ignored)
Muonitoring interval:

Fig. R9a: Entry formGlobalsimulation parameterg | for a case where only
cortinuous time (sub)models witla fixed step length integration method are
present.

Start time for simulation:
Stop time for simulation:
Manimum integration step h:
Maximum relative local error:
Coincidence interval c:
Monitoring interval: 0.25

Fig. R9b: Entry formGlobal simulation parameters | for a case where some
continuous as well discrete timfsub)models are present. In addition a variable
step length integration method is used.

Set Projectescription../ D: Displays the entry form to edit a global projéescription
and control the recording of data on the stash file (Fig. R10).

Project title String whichcan be freely used to describe the on-going project, i.e.
for instance a title fothe current simulation session. If the menu command
Printgraph... is chosen, thisProject titlestring will always be printed in bold
above the graph. However, the graph displayed and transferredhetalip
board will contain this string only if the flagse in Graphhas beerchecked.

In the graph window this string will be displayed in the middle anthattop of
the data panel.

R 102

ModelWorks 2.2 - Reference

Remarks String which can be freely used to add some remankshe on-going

project. For instance may be used as a sub-titl

e similar to the project title

string or itmay contain some information on specific model parameter settings
used in the simulations. If the menu commddeht graph...is chosen, this
Remarksstring will alwaysbe printed just below the title in a smaller font and

with style plain. However, the graph displayezhd
board will contain this string only if the flagse in
In the graph window this string will be displayed
the bottom of the window.

transferred into the clip
Graphhas beemrhecked.
to the right of kbgend at

Project title

< Use in Graph

Remarks

B Use in Graph

Footer (<] Automatic date & time

update in footer

|Il]a"ME|ra"'1993 16:02 Run 1

Record data on the stash file during simulations for:

[<] Models

[JM™odel parameters

Cancel

[] state variables

(<] Monitorable variables

[JT1able functions
[J Graph

Fig. R10: Entry formProject description./

D

Footer By default the footer contairtee date, the time, and the simulation run

number, but itmay also be used to store any other information. If the flag
Automatic data & time update in footerturned on, ModelWorks willpdate
this informationat the begin of each simulation run. If the menu command
Print graph...is chosen, this footer string will always be printeda small font
size below the graph. However, the graph transferimetd the clipboard will
never contain this string.

Record data on tretash fileduring simulations forWith thesaecording flagghe
simulationist may control which information and values are writterio the
stash file. Check the appropriate boxes for models, model parameters, state
variables, monitorable variables, table functions and fraph if you wish to
have them written onto the stash file at the begin (for all except the graph} and
the end (graph only) of simulation runs.

Note thatthe flagsModels Model parametersState variableand Monitorable
variablesmean that information about these objects is written to the &tash
They are: the descriptor, the identifier, the ufuhless a model), and the object
specific current values.

Except for the monitorable variables, information about all objeeis be
recorded. In case of the monitorable variables dinéyinformation about those
monitorable variables recorded, which are involved in the stash filing) (or

in the graphX orY). The latter requires also that the corresponding recording
flag (Graph see below) has been set.

R 103

ModelWorks 2.2 - Reference

The recording flagGraph controls whether graphical simulation results are
written to thestash file. [Graph recording not available in Reflex and PC GEM-
Version].

Note that ModelWorks will record information on the stashdiléhe begin and
end ofeachsimulation run, in particular also during experiments.

The optional recording flagiable functionss only shown if at least ongble
function is present (s.a. se@ppendix section Auxiliary Library module
TabFung. It then allows to control whether the current values and settings of
all table functions are written to the stash file.

Thestash filds written in the so-called RTF-Forniftwhich can be opened by
the Microsoft® Word, WriteNow™, oMacWrite [l document poesing
softwarell. Opening the file with other text editors whichnnot interpret RTF

is also possible; however, neither tigeaph nor the RTF control strings can be
intepreted and remain dispersttdoughout the text and distort its appearance.
However data from simulation results are written in a formvaich allows to
paste or importhem directly into many other applications, such as the spread
sheet program Excel from Microsoft® tve presentation gphics program
Cricket Graph2. The format of the stash file has also beesigied to allow
for an efficient and simple post simulation analysis. Intipdar checkthe
recording flags for models and monitoring variables if you wstproduce a
stash-file which can be used successfully by a post antlysis

Note that in case th&mulation environment modAlways document run on
stash fileis currently not active, the recording flag settings are irrelevanbif
monitoring variable has currently the stash §itdting active). Only as soon
there is at least one variable, the stddd will be actually opened and the
recording flags then control which information is written onto the stashrfile
addition to the simulation results. If you plan to run a post anaiymis the
stash file, you should at least have the recording fidgslels and Monitorable
variablesactive. If you rather use the stash file for @mcumentation purposes
it is recommended thave the simulation environment moddéways document
run on stash filactive. The recording flags together with the stash file setting
(F) of the monitorable variables withen solely control the kind of information
and data written to the stash file (s.a. menu comnfarederences.)..

Select stashile.../ F Allows to select stash file (Fig. R11, left) with the usual open
file dialogue box. Note that this commamdll not really open the file until the
simulation starts. This behaviour offers the advantatimt the simulationist may
open it for inspection whenever the simulation environment is in $tatsimulation

In case the modd@sk for stash file type is activated, the stash file selection is
followed by the dialogue shown in Fig. R11 (right) . The file's typad signature

10RTF stands forRich Text Format. It is based on ASCII characters only but contains coded formatting
information that can be interpreted by many commercially marketed text procepgiigations on various
computer platforms.

11Microsoft® Word is available from Microsoft® Corporation. WriteNowi#s been written by Anderson,
D.J., Tschumy, B. & Stinson, C. and is available from NeXT Inc. MacWrite Il is available from Claris Corp.

12Cricket Graph is a program to editd produce presentation graphics for science and business by Rafferty, J.
& Norling, R. and is available from Cricket Software Inc.

13The current version dflodelWorks does not feature a post analysis session. However, the RAMSES post
simulation analysis tool allows to explore, interactively or under program control, simulation aadutither
data contained in any ModelWorks stash-file.

R 104

ModelWorks 2.2 - Reference

may then be typed in the respective fields or set by example, thebgtslecting any
applicationor document by means of the standard open file dialogue piGxtypes
and signatures are not available in Reflex and PC versions]

[£2 Ramses 2.2b5 « = Macintosh HD

0 Modelllorks 2.2
D1 oedpsdplifinria Bay
D Parmmiier BRY
O RAMSESLID 2.2
[0 Resources

[0 RMSBase 2.2

Stash file type TEHT
signature (creator) |RAMS

[Set by example |

Stash file: _
[ModelWorks.DaT |

Fig. R11: Dialogue box Select stash file../ F (left) and dialogue for
specification of stash file type and signature (rigfi§ types and signatures are not
available in Reflex and PC versions].

Once a simulation startge. ModelWorks enters the program st&ienulating the
stashfile will be automatically opened and remains open till the sEeulatingwill

be left. Sinceduring a whole structured simulation ModelWorks remains in the state
Simulatingthis means that all resufi®m all simulation runs are normally written on
the same stash file. The default name usethe file selection dialogue box is the
current stash file name. Note that if there is not at least one monitmaidéle
present forwhich the current stash filing setting is activateB(iteOnFile,
ModelWorks will never open a stash file regardle§she current settings of the
recording flags (this behaviour may be overridden by means of the simukation
vironment modeéAlways document run on stash fjleee above).

Reset

Theresetmenu commands (Fig. R8) assign to the selected elemehgggfault valugs) (s.a.
section on Resetting, Fig. T17 part Mheory. The latter have been defined the modeller in
the model definition program tyxave been predefined by ModelWorks. All commands in this
menu operate on the scope of all models respectivebbgtts of all models (Fig. T26 part Il
Theory); other scopes are available in the 10-windows only.

Reset Global simulation parametdrResets all global simulation paraeres.

Reset Project descriptiorResets all strings and flags usedéscribe the current project
to their defaults.

Reset Stash fite Resets the stash file name, type and signature.

Reset Windows.All windows are reset to their default status. Typically, thi#l recon-
struct the state entered after start up of the interactive simulation environment.
Hereby, individual windows may be (re)shown, hidden, or repositioned, and dtr
I0-windows the original set up for the display of columns is assumed.

Reset All model'sntegration methods Resets the integration methods of all models.
[Not available as a menu command in Reflex and PC GEM-Version].

Reset All model's initial values Resets thénitial values of all state variables of all
models. [Not available as a menu command in Reflex and PC GEM-Version].

R 105

ModelWorks 2.2 - Reference

Reset All model's parameterfesets all parameters of all modelplot available as a
menu command in Reflex and PC GEM-Version].

Reset All model's stash filingResets the stash file settivgiteOnFile notOnFilg of all
monitorable variables of all models. The stash file name and direasodgfined with
the menu commandéelect stash file...is not affected. [Not available as a menu
command in Reflex and PC GEM-Version].

Reset All model's tabulationResets the tabulatiaettings \riteInTablé notinTablg of
all monitorable variables of all models]Not available as a menu command in Reflex and
PC GEM-Version].

Reset All model's graphing Resets the graph settingsX/isY/notinGraph of all
monitorable variables of all model$Not available as a menu command in Reflex and PC
GEM-Version].

Reset All model's scaling Resets the minimum and maximum values used for the
scaling of all moribrable variables o&ll models on the ordinate. These scaling
extremes define the range of interest (Fig. T2 peutoria) and are useduring the
drawing of values of the monitorable variables in the grapint available as a menu
command in Reflex and PC GEM-Version].

Reset All model's curve attributeResets theurve attributesf all montorablevariables
of all models to their default valuegNot available as a menu command in Reflex and PC
GEM-Version].

Reset All above Encompasses a reset of all reset commands listed above, in particular:
resetting of the global simulation parameters, of the prajescription, of the stash
file, of the windows, of all integration methodf®r all models, of all initial values, of
all parameters, and of all monitoring settinggtash filing, tabulation, graphing,
scaling and curve attributes). See Resetting in the daebry If the modeller has
notchanged any defaults by callingSatDefltprocedure (see this part chap@ent
InterfacesectionModification of defaulty since the simulation environment has been
started up, the simation environment'status and the current values of all objects
will be exactly the same as they were right after the starbf the model definition
program. However, since table functions are optilty added objects, note that this
command does not affect, i.e. not reset, tharent values of a table function; use the
separate reset function providey moduleTabFunc(seeAppendix sectionAuxiliary
Library moduleTabFung.

Define simulation environmer€allsthe procedure which was installed by the modeller
by means onstallDefSimEn\see this part chapt@lient InterfacesectiorRunninga
simulation sessign in particular procedure InstallDefSimEnv from module
SimMastéex. If no such installation has been doriee menu command will appear
dimmed (inactive) and can not be chosen. For every additional program leviicht
the simuation environment habeen started, an additionBlefine simulation enviren
ment command is appenddd theSettingsmenu in the static linking versions such as
the PC versions only one program level is supported]. Note that a procedure associated
with the menu command has already been called at least once during the efatfteip
interactive simulation enviromenton the respective level. Be warnghdat it should
not erroneously contain calls to procedures, which musbeatalled repeatedly. For
instarce, the installatiorof an additional menu should normally only be done once
when starting up the intactive simulation environment (sedso chapteiSimulation
environmensectionSimuationsin the previous part ITheoryand the next chapter
Client interfaceof this part).

R 106

ModelWorks 2.2 - Reference

6.1.6 MENU WINDOWS

This menu contains all commands which operate on windows (Fig. RIl2)e conmands can
be used to rearrange all windows, to open a window, or to bring theofront, and to clear the
graph or table window. If the simulationistoses a window, ModelWorks remembers its size
and position and will reopen it at the same place it was positioned before its closing.

Tile windows
$tack windows

MModels
$tate variables S
Model parameters P

Monitorable variables ¥M

Table T
Clear table

Graph A 1
Clear graph B

Fig. R12: MenuWindows

Tile windows All IO-windows, plus the table and graph window are closed and re
opened so thahey do no longer overlap. On small screens the 10-windows for the
state variables, model parameters, amdnitorable variables are shown beside each
other on top of the screen, on larger screens all four |IO-windoeslisplayed in two
rows on top of the screenThe remaining windows are fit into the bottom portion of
the screen, making the graph window as large as possilie column display in the
IO-windows is also affected. Only the short identifiade) and thecurrentvalue
cdumns areshown: current integration method for models, current initial values for
state variables, current values for model parameters, @mdent monitoring settings
for the monitorable variables.

Stack windows All IO-windows, plus the table and graph window attosed and re
opened ira stacked way. The locations and sizes of all windows, plus ttencios
displayed in thdO-windows are the same as at the begin of a simulatiosiocses
However in contrast to that situation, the table and the graph window are also opened.

Models The 10-windowModelsis opened respectively brought to the front.

State variablgs S: The I0-windowState variables opened respectively brougiat the
front.

Model parametels P: The 10-window Model parameters opened respectively
brought to the front.

Monitorable variablés M: The 10-windowMonitorable variables opened respéee-
ly brought to the front.

Table/ T: Thetablewindow is opened respectively brought to the front. If there are
no monitorable variables which have an active tabulation settig ome Model
Works versions may not allow to open this window in the program Simteilating

R 107

ModelWorks 2.2 - Reference

Clear table This command clears the table, i.e. erasescthatent of the table window if
it is currently open.

Graph/ G: Thegraphwindow is opened respectively brought to tinent. If there are
no monitorable variables whidhave an active graphing setting/icY), some Model
Works versions may not allow to open this window in the program Stiatellating

Clear graplt B: Clears lglanks) all curves in the panel of tlggaphif the graph win
dow is currently open. If the latter conditias true it is the same command as
Edit/Clear(see abovéMenu Edij.

6.1.7 MENU SOLVE

If a simulation is started by any tife menu commands available under this menu (Fig. R13),
ModelWorks will enter the stat®imulating(Figs. T15, T16, and T24 part [ITheory)

Start run ¥R
Halt run (Pause) 3H
& Resume run (%R)
Stop (Kill) run %K

ar Stop (Kill) experiment (#K)

Start experiment #E

Fig. R13: MenuSolve

Start run/ R: Starts an elementasymulation runwith the current settings @il values.
Previously drawn curves are not erased unldssnanded by a change of the graph
setings since the last simulation (a curve addetkaroved, scaling changed). In the
upper rightcorner, the current run number (k) and the current simulation time (t) are
displayedin a small wirdow ('k: t'). This command lasts as long as the simulation
runs. It may be terminated by the simulationist (menu comnsaagd (Kill) run) or
by the modeller, i.e. if the simulation timeaches the stop time or if the installed ter
mination condition returns trueNote that the menu commaithlt run (Pausejloes
not really terminate this command.

Halt run (Pause) H or Resume rud R: Temporarily halts or pausesiaulation run
if the current program state &8mulating The new program state enteredPisuse If
the current program stateRawusethis menu command wililesume the interrupted-si
mulation run where it has been left, i.e. reentée stateSimulatingand continue with
the integration, monitoring etc..A pause can be used to study a curve or a tabulated
result in more detail, or can be used to change mpdedmeters in the middle of a si
muation. Notehowever, that current values of model parameters can only bai-mo
fied if the flagrtc (run time changehas been set for that particular paramefgey -
board equivalent for Resume run is not available in the PC GEM-Version].

Stop (Kill) run/ K or Stop (Kill) experimen{ K: This command terminatése smu-
lation before the simulation time reaches the stop tyngki. It is the only menu com
mand within the standard simulation environment which allows to termiaasengle
simuation run or a structured simulation (experiment) interactively.

R 108

ModelWorks 2.2 - Reference

Start experiment E: Executes the currently installetructured simulatigna so-called
experiment. It enters therogram staté&imulatingand calls the procedure which has
been declared as tlimExperimentprocedure by the model definition program (see
(see this part chapt@iient InterfacesectiorSimulationControl andStructured Snu-
lation Runsin particular procedurénstallExperimenfrom moduleSimMastex. If no
such procedure has been installed, this commandapiiear dimmed (inactive) and
can nobe chosen. For every additional program level at which the Isition ervi-
ronment has been started, an additioB&rt experimentconmand is appended the
Solvemenu [The PC versions support only one program level].

If the monitoring settings for the stash filing of lakst one monitorable variable is set
(F/writeOnFilg, a stash file with the current stash file name is automatically opened andrdata
written onto it according tthe current recording flags (see menu commBrmject desrip-
tion...). However, this behaviour depends also on therrent simulation environment mode
(see above menu commakde/Preferences.). In case that the mod&lways documentun

on stash filas currently active, the stash file is opened evethd stash filing is set for no mo
nitorable variable.

Important notice: Incase there exists already a file with #ane name as the current
stash file name, this file will be overwritten without any warnidg! Due to the nature of tier
adive simulation, the overwritingis quite normal and frequent and causes usually no harm.
Hence, the display of an alert would be too cumbersobug,the quiet overwriting can become
dargerous if the modeller programs the stash file name errong@esgithis part chapt&lient
Interface sectionDisplay andMonitoring in particular proceduresSetStashFileNamend
SwitchStashFildrom moduleSimBasg

If the monitoring settings for tabulation or graphing are activated, at begin of a singl&ation
run or ofa structured simulation the corresponding windows are automatically opened or
brought to the front. If already any of the windowableor Graphis the front most window,
ModelWorks will not automatically open the other window or bring itite front. This allows
the simulationist to suppress the automatic opening or bringing to thefrether the table or
graph window by bringing first the other one to the front before she staressumes a sida-
tion. If there are no monitorable variables which have an adimilation setting T{writeln-
Tablg, the table window may not remain open and will be automatically closed in cakeutd
be already open at the begin of the simulation. If there are no monitgaaisldes which have
an active graphing settingy/sY), the graph window may natemain open and will be autte
tically closed in case it should be already open at the bédie simulation. In all other cases
ModelWorks leaves the windows where they are.

6.2 10-Windows (Input-Output-Windows)

IO-windows serve the entering of new current valifggout) and the display of the current-va
lues Qutput) of all models and model objects momentarily preseioidelWorks model base.
For a descriptionf the general operation of IO-windows see also the section on 10-windows
and for the states in which 10-windows accept input see Fig. T24 in pddory.

If an IO-windows is currently active, i.e. it ighe front most window and enabled, the key
board'snavigation keys (page up/down, home etc.) can be used to scroll and the cursor keys
(cursor up/down) plus kex to select items respectively models or model objects (Tab. R1).

14\When using the mentcommandSelect stash file.the simulationist will always be first asked if she really
wants to overwrite in case there should already exist a file with the same name as the stash file.

R 109

ModelWorks 2.2 - Reference

Key Button Requires| Effect
(keyboard] (push selection
shortcut) [button)

Cursor up - no Selects the adjacent line respectivatgm
(madel or model object) above timomerteri-
ly selected one. In case none is momentgrily
sdected or no selectiors presently visible
the first at the top ahe current page is lee
ted. In case the iterto be selected is on the
adacent page, the content of the window
implicitly scrolled by one line (equivalertb
(Hore) buton[~] or[~]). In case all are momentarfly

sdected (scope All, Fig. T26 part Il
Theory, none is selected.

Cursor - no Like Cursor upbut selects the adjacent it¢m
down bdow the momentarily selected one.

([r]orv])
Page up no Scrolls to the adjacent page abotle ong

shown presently, i.e. scrolls the ligif items
down by as many items as given by cur
rent sizeof the 10-window. Note, eventu
sdections are not losivhen scrolled out
sight, but remain active.

Page no Like Page upout scrolls to thedjacent pag
down bdow respectively scrolls the items up.
Home no Jump to the very first page the list of items
(equialent to many clicks into buttd:x])
Tail no Like Homebut jumps to the very last page
A no Select allitems including those currently rpt

shown (scopeAll, Fig. T26 part Il Theory
as operand for aubsequent action such |as
editing current values.

Tab. R1: In anlO-window generally available keyboard shortcuts, the equivalent
pdette buttons, and the correspondieffiects. Note, these keyboard shortcuts are
only effective if a currently enabled IO-window is actually the front most window.

By pressing one of the kefgeturnor Enter an 10-window specificdefault action is launched,
given the particular 10-window is active. Depending on the 10-window the default aation
lows to edit a model'stegration method, a state variable’s initial value, or a parameters cur
rent value, respectively to toggle the drawing of a monitorable variabteengraph. In case of
the 10-window Monitorable variablesadditional actions may be launched by pressing of
the key<C, F, S, T, X, or Y (for details see below).

Note that the keyboard shortcuts of the 10-windows differ from keybegud/alents for menu
conmands, since they do not require to press the kesimultaneously with the short cut.

6.2.1 10O-WINDOW MODELS

The 10-windowModels(Fig. R14) displays information (name, idd&fier, current integration
method) about the installed models. Furthermore it offeneehanism to select models and to
execute functions, which operate on the selected models as well as their model objects.

R 110

ModelWorks 2.2 - Reference

=) Models EEEI

E,'_',EF:'- ? I::c MMaodel narmes Ident Inteqration method|

- | % A | Traffic at a crossroad traffickd Discrete event "

Init | P |97 [dt &ir pollution at a crozsroad o Euler o

<4

ann|l— | ¥
[

Fig. R14: 10-window Modelsshowing the list of all (sub)models and offering a
pdette of button functions operating on the momentarily selected modet{sheir
madel objects. In the example shown the (sub)mogellM and implicitly all its model ob
jects such as state variables, parameters etc. are momentarily selected.

SET
YF | Columns set-upActivates an entry form in which the displaytbie columns in the 1O
window Modelscan be controlled (Fig. R15). The columns which the display can be
turned on or off are:

- Model namesFull names of the models.

- Ident Short identifiers of the models.

- Integration methadCurrent integration method.

Check the columns to be displayed in the window:
] Model names
[1dent
[Integration method

Fig. R15: Entry form opened by tH&] button in the 10-windowModels

Selects all models All subsequent button functions will operate on the scépe
(Fig. T26 part Il Theory, i.e. on all models respectively all objects of all models currently
installed in the model base.

This function can also be activated by pressingA&egiven 10-window Modelsis front most.

?

Help respectively model informatiorOpens or brings a windowith the title Model
Help/Irfo to the front and executes the help or about procedure (formal paraietgrfor the
mamentarily selected modévorks only on a single model and not on multiple selections).
ModelWorks opens only the window, but writes nothing into it. It is ughe procedur@about

to write information into this window byutput procedures from modul@MWindowlO The
procedureabouthas been stalled by the modeller while declaring the model (see this part
chapter Client InterfacesectionDeclaringModels and Model Objects particular procedure
DeclMfrom moduleSimBasg Typically the modeller uses thielp function to inform the si
mulationist about some model characteristics. For instémeavritten information may consist

of the model equationghe name of the author(s), or some help information on the model.
ThisModel Help/Info window remains open until the simulationist closesTte simulationist
may close, move, or resize it freely.

R111

ModelWorks 2.2 - Reference

w

Jdt Setintegration methad Opens an entry form ivhich the irtegration method for the
mamentarily selected model(s) che set (Fig. R16). This is possible only for continuous
time models (DESS); of course thimtegration method» for discrete time models (SQM) or
discrete event models (DEVS) can not be altered.

The following integration methods are available:

Integration method for the following model:
Continuous time submodel

i® Euler

1 Heun

) Runge-Kutta 4th order

) Runge-Kutta 4/5th order, variable step length

Fig. R16: Entry form to select the numericaltegrationmethodwith which a
continuous time (sub)model is to be integrated during simulations.

- Euler Simple first order, one-steiptegration methodvith fixed integrationstep (also
Euler-Cauchy method or Runge-Kutta @éeder). This method is fast, but should be
used with caution as it is more likely to produce numerical errors.

- Heun Second order one-step integration method with fixgegration step (also
Runge-Kutta 2nd order). This methodsisnilar to the trapezoidal rule, but differs
from it inasmuch as it is not iterative.

- Runge-Kutta-4th order Fourth order one-step integration methadth fixed
integration step.

- Runge-Kutta-4/5th order, variable step lengtdth/5th order, variable step length
Runge-Kutta-Fehlberg methoAXKINSON & HARLEY, 1983;ENGELN-MULLGES &
REUTTER 1988). The local error is estimated comparing the 5th order théh4th
order result. Depending on the error estimate the step length is increased or teduced
obtain optimal results in terms of efficiency and accuracy. This meshowst useful
for solving modelswith derivatives, which strongly vary during the course of a
simulation. Not available in Reflex and PC GEM-Version]

The number of times the proceduPgnamicis called isequal to the order of the integration
method. Be aware that despite their higher computing load, tigar methods are often more
efficient than those of lower order. This is because higher order methods alldarder
integration steps while taning thesame accuracy. The latter may result in a reduction of the
total number of times the procedui2ynamichas to be computed. However, since thduasd
performancalepends also on the characteristics of the model, the beésbdhéor a particular
model has often to be identified by theoretical considerations or numericalnegpts.

This editing function can also be activated by pressing eithéeeth&eturnor Enter given the
|O-window Modelsis front most.

Idt] Reset integratiomethod Resets the integration method of the momentarily selected
model(s) to their default.

R 112

ModelWorks 2.2 - Reference

-
Init| Reset initial values Resets alinitial values of the state variables of the momentarily
selected model(s) to their default values.

-
Par] Reset parameterfkesets all parameters of thmentarily selected model(s) to their
default values.

-
Reset stash filing Resets the monitoring settings for the stash filing
(F/writeOnFilgnotOnFilg of all monitorable variables of the momentarily selected model(s) to
their default settings.

-
iti| Reset tabulatian Resets the monitoring settings for théabulation
(T/writeInTablénotinTablég of all monitorable variables of treelected model(s) to their default
settings.

-
L==| Reset graphing Resets the monitoring settings for the graphing
(XtylisX/fisY/notinGraph of all monitorable variables of theelected model(s) to their default
settings.

-
| Reset scaling Resetghe scaling (minimum and maximum on ordinate) of all moni
torable variables of the selected model(s) to their default values.

|

" Reset curve attributes Resets all curve attributes (colour or stain, line styésd

symbol) of all mortorable variables of the selected models to their default values.

6.2.2 |O-WINDOW STATE VARIABLES

The I0-window State variabledisplays information (name, identifier, unit, currenmtitial va-
lue) about the installestate variabls of all models (Fig. R17). Furthermoreaoffers a meha
nismto select state variables and to execute functions, which operate on the cuitignta-
lues of the selected state variables.

=1 State variables EE

E.'_I.EFT State variable names Ident Unit Initial walue A

il - H 1 i 8 1 1 ™

Init

_‘- R

Init M
(=

Fig. R17: 10-window State variableshowing the list of all state variables aofi
fering a palette of button functions operating on the current iniiales of the meo
menarily selected state variables the example shown the modedrch Bud Moth.. has
two state variables, i.€f. andeggs Momertarily all state variables are selected, which has been
aconplished by clicking butto

R 113

ModelWorks 2.2 - Reference

SET
YF | Columns set-upActivates an entry form in whicthe display of the columns in the-lIO
window State variablesan be controlled (Fig. R18). The columns of which the display can
be turned on or off are:

- State variable name&ull names of the state variables.
- ldent Short identifiers of the state variables.
- Unit: Unit in which to measure the values of the state variables.

- Initial value Current initialvalue of the state variable used to initialize the state
variables at the begin of each simulation run.

Check the columns to be displayed in the windowr:
(<] state variable names
[1dent
(<] unit

B4 Initial value

Fig. R18: Entry form opened by tH&] button in the 10-windovState variables

Selects all state variablegll subsequent button functiomsll operate on the scopall
(Fig. T26 part Il Theory, i.e. on all state variables of all models currently installed in the
model base.

This function can also be activated by pressingkeeA, given the 10-window State variables
is front most.

w
Init| Set initial value Opensan entry form in which the curreinitial value for the selected
state variable(s) can be edited. ModelWorks rejects any attempt to enter a valutheutofe

as defined by thenodeller in the model definition program. If a multiple selection of state
variables has been made, not only one but a series of feming will be offered, one form for
each state variable. This sequence can be terminated by pressing the pus@-duttdbn Note
however, that in the latter case all changes whielve been made to state variables before, can
no longer be reverseince their editing has already been made final by pressing the push
buttonOk). Only eventual changes made to the state variable momentamlisplay will be
discarded.

This editing function can also be activated by pressing eithéeth&eturnor Enter given the
IO-window State variables front most.

-
Init| Reset initial value Resets the initialalues of the momentarily selected state variable(s)
to their default values.

6.2.3 1O-WINDOW MODEL PARAMETERS

The 10-windowModel parametedisplays information (name, identifier, unit, value, change

run time enabled/disabled) abahe installedmodel parametsr of all models (Fig. R19).
Furthermore it offers mmechanism to select model parameters and to execute functions, which
operate on the current values of the selected model parameters.

R114

ModelWorks 2.2 - Reference

= =—= Model Parameters 0=

E.'_'.EJ Pararneter names Ident Unit Malue 4
Fotato model ™
kGrowth kGrowth gdw/plant 50000 |-
kLeaf kLeaf - 1.000 [
kStem kStem - g.000
kFoot kFoot - 1.000
kTuber kTuber - &.000
Yeather input module
“weather input source Inp Year 1985.000 IE

Fig. R19: 10-window Model parameteshowing thdist of all model parameters
and offering a palette of button functions operating on the current vallube me
mertarily selected model parameterns. the example shown the first (sub)moéeitato...
has five model parameterkGrowth kLeafetc.), the secon@Weather.. has morehan could be
diplayed here, thus only the first, ilap, is visible in this page of the 10-window.o see more
paameters the lisivould have to be scrolled by clicking into the buthor by erarging the
size of the window. Momentarily no model parameter is selected.

SET
2F | Columns set-upActivates an entry form in which the displaytbe columns in the 1O
window Model parametersan be controlled (Fig. R20). The columia$ which the display
can be turned on or off are:

- Parameter name&ull names of the model parameters.

- ldent Short identifiers of the model parameters.

- Unit: Unit in which to measure the values of the model parameters.
- Value Current value of the model parameters.

- RTC (rtdnoRtc- runtime change/no runtime change). The valughis column
shows whether a parameter may be chardyethg a simuldon run or not. In order
to warrant consistency, the modeller garevent the changing of a parameter value in
the middle of a simulatioby disabling this flag{oRt9 when declaring the model
parameter. By default, this column is not shown.

Check the columns to be displayed in the window:
[<] Parameter names
] Ident
[unit
(<] value
[RTC

Fig. R20: Entry form opened by the®] button in the 10-windowModel
parameters.

Selects all model parametel subsequent buttofunctions will operate on the scope
All (Fig. T26 partll Theory), i.e. on all model parameters of all models currently installed in
the model base.

R115

ModelWorks 2.2 - Reference

This function can also be activated by pressing the kegiven the 10-window Model
parameters front most.

w
Par| Setmodel parameter vatu€Opens an entry form in which the current parameter value
for the selectednodel parametés) can be edited. ModelWorks rejects any attempt to anter
value out of the range as defined by the modeller in the model defipriognam. If a multiple
selection of model parameters lieen made, not only one but a series of entry forms will be
offered, one form for each modphrameter. This sequence can be terminated by pressing the
push-buttorCarcel Note however, that in the latter case all changdsch have been made to
model parameters before, can leoager be reversed (since their editing has already been made
final by pressing the push butt@k). Only eventual changes made to the model parameter
momentarily in display will be discarded.

This editing function can also be activated by pressing eithéeeh&eturnor Enter given the
|O-window Model parameters front most.

-
Far| Reset model parametéResetshe parameter values of the momentarily selected model
parameter(s) to their default values.

6.2.4 10O-WINDOW MONITORABLE VARIABLES

The I0-windowMonitorable variabledisplays information (name, identifier, unit, minimaind
maximal value for scaling, current output selectiamput the installedhonitorable variable of

all models (Fig. R21). Furthermore it offers a mechanism to select monitorable variables and
to execute functions, which operate d¢ie current monitoring settings, scaling, and curve
attributes of the selected monitorable variables.

Monitorable variables |
% MMonitorable wariable names Ident Unit FMonitoring 4
I | s

L [nf FIIH'EEt 5uhmnd_el . ;
S E AR A Biomass (dry weight) of farest Qj t/ha T S
e L | 4= | Biomass derivative dij it trhada T ot
o |4 ||« | Yood sector submodel i

] e

Endurable forest products Fij t/ha TY
Observer submodel

Total carbon ever fixed (pooled on accCPool t/ha FT

Tatal carbon fixed totCFixed t/ha TY

dverage total carbon fixed avqTotCFix t/ha T
Harvesting submodel

Harvested wood Hj t/ha T @

Fig. R21: 10-window Monitorable variableshowing the list of all monitorable
variables and offering a palette of button functions operatinp@rcurrent moito-

ring settings, scalings, and curve attributes of the momentaglgcted monitorable
variables. In the example shown the third (sub)mo@dserver..is momentarilyselected,

which implies that actually all its three monitorable variabdéesCPoo) totCFixed avgTotCFiy

are selected Any subsequent action affects only these selected objects. For instance the button
would toggle the graphing according to therentrsetting of the first monitorable riable
(accCPoo) and copy thatesult to all remaining selected objedistCFixed avgTotCFiy; here

the result would then be that during the next simulatiomalhitorable veabes of submodel
Observemwill be plotted in the windov&raph

R 116

ModelWorks 2.2 - Reference

SET
YF | Columns set-upActivates an entry form in which the displaytble columns in the 1O
window Monitorable variablegan be controlled (Fig. R22). The columns of which the
display can be turned on or off are:

- Monitorable variable nameEull names of the monitorable variables.
- ldent Short identifiers of the monitorable variables.
- Unit: Unit in which to measure the values of the monitorable variables.

- Minimum scaling Lower value used to scale the values of the monitoreat@ble on
the ordinate of the graph. By default this column is not shown.

- Maximum scalingUpper value used to scale the values of the monitorable vaaable
the ordinate of the graph. By default this column is not shown.

- Monitoring This column shows the current output settings, where:
F: Monitorable variable is written onto the stash file
T: Monitorable variable is tabulated in the table

X: Monitorable variable isised asndependenbr abscissa variable (x-values). If
thereis no monitorable variable selected as the abscissa variable, ModelWorks
provides the so-called default inolerdent variable, the simulation time.

Y: Monitorable variable is usdd draw a curve. lts values are drawn as ordinate
values (y-values) versus the current independent variable (x-values).

Check the columns to be displayed in the window:
(<] Monitorable variable names
] Ident
[unit
[Minimum scaling
[JMaximum scaling

[Monitoring

Fig. R22: Entry form opened by th&] button in thelO-window Monitorable
variables.

Selects all monitorable varialleéll subsequenbutton functions will operate on the
scopeAll (Fig. T26 part Il Theory, i.e. on all monitorablevariables of all models currently
installed in the model base.

This function can also be activated by pressing theXegiven the IO-windowMonitorable
variabless front most.

w
Set/delete stash filing(F/writeOnFilgnotOnFilg: Adds the sdected monitorable
variable(s) to thdist of variables which are to be written onto the stash file. The function
toggles actually the setting, i.e. if the current settisgon €) it is disabled, otherwise enabled.
In the monitoring-column of the 10-window thmonitorable variables to be written onto the
stash file are marked with an(Fig. R21). If a multiple selection is active, the function adds
or removesall momentarily selected variables to or from the list, reversingctimeent setting of
the first variable in the selection.

R117

ModelWorks 2.2 - Reference

This toggling function can also kectivated by pressing the keay, given the 10-window
Monitorable variableis front most.

Reset stash filing Resets the stash filing of the momentarily selecteditor@able
variable(s) to their defaults.

Tabulation Generallynote, that in case that the simulationist makes any fundamental changes
to the table such as removimg inserting columns, ModelWorks redraws the table not later
than the begin of the next simulation run. The aatedtawing time (immediate or deferred) is
determined by the current settings of the m@iece changed, immediately redraw table
(RedrawTableAlwaysModleof the simulation environment (see also menu command
File/Preferences

w
iTi| Set/delete tabulation(T/writeInTablénotinTablg Adds the dected monitorable
variable(s) to the list ofariables which are to be tabulated in the table window. The function
toggles actually the setting, i.e. if the current settiagon (1) it is disabled, otherwise enabled.

In the monitoring-column of the 10-window the monitorable variables to be tabulated are
marked with arr (Fig. R21). If a multiple selection is active, the functicadds or removeasll
momentarily selected variables to or from the list, reversing current setting of the first
variable in the selection.

This toggling function can also kectivated by pressing the kew, given the 10-window
Monitorable variablets front most.

-
iTi| Reset tabulatian Resets thetabulation of the momentarily selected ntorable
variable(s) to their defaults.

Graphing Generally note, that in case that the simulationist makgsfundamental changes to
the graplsuch as a redefinition of scales (may also be caused by changing the/gigro(t
stop (EndKs) time, see menu commarfdettinggSet Global simulation parameteysremoval

or new activation of curves, ModelWorks redraws the graph never later than the dfetie
next simulation run. The actual redrawing time (immediate or defersedgtermined by the
curent settings othe modeOnce changed, immediately redraw gragRedraviGraph
AlwaysModé of the simulation environment (see also menu comnféledPreferences

X
l=| Set/cancel variablas x-axis in the grapfx/isX): Sets the dected variable as
independentr abscissa variabléc-values) for thegraph The function toggles actually the
setting, i.e. if the current setting is ox)(it is disabled, otherwise enabled. In the monitoring
column of the 10-window the monitorable variable to be uaedabscissa variable is marked
with anX. If another variable was already selected as the abscissa variables thgbmatically
deselected, since ModelWorks allows onlye independent variable at a time. In case that no
monitorable variable is selected as absciss#@able, ModelWorks uses the default independent
variabletime This function will completely erase and redraw the content oftph window.
This is because ihas to redraw the x-axis. This function does not work on a multiple
selection.

This toggling function can also kectivated by pressing the key, given the 10-window
Monitorable variableis front most.

R 118

ModelWorks 2.2 - Reference

b
L==] Set/delete curvev(isY): Adds the selected monitorable variable(s) to the listaiables
which are to be drawn as curves in tgeaphwindow. The function toggles actually the
setting, i.e. if the current setting i3n (Y) it is disabled, otherwise enabled (Fig. R21). In the
columnMonitoringof the 10-window thesymbolsF, T, or Y are shown in the same colour as
that which is used to drawalues of the corresponding variable in the graph. If a multiple
selection is active, the function adds or removes all momentarily selected variable$réonor
the list, reversing the current setting of the fivgtriable in the selection (for an example see
Fig. R21). This function will completely erase and redraw the content of the gnaqpdow, if

the modeOnce changedmmediately redraw graph(RedrawGraphAlwaysModjleof the
simulation environment is currently active (see d§le/ Preferences

This toggling functioncan also be activated by pressing either the Reyurn Enter or v,
given the 10-windowMonitorable variableis front most.

-
L==| Reset graphing Resets thegraphing (x/Y/isX/isY/notinGraph of the selected
monitorable variable(s) to their defaults.

w
++| Set scaling Opens an entry form in which minimum antaximum values for the
scaling of the selected monitorable variable in the graph can be edited (Fig. R23).

$caling of the following monitorable variable:

Grass

Fig. R23: Entry form opened by the:] button in the 10-windowMonitorable
variables It allows to set the scaling of a particular monitorable variable in the
window Graph Only values withinthese limits will be displayed, i.e. all parts of
the curve which are outside the ranger], max] will be clipped.

If a multiple selection of monitorable variables has been made, not only one but a senéy of
forms will be offered, one form for each monitorable variable. This sequence danmrbeated

by pressing the push-butt@arcel Note however, that in thdatter case all changes which
have been made to variables before, will not be reversed (since their editingireasly been
made final by pressing the push buttoR). Only eventual changes madeth® monitorable
variable momentarily in display will be discardedThis function causes sooner or later a
complete erase and redrawing of the content of the graph window, betalaays affects the
legend. The actual redrawing takes place according to the cwetirigs of the mod©nce
changed, immediately redrawgraph (RedrawGraphAlwaysMogle of the simulation
environment (see aldéile/ Preferences

This editing function can also be activated by pressing the kegiven the 10-window
Monitorable variabless front most.

-
**| Reset scaling Resets thecaling (minimum and maximum) of the selected monitorable
variable(s) to their default values.

R119

ModelWorks 2.2 - Reference

w
Setcurve attributss Opens an entry form in which the attributes for the drawahg
monitorable variable's curve in the graph window can édited (Fig. R24). This editing
serves to set or override the automatic definition of ciattabutes by ModelWorksi|Since no
colours are available in the PC GEM-Versiomany settings of the curve attribute stain (colour) is
without effect].

Curve attributes of the following monitorable variable:
Grass derivative
{® automatic definition of curve attributes

or use following curve attributes:

{3 unbroken o coal) snow

i broken) ruby sapphire
i dashSpotted 3 emerald) pink

i spotted) turquoise) gold

i invisible

i_) purge IE' symbol

Fig. R24: Entryform opened by th& button in the I0-windowMonitorable
variablesused to editurve attributs.

The following curve attributeare available: A colour with which curves are drawn on colour
screens, printed on colour printers, or exposwd slide recorders. Note, the colours are
effective regardless of the current screen; for instance, despite a black-and-white screen,
set, a colour curve attribute, e.guby, will result in the printingof a red curve when the graph
is printed on a colour printerline styles affect the style with which connecting lines between
points are drawn. Points can be emphasized by drawing plotting symbols.

The colours areoal (black), snow (white), ruby (red), emerald(green), sapphire(blue),
turguoise(cyan), pink (magenta), andgold (yellow). The graph monitoring procedure
produces line charts, i.e. pointge connected with lines, which can be drawn with one of the
following styles:

unbroken
broken --------
dashSpotted =~ -r-r-r-e-e-e-
spotted ...
invisible no drawing of lines at all, may be used to draw scatlets or
to stop the drawing of a particular section of a curve
purge used to erase already drawn curves
autoDefStyle line style will bedetermined by ModelWorks according to the

automatic definition mechanism of curve attributes

R 120

ModelWorks 2.2 - Reference

Any character caibe used as a plotting symbol, for instance using the plotting symbol "*"
results in curves like -*---x---. Note that using a blank (or OC) will result in the drawing of
no plotting symbol at all.

If automatic definition of curve attributes is active for one or severahitorable variables, Mo
deWorks follows a strategy to distribute four colours (stains), four line styles andsyoor
bols to draw curves (see Tab. T1 in partTheory for these monitorable variables. This stra
tegy helps the simulationist to tell curves better apart, regardless whether a particulaisgraph
displayed on a colour screenisrprinted on a black and white printer only. Colours, line
styles, and syrhols are distributed among the monitorable variables which curréatlg the
automatic denition of curve attributesetting active. Which attribute, e.g. colour, is used for
which curve is irfluenced bythe position of a monitorable variable within the chronological
sequence invhich it has been activatedr{oggling) for the graphing. For instance if four
monitorable variables have beantvated for graphing, the first activated will automatically be
drawn in black, thesecond in red, the third in blue, and the fourth in green. However, if the
second is removed from the mitoring, the previously third will be drawn irred and the
previously fourth in blue. If the previously second is now reactivated, it will be dramgreen
(no longer red)!

In case thisutomatic definition does not please the simulationist, she may override it anytime
and use a particular colour, line pattern, and marking symbol for a curaegofen maitorable
variable. This allows e.gto use always the same colour for the same variable, such as green
for state variabl€&srassor blue for a water level. Mark symbols ariearacters drawn exdgtat

the pointsas defined by the monitoring, line patterns are used to connect these points with
lines. With thisechnique it is also possible to draw only scatter-grams, instead of line charts
(line style =invisible). The colour currently in use for a particular monitorable variable is not
only shown in the legend and used to draw curves in the graph, buuaésb to display the
current monitoring settingsF(T, or Y) in the column Monitoring of the I0-wirdow
Monitorable variablegof course only visible on a colour screen).

In orderto toggle between automatic definition and its overriding, the simulationist must click
into one of the line style radio buttons or into the rdmitton Automatic definition In paticu-

lar note, that inthe current version of ModelWorks it is not sufficient to select just another
colour(stain) to turn automatic definition off without selecting simultaneously also a new line
style. This is beauseautomatic definition can not be set individually for the various curve
attributes but hold for all curve attributes @fmonitorable variable at once; either the curve
attributes of a particular mdorable variable are all defined automatically alf are user
defined.

If a multiple selection of monitorable variables has been made, not only one but a senéy of
forms will be offered, one form for each monitorable variable. This sequence danmrb@ated

by pressing the push-butt@ancel Note however, that in thdatter case all changes which
have beemade to variables before, can no longer be reversed (since their editing has already
been made final by pressing the push bu@éh Only the eventual changes madethe moni

torable variable momentarily in display will be discarded.

This function causes sooner or later a complete erasedraiving of the content of the graph
window, because it always affects the legend. The actual redrawing takes gdaoeding to
the current settings of the mo@ce changed, immediately redraw graitedrawGraphil-
waysModg of the simulation environment (see also menu comnfaledPreferences

This editing function can also be activated by pressing the egiven the 10-window
Monitorable variableis front most.

-4

™ Reset curve attributes Resets the curve attributes of the momentarily selected

monitorable variable(s) to their default values.

R121

ModelWorks 2.2 - Reference

7 Client Interface

Theclient interfaceconsists of anandatory parand an optional part (Fig. T2part 1l Theory).

The mandatory part consisithe two modulesSimBaseand SimMasterthe optional part of

the modulesSimDeltaCalc SimEvents SimGraphUtils Simintegrate and SimObjects
Although every model definitioprogram must import from both modules of the mandatory
part, only asmall subset of the exported Modula-2 objects are actually needed always. These
few Modula-2 Objects, five procedures and six data types, form the cateeoModelWorks

client interface (Fig. T29 Part ITheory).

All other types and procedures also expofteth this interface are optional. Their purpose is
eitherto serve the convenience of the simulationist or to support the teodelthe program
ming of advanced structuresimulations. For instance, if the simulationist wishes to run a
model in a time range different from the one predefined by ModelWorks, the lerockah
overwrite the ModelWorks predefined defaults (Tab T1 paifhéory with the values the
simulationist prefers. This is much marenvenient as if the simulationist would always have
to assign the desired values interactively at the begin of each simulation sessiagimiflation
study has advanced to a later stage, it is often desiralide table to run multiple simulation
runs in a systematic, well defined way. The interactive control ofdimeulations becomes then
rather an obstacle than a help. On the other hand, if much effort hambested in the devel
opment of a complex modelis desirable to be able to run structured simulations under prog
ram control using the same model implementation. To suppermodder in such tasks is
exactly the purpose of most of the additional objects exported by the client interface.

Theprinciples behind the usage of the client interface have been described elsewhere (Manual
Part IITheory in the chapteModelling. Please consudlso the listings of the client interface
definition modules plus the sample model definition programs in the appentile reading

the following explanations of the Modula-2 objects exported by the client interface.

The twomandatory client interface modules which arexplained later in more detail serve
the following purposes:

SimBase Providesprocedures for the declaration or modification of models and model
objects; provides control over global sitation parameters, projectiescription,
recording and monitoring optionsyindows, various preferences, menu kegard
eqguialents andimuation environment modes; allows to specify defaults or current
values and to reset the current values to the defaults.

SimMaster Exports procedures for starting of the interactive simulation environaraht
for the control of single simulation runs or of structured simulations (experiments).

The following five modules constitute theptional client interface of ModelWorks and
will only be briefly described as follovés

1The appendix contains the definitions of all optional ModelWorks moduiéf all auxiliary library modules
listed below. The definitions @imBaseandSimMasterare not in theppendix since all objects exported by
these modules are discussed in the following chapters.

2For more details on thieinctions provided by these modules refer to the listings of the definition modules in
the appendix.

R 122

ModelWorks 2.2 - Reference

SimDeltaCalc Provides utilities to calculate deviations between simulated and observed
time series. It is typically used in model validatiomsin model parameter idefiti
cations.

SimEvents Supports discrete event simulations.

SimGraphUtils Provides utilities tanake output to thgraphwindow and the graph
such as drawing of additional curves afidplaying of validation data at discrete time
points with or without error bars.

Simintegrate Provides means to integrate autonomous models witaytmonitoring
and without affecting the global simulation time of the simulation environment.

SimObijects Allows for a lower-level, efficient access to models and model objects and
also for attaching of additional attributes to these objects. USimgObjectsmay
improve performance of object management sulbisi§n becausethe mandatory
moduleSimBasestresses safetyer efficiency and traverses the internal data base
before each accesshen calling e.g.SetPor SetSV the owner model's exignce is
always tested and the parameter or state varialsleasched in the model’s object list.
Hence,using these procedures from within a loop may be very tedious and cumber
some. To better support object access, for instamagder to change the default and
current values of modedbjects in a loop, you may better use the access mechanisms
provided bySimObjects CAUTION: wrong usage of these meciems can have
serious cosgjuences! Particularly do not remogeadd any objects, nor change the
addresses of any objects in the Istgilable. Usage of this module is recommended
for advanced programmers only.

The following modules belong to thauxiliary library . They may also beused
independently of ModelWorks, but are briefly described below since thdyegrgently needed
in research involving modelling and simulation studies

Identification to identifymodel parameters of a ModelWorks model definition program.
It minimizes a performance index (see aBmDeltaCalcbetween a given particular
model behavior and the current motéehavior by various minimization methods (for
an example se&ppendixsample modeGausédentif).

JulianDays Provides calendar proceduresctmvert calendar dates into Julian days and
vice versa. Julian days are needed for calculationsdates, e.g. to compute an
elapsed time between two dates.

RandGen Contains a pseudo-randomumber generator for variates uniformly
distributed within interval (0,1] (for examples ségperdix sample mdelsDiversity
Markov, StochLogGrower CarPollutior).

RandNormal provides a pseudo-random number generator for normally distributed
variates ~N(ug) (for an example se&pperdix sample mdel StochLogGrow.

ReadDataAllows to read data from an input file and to test various conditions @sich
minimum-maximum range) in an easy way. It is typically useénter measuneents
stored on text data files into ModelWorks, for instance to compare simwigted
observed data (for an example gggpendixsampe modelSwissPop.

3For more details on thieinctions provided by these modules refer to the listings of the definition modules in
the appendix.

R 123

ModelWorks 2.2 - Reference

StructModAux Provides suport for the implementatioaf strud¢ured models where the
submodels reside in separatedules. The module allows to install a custamenu to
activate/deactivate models or submodels, and supports the mainteofittoe global
simulationparameters by a master model definition program. (for example&see
perdix sample mdelsGreenHous®r LBM)

TabFunc Allows for usage and graphicalditing of non-linear functions which are
defined by piece wise linear inter- respxtrapolation according to a table of x-y
values (for examples sépperdix sample modelSwissPopor UseTabFung

WriteDatTim Can be used to write dates and times as accessaddrys oDMClock.
This may beuseful to record begin and end of a long simulation experiments (for an
example seAppendixsample moddWarkoy).

Since ModelWorks has been designed as an open architecture and isnbitmtiila-2, the
modeler is free to extend the auxiliary library by any modslie wishes. In particular, there is
also thepossibility to use any object from tHBialog Machine" The majority of the latter is
contained in the kernel of ModelWorks and resides togeftieany model definition program
already inthe memory. Hence this part of the "Dialog Machine" can be used by thelenodel
without any penalty. Those modules of the "Dialog Machine" which areimaise by
ModelWorks can then be considered as a particular extasfsiba auxiliary library (Fig. T29

in part lITheory.

7.1 Declaring Models and Model Objects

This section describes the core of the ModelWorks client interiacethose procedures and
types which are used by evenyodel definition program

Fundamental functions, for instance tlaetivation by the standard, interactive simulation
environment or states of the environment, are exported by mod8ienMaster The
instantiation respectively declaration of models and model objects, the accessingfrieval
and new setting, of these objects, a®ll as the removal of them are functions exported by
moduleSimBase

7.1.1 RUNNING A SIMULATION SESSION

The standard, interactive simulation environmest started whenevea program calls the
procedure from the client interface mod&ienMaster

PROCEDURE RunSimEnvironment(initSimEnv: PROC);

This is the only statement which the modefinition program must execute in order to use the
standard ModelWorks interactive simulation environment. The argumé&éimEnvrefersto a
procedure which will typically declare the models including all their model objects by cHikng
procedureDecIMfrom moduleSimBasgs.a. below sectioeclaration omode). The proce
dure often contains also calls to procedures which set defaults fglothed simulation parae

ters such aSetDefltGlobSimPars Upon returning from this procedure, all elements of the
stardard user interface (menus and windows) are removed, but the calling pregeanpre
ceed with the full ModelWorks functionality still present at the client interface.

It is also possible to usRunSimEnvironmendnly for the installation of extnaenus and menu
commandsn the "Dialog Machine" to expand the standard simulation environment. For
instance the prockire may contain no calls to any model object declarations at athéuhenu
commands it installs allofor the activation of models, since they are bound to procedures
which call the model and model object declaration procediedM DeclSV DeclP and
DeclMV (s.a. below sectionDeclaration of model There may alsdoe menu command

R 124

ModelWorks 2.2 - Reference

procedures installed whialemove models, so that a full dynanmeodel loading and unloading
becomes possible during a simulation session (for an example sesd¢bhech sample model
Population dynamics of larch bud maththe Appendi®y. Any menu installation called within
procedurenitSimEnv will be placed on the right side of the menu bar as insalled by
ModelWorks' simulation environment. After the execution of thenitSimEnv procedure
RunSimEnvironmendtarts the "Dialog Machine" by calling procedRrgDialogMachindgrom
moduleDMMaster

The modder can declar@a “simulation environment definition (or customization) procedure”
defineSimEnvo ModelWorksy calling DeclDefSimEnvrom SimMaster ModelWorks will
then call this procedurafter having callednitSimEnv and after having performed a global
reset. ExecutionlefineSimEnvis the last action performed at starting up ofitiberactive envi
ronment. Also, it represents the first event that will be handled by the "Dialog Machine".
PROCEDURE InstallDefSimEnv(defineSimEnv: PROC);
The installeddefineSimEnwrocedure will be also executed whenever siaulationist chooses
the commandettings/Define simulation environmeitg. in order to (re)show a window, to
read data (anew) from a file, or to customize monitoring settings by means of ca#s\y.

The currently installedlefineSimEnv procedure may be executed from the clietérface by
calling

PROCEDURE ExecuteDefSimEnv;

Since the standard simulation environment may not be started more than otiee same
program level, the procedure

PROCEDURE SimEnvRunning(progLevel:CARDINAL):BOOLEAN;

allows to find out whether the simulation environmast currently running on a particular
program level or not.

7.1.2 DECLARATION OF MODELS

Models are represented in ModelWorks by means of variables of the type
TYPE Model;

It is recommended to initialize all model-variables in boely of a model definition program
using the variable

VAR notDeclaredModel: Model; (* read only variable *)

as follows:

MODULE MyModelDefProg;

VAR
myModel: Model;

BEGIN
myModel := notDeclaredModel;

END MyModelDefProg.

A model ora submodel is ddared to ModelWorks or installed in the interactive simulation
environment with the procedui@eclM

R 125

ModelWorks 2.2 - Reference

PROCEDURE DeclM (VAR m: Model;
defaultMethod: IntegrationMethod,;
initialize, input, output, dynamic, terminate: PROC;
declModelObjects: PROC;
descriptor, identifier: ARRAY OF CHAR;
about: PROC);

This procedure can be called any number of times, but shoutdliexl for each model only
oncé, unless it has beeremoved in the meantime. NormallypecIM will be called in the
statesNo Model or No Simulation of the simulation environment. However, it may also be
called in any other state of tlsamulation environment. HerebipecIM may be called either
from within a client procedure (e.ginitialize or during integration dynami¢ of an other
model), or by the simukéonist, based on an extension of the standard user inteféage by
means of a separately installed menu) (s.a. parhdoryFig. T15, T16 and Tab. T4).

m is a variable of the opaque typdodel exported bySimBase It may be used for
further references to the model, e.g. when accessingodel in order to change its
integration method witlprocedureSetM It must be declared in the model definition
program. It does not matter where, buh must be a global variable which exists as
long as the model definition program.

IntegrationMethod = (Euler, Heun, RungeKutta4,
RungeKutta45Var, stiff,
discreteTime, discreteEvent);

defaultMethod s the defaulintegration methoavith which the model will be solved
during simulations Moreover the modér defines with this parameter also the type
of model, i.e. whether it is a continuous time, discrete time or a discreteevent
model. If themethoddiscreteTime or discreteEvent is specified, the model is
declared as a discrete timediscrete event model, respectively. Note that models of
type discreteEventmust not be declared by means of DeclM but shosildeclared
with the corresponding proceduréeclDEVM from module SimEvents. All
remaining integration methods are used for the class afah&nuous time models.
Thedefault integration method is (re)assigned to the current integration method by
ModelWorks when the model is declared, at starting ufhefinteractive simulation
environment, or after everyreset of the integration methods. During a simulation
session the current integration method may be chabgethe moddér via the
procedureSetM or by the simulationist vidhe models 10-window. Note that this
mechanism makes it possible, that every continuous time model uskffegent
integration method. Though the simulationist may changetbilyntegration method
of continuous time models, the motiimay do so for all types of models; e.g. she
may change a discrete time model to a continuous time raodelice versa at any
time usingSetM or preferablpetDefltM (the latter is preferable since it implies a
change of the model equations, thus the procedynamicneeds also to be changed).

The following five formal procedure parametease procedures which will be called by
ModelWorks during simulations

4 Should DeclM be called for the same model variamemore than once, ModelWorkill display an error
message and the simulation program will be halted.

SIntegration methositiff is not available in the curreimplementation of ModelWorks, such that any attempts
to assign this method to a model will lead to an error message and a halt of the simulation program.

6See the description of the definition module in Appendix sectionModelWorks Optional Client Interface

"Reset is however not performed if the interactive simulation environment is amemtipng and is only
restarted on a new program level.

R 126

ModelWorks 2.2 - Reference

initialize is called only once at the begin of eaimulation run (Fig. T18 part Il
Theory. It may be usedreely to execute any task at the begin of a run, such as
opening a file for writing data during the simulation run or assigning inéial values
to state variables by callingetSV

input calculates the input variables of model m (Eq. 4.4 resp. 5.4). It is caltdyl
once during a time step, but many times during a simulation run (Fig. T19).

output calculates the output variables of model m (Eq. 4.2 résp). It is called
only once duringa time step, but many times during a simulation run (Fig. T19).
Note the implementation restriction that output variables must not depend doactly
input variables (see Manual PariTheory chapterModel formalisms

dynamic contains the modedquations of model m (Eq. 4.1 resp. 5.1 or 8a, &mnd
8c). In the case of a continuotime model it calculates the nederivatives from the
current values of the state variables (Eq. 4.1 or 8a and 8c). Depending amléreof
the integration method, this procedure is called at least ont® sgveral times during
a time step. In the case of a discrete time model (Eq. 5.1 or 8b and 8c¢) it calthgates
new state vector directly and is only called once during a time step (Fig. T19).

terminate is called oncat the end of each simulation run (Fig. T18). It may be used
freely to execute any task at the end of a run, such as closingwhiite has been
written during the simulation run etc.

declModelObjectgleclares all modealbjects, i.e. state variables, model parameters, and
monitorable variables of modeh. Typically this procedure contains calls to the
procedure®eclSV DeclR and DeclMV. It is also possible to leave the body of this
procedure empty, e.g. by usinjloModelObjects and to defer all model object
declarations to a later time (note that thesjuires proper programming of such a
feature, since it is not available in the standard simulation environment).

See to it that calculationsyhich should be péormed only once per time step, are included in

the procedurenputor outputonly, notin the procedurelynamic¢ which may called more than
onceper time step. For further information on the correct use of these procedures see part I
Theory chapter Simulations and the Run-Time System particular sectionintegration
respectively time ste(s.a. Figs. T19-T22).

Notethat if ModelWorks resides in either the stdte Model or No Simulation DeclM calls
the declModelObjectprocedure only. However, if DecIM is called in one of the states
Simulating or Pause it behaves differentlyand calls more client procedures than just
declModelObjectsIn order to synchronizihe newly declared model with the already existing
ones, one or several of the client proceduresalize, output input or dynamicwill also be
called. The callingsegquence will depend on which part of the model grion loop is
currently executed (see part Theory chapter Simulations and the Run-Tinfgystemin
particular Figs. T19-T22, sectioManipulating the model base at run-tane Tab. T4P.

The last three formal procedure parameters are used to identify and describe a ntbdekhso
simulationist may recognize it during simulation sessions:

descriptor String containing a long description of the model m

8For example, if a model is declared from within an othedel’sterminateprocedure, the proceduristialize,
output input anddynamioof the new model will be called HyecIM (dynamic may be herebygalled more than
once, depending on the model's integration method). Than the run-time systemprogéded with the
termination of the run by calling therminateprocedures of any remaining, already declared moddiswed by
theterminateprocedure of the new model, which is always inserted at the end of the models list.

R127

ModelWorks 2.2 - Reference

identifier Short string identifying the model m. Althougfrere is no limit to the actual
size of this string, it is advisable to keep it as short as possible.

about Procedureallowing to write information about the model, e.g. by using
routines such adVriteString WriteLn etc. from the "Dialog Machinemodule
DMWindowlIQ into the help window. This procedure is called for the currently se
lected model whenever the sidationist clicks intathe Help/model informatiofbutton
of theModelslO-window (s.a. chapter 6.2.1, Part llIReference/User Interface

If the modeler wishes to share the samabout procedure for several models, the actually
requested model may be find out by means of

PROCEDURE CurAboutM(): Model;

which returns the reference to this model. céflled outside amboutprocelure, CurAboutM
will return notDeclaredModel

For more convenience the following procedures from mo&iteBasewith an emptybody can
be used as actual arguments when calliegiM

PROCEDURE Nolnitialize;
PROCEDURE Nolnput;
PROCEDURE NoOutput;
PROCEDURE NoDynamic;
PROCEDURE NoTerminate;
PROCEDURE NoModelObijects;
PROCEDURE NoAbout;
PROCEDURE DoNothing;

In particular, the currently set proceduiggialize, input output dynami¢ terminateandabout
may be dynamically changed by calliBgtDefltM at a later stage (see below).

Once a model has been declared, it is ready for the declaration aattabtieing of model
objects to it. Typicallymodel objectdeclarationprocedures are called immediately following
the call toDeclM However, the following procedure can hesed to change this behaviour, so
that model objects can be attached to models in any sequence:

PROCEDURE SelectM (m: Model; VAR done: BOOLEAN);
The latter is particularly important if models and their model objesdeclared dynamically
during a simulation session. This feature is not supported by the standard simulation
environment, but such an extension candasily programmed via the client interface by the

modeler. Themodeler will then use procedur8electMto attach model objects to the proper
model.

7.1.3 DECLARATION OF STATE VARIABLES

The following types should be used to declare state variables and their derivatives or new states:
TYPE StateVar = REAL; Derivative = REAL; NewState = REAL;

Thesetypes are equal to and fully compatible with the type REAL. Their usage is fecom
mended since the identifiers are self-documenting and enhanceatthability of the model
definition program.

State variables are declared as variables of the 8tpéeVain the modeldefinition program,

derivatives are of typ®erivative In case of discrete time modélss recommended to use the
types StateVarfor x(k) andNewStatefor x(k+1). They may be declared anywhenethe

R 128

ModelWorks 2.2 - Reference

program and may be part of a structured data type. E.g. the following variableszxraag be
used as state variables respectively state vector:

CONST MaxStateVars = 16;
VAR
X : StateVar;
xDot: Derivative;
z : ARRAY [l..MaxStateVars] OF StateVar;
zDot: ARRAY [1..MaxStateVars] OF Derivative;

In order to declare a state varialsleo ModelWorks and install it the simulation environment,
the procedur®eclSVmust becalled. This procedure may not be called another time with the
same variables (see below), unless thetate variable has been removed in the meantime.
Typically, DeclSVis called in the stateBlo Model or No Simulation of the simulation
environment (s.a. part IlTheory Fig. T15),. This is done either from within the parent
model’'sdecModelObjectgprocedure, or at some latéme point, once the parent model has
been declared.

PROCEDURE DeclISV (VAR s: StateVar; VAR ds: Derivative (*or NewState*);
defaultinitial, minCurlnit, maxCurlnit: REAL; descriptor,
identifier, unit: ARRAY OF CHAR);

The state variable will belong téhe last declared model (proceduieclV), unless the
procedureSelectM hasbeen called to select another model. The meanings of the formal
procedure parameters DeclSVare:

s Variable to be declared as a state varialideclSVassigns t@ thevalue defaultinitial
The real variables can be declared anywhere in the matiinition program and may
be even part of angtata structure. However make sure that it is declared as a global
variable and that it does exist as long as the model definition program.

ds Variable to be declared as ttierivative ds/dt (for continuous time modeissing time
t as independent variable) or the new vaf(let+1) (for discrete time models usitigne
k as independent variable) ef For every state variable the derivative or the new
value must be assigned to this variable by the procediyr@amic which is called
during numerical integration. Normallgs appears only on the leltide of the
dynamic equations in procedutgnamic DeclSVassigns talsthe value 0.0.

defaultinitial Defaultinitial value for state variables. ModelWorksuses the current
initial value at the beginning of each simulation run to initiabzeThe default initial
value is assigned to the current initial value at declaratibthe state variable, at
starting up ofthe interactive simulation environen®, or after every reset of the
model’s state variablesThe default initial value may be changed only by the model
ler, using procedur&etDefltSV, whereasthe current initial value may be changed by
both, the modder and the simulationist, via the procedugetSV or via the state
variables 10-window, respectively. Note that case the modielr directly overwrites
variables within procedurenitialize (see procedur®eclV), the current initial value
displayed in the 10-window wilbe inconsistent with the initial value actually used in
the simulation. This is because ModelWaksigns the current initial value sojust
before theinitialize procedure is called. Avoid direct overwriting sf and use the
procedure&setSVinstead.

minCurlnit maxCurlnit Lower and upper bounds for the current initial value.
Attempts by the simulationist to assign values out of this range are not accepted.

9Reset is however not performed if the interactive simulation environment is ameatipng and is only
restarted on a new program level.

R 129

ModelWorks 2.2 - Reference

descriptor Stringcontaining a long description of the state variableThis string may
have any length, but might ndte visible till its end when it is too long to fit into the
IO-window column where it isdisplayed during a simulation session (see also
identifier). Example: "Density of alga Scenedesmus obliquus".

identifier Short string identifying the stat@riable s. This string should be kept as
small as possible in order to ensure full visibility the display in small 10-windows
during a simulation session. In particular small screens, 10-windows become
smallin the tiled window position (see menu commahite windowg and they will
display only thisdentifier to denote the state varialde Example: "sa".

unit String containing the unit used to measure values of the state vasiaflbis
string is displayed in 10-windows during a simulation session. Example: "cells/ml".

7.1.4 DECLARATION OF MODEL PARAMETERS

A time invariant model parametgp, which the simulationist should be able whange
interactively during simulation sessions, should beldesd as being of the type

TYPE Parameter = REAL;
Declaration is done by means of the procedure

PROCEDURE DeclP (VAR p: Parameter; defaultVal, minCurVal, maxCurVal: REAL;
runTimeChange: RTCType; descriptor, identifier,
unit: ARRAY OF CHAR);

DeclPmay not be called with the same variabfe unless the model parameter has been
removed in the meantime. It will typically be used in a similar masealready described for
DeclSVabove. The value of the paramefeicanbe changed within the rangeninCurVaj
maxCurV4dl and be reset to its default valaefaultvVal A parameter change the middle of a
simulation run can lead in some application to datansistencies. It can therefore selectively
be allowed or prevented with the parametenTimeChangef the type

TYPE RTCType = (rtc, noRtc);
The meanings of the parameters of proce@eelP are:

p Variable of typeParameteto be declared as model paramet&eclPassigns t@ its
default valuedefaultVal The realp can be declared anywhere in the model definition
program and may be even part of any data structttewever make sure that it is
declared as global real variable and does exist as long as the model definition
program.

defaultVal Default value for the model parameper The default value is (re)assigned to
the current parameter valuye by ModelWorksat the parameter’'s declaration, at
starting up of the interactive sifation environmeri©, or after every reset of the
model parameters. Duringsanulation session the current parameter v@usay be
changed by the simulationist (using an 10-window) or by the niexde& overwriting
the value ofp with another value, e.g. within procedur@itialize (see procedure
DeclM by calling procedur&etP

10Reset ishowever not performed if the interactive simulation environment is already running and is only
restarted on a new program level.

R 130

ModelWorks 2.2 - Reference

minCurVa) maxCurVal Lower and upper value bounds fqu. Attempts by the
simulationist to assign values out of this range are not accepted.

runTimeChange rtc (=run time change) allows for interactive changing of values of
modelparameteip during a simulation run in the program stR&use. noRtc(=no
run time change) disallows completely any changingatiies of the model parameter
p during a simulation run, even in the program sfasise

descriptor String containing a long description of thedel parametep. This string
may have any length, but might not be visible till its emten it is too long to fit into
the 10-windowcolumn where it is displayed during a simulation session (see also
identifier). Example: "Half saturation constant for algal growth".

identifier Short string identifying the model parameperThis stringshould be kept as
small as possible in order to ensure full visibility the display in small IO-windows
during a simulation session. In particular small screens, 10-windows become
smallin the tiled window position (see menu commarnite windowg and they will
display only thisdentifier to denote the model parameperExample: "Ks".

unit Unit in which to measure valuesf the model parametgr. This string is
displayed in 10-windows during a simulation session. Example: "ug/I".

Besides ordinary, i.e. time independent, model parameters and state variatbespylex
systems containther classes of variables. They are time variant parameters, inputs, outputs,
and the so-calleduxiliary variables. The latter are internal, timgependent variables which are
neither state variables, nor inputs nor outputh order to support these types of variables,
moduleSimBaseexports three additional real types:

TYPE AuxVar = REAL,; InVar = REAL; OutVar = REAL;

Time variant parameters which do not depend on the state of any motelsarteeated asput
variables or auxiliary variables. Variables of typeAuxVar are typically used to store
intermediate results during complealculations of derivatives or new states. If a time variant
parameter depends on the staft@ model, it is best treated as antput variableof the model

on which it depends, and as awput variablein all other models. Ithe simulationist wishes to
edit the values of time variant parameters interactivdiying a simulation session, it is
recommended to use the seéwvalues as a table function, where the independent variable is
timell, Note, since auxiliary, input, and output variables are fully compatible wita standard
type REAL, all can also be declared as monitorable variablesOisetMVbelow).

7.1.5 DECLARATION OF MONITORABLE VARIABLES

Every real variable may be declaredaasonitorable variable. This allows the simulationist to
monitor or observe its values from within the interactive siation environment, as well as the
modeler to document simulatiomesults on file, independent from whether the standard
interactive simulation environmeig running or not. There apply no restrictions nor does the
monitoring exert any influence on the variables monitored. Simply call procedure

PROCEDURE DeclMV (VAR mv: REAL; defaultScaleMin, defaultScaleMax: REAL;
descriptor, identifier, unit: ARRAY OF CHAR;
defaultSF: StashFiling; defaultT: Tabulation;
defaultG: Graphing);

11see theAppendix sectionAuxiliary Library for a detailed description on how to work with table functions.

R131

ModelWorks 2.2 - Reference

and the reamv passed as actuargument is associated with the ModelWorks monitoring
mechanism, i.eits values may be written onto the stash file, tabulated or plotted in the graph
from within the simulation environment. You caiso pass variables of types compatible with
the type REAL (e.g.StateVar Derivative or NewState and AuxVar, InVar, or OutVa) as
arguments. DecIMVmay not be called another tifh@ the same real variablev, unless it
should have been removed in the meantime.

Note that callingddecIMVin one of the simulation environment staBmulatingor Pause (s.a.
part Il TheoryFig. T26) — either directly, or implicitly from within a model’sdeclModel
Objectgprocedure — may affect the monitoring settings obtingoing simulation. If tabulation
or graphing are requested for the new variable, the respective window will be clearedraxhe
monitoring event and any previously displayed results willdst. If stash filing is requested,

a new sub-section of simulatisasults containing the new monitorable variable will be started
in the stash file.

The following types are used to control tetual monitoring settings for each kind of
monitoring:

TYPE
StashFiling = (writeOnFile, notOnFile);
Tabulation = (writelnTable, notinTable);
Graphing = (isX, isY, isZ, notinGraph);

The monitoring settings can be independently activated or deactivated akfgrmonitorable
variable the simulationist can control them interactivelyring simulation sessions. The
meaning of the formal procedure parametedatIMVare:

mv The variable to be declared esnitorable variable. The reahv can be declared
anywhere in the model definition program and may be gah of any data structure.
However make sure thatig declared as a global real variable and does exist as long
as the model definition program.

defaultScaleMifdefaultScaleMax Default minimum and maximuraalues used
for the scaling of the curve to the ordinatkile drawing values of the monitorable
variablemvin thegraph The default minimum and maximum of the ordinate scale
are (re)assigned to the curreotle minimum and scale maximum by ModelWorks at
the monitorable variable’s declaration, at starting up of ititeractive simiation
environment2 or after every reset of the scaling. During a simulation session the
current scalaninimum and scale maximum may be changed by the simulationist
(using an 10-window) or by the modet via procedureSetM\V. There apply no
restrictions tahe values of these variables. During interactive changes ModelWorks
will use the range boundaries MIN(REAL) and MAX(REAL).

descriptor String containinga long description of the monitorable varialter. This
string may have any length, but mighot be visible till its end when it is too long to
fit into thelO-window column where it is displayed during a simulation session (see
also identifier). Example: "Density of alga Scenedesmus obliquus".

identifier Short string identifying the monitorable variabiev. This stringshould be
kept as smalhs possible in order to ensure full visibility for the display in small 10
windows during a simulation sessionln particular on small screens, |O-windows
become small in the tiled window positiqgsee menu commandile windowg and
they will display only thisdentifierto denote the monitorable varialtev. Example:
"xa".

12Reset ishowever not performed if the interactive simulation environment is already running and is only
restarted on a new program level.

R 132

ModelWorks 2.2 - Reference

unit String containing the unit uséd measure values of the monitorable variable
mv. This string is displayed in 10-windows during a simulation session. Example:
“cells/ml".

defaultSF, defaultT, defaultG Default settings for th&ind of monitoring for the
monitorable variablemv. If defaultSE defaultT, defaultGare selectetb be written
on a file, tabulated oto be plotted, the values of the variabtav is written in the
defaultstash file, resp. table, or drawn in the graph as a curve versus the current
independent variable, usually simulation time. The defaults for the égdnonitoring
are (re)assigned to the currdabhd by ModelWorks at the monitorable variable’s
declaration, at starting up of the interactive slation environmenbr after every reset
of the stash filing, tabulation respectively graphing. During a simulation session the
current kind of monitoring may be changed by the simulationist (dsen¢O-window
for monitorable variables) or by the moldelvia proceduré&setMV.

7.1.7 TESTING FOR THE PRESENCE OF OBJECTS

The following procedures can be used to check, whethedels or model objects have already
been declared:

PROCEDURE MDeclared (m: Model) : BOOLEAN;

PROCEDURE SVDeclared(m: Model; VAR sv: StateVar) : BOOLEAN,;
PROCEDURE PDeclared (m: Model; VAR p : Parameter): BOOLEAN;
PROCEDURE MVDeclared(m: Model; VAR mv: REAL) : BOOLEAN;

Note thathe last three procedures will also return FALSE in case the corresponding model is
not known to ModelWorks.

7.2 Accessing Defaults and Current Values

During simulations ModelWorks uses many internal paramedettsngs and other variables,

the so-callediefauls andcurrent valus (Fig. T22). They can be accessed by the mdetein

order tocontrol simulations in a similar way the simulationist may access them. One class of
procedures lets the motkl retrieve values, but not change them (read ordjues), e.g. the
simulation time or the default independent variable. Another class of procedurtte latedel

ler get andset values, e.g.GetGlobSimParor GetP respectivelySetGlobSimParsr SetP

The accessible values are grouped into several categories: the global simpdatioreters
(including the flags controlling the types of data written the stash file), the variables
associated with the models and the model objects, the settindpe dflodelWorks windows,

and the name and signature of the stash file. Each of thésgories exists in two copies, the
defaults and the current values. The following subchapters exjplaiprocedures available for
allabove categories, except for the window-settings and attributes of the stash file, which are
explained later.

7.2.1 GLOBAL SIMULATION PARAMETERS AND PROJECT DESCRIPTION

The global read-only variables are givenTiab. R1 and theglobal simulation parametused
to control simulations in Tab. R2.The variables listed in Tab. R3 are used for the project
description.

The first column in each table contains the identifiers used to designate the varigdeslient

interface. The second column contains the symbols used to denote the vamidihlkesnanual,
in particular part Il, Theory

R 133

ModelWorks 2.2 - Reference

Identifier Symbol | Meaning

CurrentTime |t Currentsimulation timeor independent variabléor continuou
time models

CurrentStep | k Current simulation time or independent variable for discret
time models

LastCoinci- |- Last simulation time point at which the state of all discrete

denceTime models was updated, or would have been updated if such

models were present

D o

me

CurrentSimN

Number of the current simulation run

Tab. R1: Read-only global simulation variables internally used by ModelWorks.

Tab. R2: Global simulation parameteiof ModelWorks.

Identifier Symbol [Meaning

t0 to/ko Simulation start time

tend tendKs Simulation stop time

h h/hmax | Integration step (if fixed step lengtmethod) maximurp
integration step (if at least one variable step lemg#thod ir]
use) (h is only used if &ast one continuous time mode| is
present)

er & Maximum relativelocal error (g is only used if at least ope
variable step length method is in use)

c C Discretetime step (if only discrete time models presgnt).
Coincidence interval (if continuouas well as discrete time
models present)

hm hm Monitoring interval

Identifier Symbol | Meaning

title - Project title string

remark - Remark string

footer — Footer string

wtitle - With title in graph

wremark - With remarks in graph

autofooter - Automatic update of date, time, and run number in footer
recM - Recording of data on modelsstash file

recSV - Recording of data on state variables in stash file

recP - Recording of data on model parameters in stash file
recMV - Recording of data on monitorable variables in stash file
recG - Recording of graph in stash file at end of run

recTF - Recording of data on table functions in stash file

Tab. R3: Global project description of ModelWorks.

R 134

ModelWorks 2.2 - Reference

7.2.1.a Retrieval of read only current values

A user can access internal variables (Tab. R1) of ModelWorks by means of gpecidiures.
This guarantees undisturbed data consistency. For instance, the procedure

PROCEDURE CurrentStep(): INTEGER,;
exported by modul&imMasterreturns thecurrent simulation step, i.e. the current value of
discretetime (must not be confounded with the integration step usedubyerical integration
for continuous timanodels). Note that this simulation step can only be read but not changed.
PROCEDURE CurrentTime(): REAL;

Returns the current simulation time, i.e. the currgatue of continuous time. Note that the
simdation time can only be read but not changed.

PROCEDURE LastCoincidenceTime(): REAL;
Returns the last time point at which the state oflsitrete time models was (would have been)
updated . Note that this time point mbg retrieved even if no discrete time models are
currently declared within ModelWorks. This time point can only be read but not changed.
PROCEDURE CurrentSimNr(): INTEGER,;
Returns the current simulation run number k during structured simulations (k =3,.2,
(Fig. T16). Note that even aborted runs are numbered. This procedure is typically alled

the client procedurenitialize, e.g. to assign parameter values depending on the current run.
Note k can only be read but not changed.

7.2.1.b Modification of defaults

The predefined values ModelWorks uses as defavdtslisted in Tab. T1 (manual part Il
Theory. If the modeler wishes tochange, i.e. overwrite, them she may access any of the
variables listed in the tables Tab. R2 or R3 witlSatDefltxyzprocedurej.e. a procedure with
an identifier starting wittSetDeflt

PROCEDURE SetDefltGlobSimPars(t0, tend, h, er, c, hm: REAL);
PROCEDURE GetDefltGlobSimPars(VAR t0, tend, h, er, ¢, hm: REAL);

PROCEDURE SetDefltProjDescrs(title,remark,footer: ARRAY OF CHAR,;
wtitle,wremark,autofooter,
recM, recSV, recP, recMV, recG: BOOLEAN);

PROCEDURE GetDefltProjDescrs(VAR title,remark,footer: ARRAY OF CHAR;
VAR wtitle,wremark,autofooter,
recM, recSV, recP, recMV, recG: BOOLEAN);

PROCEDURE SetDefltTabFuncRecording(recTF: BOOLEAN);
PROCEDURE GetDefltTabFuncRecording(VAR recTF: BOOLEAN);

Above procedures set gyet the defaults for thglobal simulation parametershe project
description or therecording flags The meanings of the formptocedure parameters are listed
in the tables Tab. R2 and R3.

Calling one of the procedur&etDefltGlobSimParsSetDefltProjDescrer SetDefltTabFunc

Recordingwill have no effect until the global simulation parameters respectively the project
description or table function recording are reset.

R 135

ModelWorks 2.2 - Reference

ModelWorks solves equations, e.g. differential equations, by using@pendent variableby
default named "time". The independent variable is used as the default alvsciabée in the
graph, if no monitorable variable has been selected for this purpose.

PROCEDURE SetDefltindepVarldent(descr,ident,unit: ARRAY OF CHAR);
PROCEDURE GetDefltindepVarldent(VAR descr,ident,unit: ARRAY OF CHAR);

SetDefltindepVarldendverwrites the defaults of the descripwescr identifier ident and the
unitunit of theindependent variable The predefined default values ModelWorks uses are the
descr "time", ident"t", and nounit (empty string). Theeall of this procedure will have no
effect until the global simulation parameters are reset.

The following procedures are actually only kept for convenienceugmcird compatibility with
previous versions of the ModelWorks client interface. In ModelWorks versiongHatei/1.1
their functions are also available by using the proced8eg®efltGlobSimParsespectively
SetGlobSimPars.

PROCEDURE SetMoninterval(hm: REAL);

Sets the default of thmonitoring intervalonly, not the current value. Theall of this procedure
will have no effect until the global simulation parameters are reset.

PROCEDURE SetintegrationStep(h: REAL);

Sets the defauihtegration stepnly, not the current value. The call of thisocedure will have
no effect until the global simulation parameters are reset.

PROCEDURE SetSimTime(t0,tend: REAL);

Sets the defaults for the simulation start and stop éisngell as theurrent simulation start and
stop time. It differs in this respect from all othparameter setting routines, which affect either
only the defaults or only the current values.

7.2.1.c Modification of current values

Modification of current values of the parameters and varidigesi in Tab. R2 and R3 can be
accomplished by the following procedures whose identifiers start Sath

PROCEDURE SetGlobSimPars(t0, tend, h, er, ¢, hm: REAL);
PROCEDURE GetGlobSimPars(VAR t0, tend, h, er, ¢, hm: REAL);

PROCEDURE SetProjDescrs(title,remark,footer: ARRAY OF CHAR,;
wtitle,wremark,autofooter,
recM, recSV, recP, recMV, recG: BOOLEAN);
PROCEDURE GetProjDescrs(VAR title,remark,footer: ARRAY OF CHAR;
VAR wtitle,wremark,autofooter,
recM, recSV, recP, recMV, recG: BOOLEAN);

PROCEDURE SetTabFuncRecording(recTF: BOOLEAN);
PROCEDURE GetTabFuncRecording(VAR recTF: BOOLEAN);

The above procedures set ggt the current values for thgdobal simulation parametgrthe
project descriptionor the recording flags The meanings of the formal procedy&ameters
are listed in the tables Tab. R2 and R3. Nttat calls to the procedur&etGlobSimParand
SetSimTimenly have effect if § < tongholds. If these procedures are caliecdbne of the sub
statefRunningor Pause (s.a. part [ITheoryFig. T15-T16) the additional restrictions, & t

and g2t apply.

R 136

ModelWorks 2.2 - Reference

The effects of calling one of the procedusetProjDescrer SetTabFuncRecordingn thesub
statesRunningor Pause will not become visible to the simulationist until the nexnulation

run, except if the call occurs just before the very first monitoring of the current run has taken
placé3. Changes in the flagstitle andwremarkand/orthe associatetitle and remarkwill
become visible only if the graph window issized during the simulation. Changes in the flag
recGwhich controls whether the graph will be dumped to the stash file will apply tlgoing
simulation run, since the graph is dumped to the stash file at termination of the run.

PROCEDURE SetindepVarldent(descr,ident,unit: ARRAY OF CHAR);
PROCEDURE GetindepVarldent(VAR descr,ident,unit: ARRAY OF CHAR);

SetindepVarldenand GetindepVarldentllow to set and get the current descriptigscy
identifierident and the unitunit of the independent variable.

Note that calling obne of the procedureSetSimTimge SetindepVarldentor SetGlobSimPars

during a simulation may result in redrawing of the graph, suchahgtpreviously displayed
simulation results will be lost.

7.2.1.c Resetting of current values to the defaults

The following two procedurediave exactly the same effect as the execution of the menu
commandsReset Global simulation parameteasd Reset Project descriptignrespectively,
from the menBettings (s.a. part llIReference/User Interface

PROCEDURE ResetGlobSimPars;

resets the current values ftfl, tend h, er, ¢, hmas well as thalescy ident and unit of the
default independent variable toeir defaults. This procedure will typically be used within the
simulation environment definition procedusdich may be installed in ModelWorks by means
of DeclDefSimEn\see above).

PROCEDURE ResetProjDescrs;

resets the projeditle, remark footeras well as thdlags wtitle, wremark autofootey recM
recSV recP recMV, recGandrecTFto their respective default value§.his procedure may be
called at any time. It will have the same effects as descritoed SetProjDescrsand
SetTabFurRecordingabove.

7.2.2 INSTALLED MODELS AND MODEL OBJECTS

Once declared, model and model objects tmaynodified in any way, except for their binding
to a particular variable in the model definition programorder to break even this binding, you have
to remove the model or model object completely by calling a remove procedure (see belowRsectmring
models and model objeyts Modifications affect attributes and values associatgd a model or
model object. To support model and model object editing there exists foobgdh class a
procedure pair: a get and a set procedure. The get procethigees the objects attributes, the
set procedure modifies (overwrites) them. Moreoverghecedures are grouped into two sets:
The first set is to modify the defaults, the othentodify the current values. The meanings of
the formalprocedure parameters are the same as described under the declaration procedures
DeclM DeclSV DeclPandDecIlMV. Also, the parameter lists wereept similar to the ones
used by the declaration procedures.

13This will be the case if one of these procedures is e.g. called from within a minitielize-procedure.

R 137

ModelWorks 2.2 - Reference

7.2.2.a Modification of defaults

Setting of defaults (signified by formal parameter names starting with “default...”) in the
procedures listed below will ndmply a setting of the current values, i.e. no implicit reset.
That is, changes of the defaults will not become effective or visible timtilnext corresponding
reset. Setting of all other values however will have imilree effects. In particular, this
concerns a modeligitialize, input output dynamic¢ terminateand about procedures, the
descriptors, identifiers, and unit strings of models or model objects, as well as chafges
range boundaries (used during the interactive changing of initial valuesodel parameter
values via 10-windows) or a pamaeter'srtunTimeChangeption.

PROCEDURE GetDefltM(VAR m: Model;
VAR defaultMethod: IntegrationMethod;
VAR initialize, input, output, dynamic, terminate: PROC;
VAR descriptor, identifier: ARRAY OF CHAR;
VAR about: PROC);
PROCEDURE SetDefltM(VAR m: Model;
defaultMethod: IntegrationMethod,;
initialize, input, output, dynamic, terminate: PROC;
descriptor, identifier: ARRAY OF CHAR,;
about: PROC);

PROCEDURE GetDefltSV(m: Model; VAR s: StateVar;
VAR defaultinit, minCurlnit, maxCurlnit: REAL;
VAR descriptor, identifier, unit: ARRAY OF CHAR);
PROCEDURE SetDefltSV(m: Model; VAR s: StateVar;
defaultlnit, minCurlnit, maxCurlnit: REAL;
descriptor, identifier, unit: ARRAY OF CHAR);

PROCEDURE GetDefltP (m: Model; VAR p: Parameter;
VAR defaultVal, minVal, maxVal: REAL;
VAR runTimeChange: RTCType;
VAR descriptor, identifier, unit: ARRAY OF CHAR);
PROCEDURE SetDefltP (m: Model; VAR p: Parameter;
defaultVal, minVal, maxVal: REAL;
runTimeChange: RTCType;
descriptor, identifier, unit: ARRAY OF CHAR);

PROCEDURE GetDefltMV(m: Model; VAR mv: REAL;

VAR defaultScaleMin, defaultScaleMax: REAL;
VAR descriptor, identifier, unit: ARRAY OF CHAR;
VAR defaultSF: StashFiling; V

VAR defaultT: Tabulation;

VAR defaultG: Graphing);

PROCEDURE SetDefltMV(m: Model; VAR mv: REAL;
defaultScaleMin, defaultScaleMax: REAL;
descriptor, identifier, unit: ARRAY OF CHAR;
defaultSF: StashFiling;
defaultT: Tabulation;
defaultG: Graphing);

7.2.2.b Maodification of current values

Most of the so-calle@et.. procedures affect the corresponding current values immediately.
They may be called freely ahy simulation environment state. Note however that for reasons
of consistency if they are called in the environment sateulating, their effect will take place
only at the enaf the current integration loop (see parfTheory chapterSimulations and the
Run-Time Systerm particular sectiomManipulating the model base at run-)im@&ny new or
changed values will be displayed in tberresponding 10-windows. Note that the updating of
some changes may require some time before they become actually visible scretbe,

R 138

ModelWorks 2.2 - Reference

because the "Dialog Machine”™ may need several integration stepB tifhdates have been
completed.

PROCEDURE GetM (VAR m: Model; VAR curMethod: IntegrationMethod);
PROCEDURE SetM (VAR m: Model; curMethod: IntegrationMethod);

PROCEDURE GetSV (m: Model; VAR s: StateVar; VAR curlnit: REAL);
PROCEDURE SetSV (m: Model; VAR s: StateVar; curlnit: REAL);

PROCEDURE GetP (m: Model; VAR p: Parameter; VAR curVal: REAL);
PROCEDURE SetP (m: Model; VAR p: Parameter; curVal: REAL);

PROCEDURE GetMV (m: Model; VAR mv: REAL;
VAR curScaleMin, curScaleMax: REAL; VAR curSF: StashFiling;
VAR curT: Tabulation; VAR curG: Graphing);
PROCEDURE SetMV (m: Model; VAR mv: REAL;
curScaleMin, curScaleMax: REAL; curSF: StashFiling;
curT: Tabulation; curG: Graphing);

It is recommended to avoid the direct modification of state varialpasameters etc. by directly
assigning a new value to the respective variable. Thestwo reasons why: First, there may
result a confusing discrepanitythe value actually used for simulations and the one visible in
the 10-window. Secondly, ModelWorks is likely to overwrite the value, so it assignment

is fictitious and the modielr may haveifficulties to understand subsequent simulation results.
To avoid any such problems, use always #&t procedures and they will preserve consistency
between the model definition program and ModelWorks.

7.2.2.c Resetting of current values to the defaults

The following procedures correspond to the menu comm&edet All model’sntegration
methods initial values parametersstash filing tabulation graphing scaling and curve
attributesrespectively, from the menettings (s.a. part llIReference/User Interface

PROCEDURE ResetAllintegrationMethods;
PROCEDURE ResetAllInitialValues;
PROCEDURE ResetAllParameters;

PROCEDURE ResetAllStashFiling;
PROCEDURE ResetAllTabulation;
PROCEDURE ResetAllGraphing;
PROCEDURE ResetAllScaling;

The first three procedures reskeé integration methods of all currently declared models, the
initial values of all statevariables and the values of all parameters, respectively, to their de
faults. The remaining procedures operate onréspective attbutes of all currently declared
monitorable variables. If you wish to reset a single model or model object onlyGeteflt...

to retrieve a default followed b$et...to assign it to the object’s current value.

Same as fofSet.., calls to theseReset...procedures will have alightly delayed effect if

occurring in the environment stat®imulating Note also that (re)setting of monitorable
variables may affect an ongoing simulation’s monitoring isinilar way as described for
DeclMVabove.

7.2.2.d Model and model object attributes
ModelWorks provides a mechanism to attach one integeratyffgutesto eachmodel or model

object. These attributes are typicaliged as array indices to access some data associated with
the object, which are stored in an array.

R 139

ModelWorks 2.2 - Reference

TYPE

Attribute = INTEGER,;
CONST

noAttr = MIN(Attribute);

PROCEDURE SetModelAttr(m: Model; val: Attribute);
PROCEDURE GetModelAttr(m: Model): Attribute;

PROCEDURE SetObjAttr(m: Model; VAR o: REAL; val: Attribute);
PROCEDURE GetObjAttr(m: Model; VAR o: REAL): Attribute;

In case there is currently no attribute attachea tmodel or model object, the procedures
GetModelAttrandGetAttrwill return the valuenoAttr.

See also the optional mod#@mObjectdisted in theAppendixwhich allows for theinstallation
and efficient retrieval of an additional attribute of the generic %p®RESS for each model or
model object.

7.2.2.e Access support for models and model objects

The following procedures allow to access all currently declared madelsmodel objects.
They areespecially useful for manipulating objects from program modules which are not
possessors dfie variables. For exactly this reason however, they must be applied carefully,
l.e. the modeler should ensure that no inconsistencies ocdarorder to allow for an efficient
usage of attributes, the attribut@lues currently attached to an object are also passed in the
procedures of typ®lodelProaespectivelyModelObjectProgvhich arerepeatedly called by the
respectiveDoForAll... procedures.

TYPE
ModelProc = PROCEDURE(VAR Model, VAR Attribute);
ModelObjectProc = PROCEDURE(Model, VAR REAL, VAR Attribute);

PROCEDURE DoForAllModels(p: ModelProc);

PROCEDURE DoForAllSVs (m: Model; p: ModelObjectProc);
PROCEDURE DoForAllPs (m: Model; p: ModelObjectProc);
PROCEDURE DoForAllMVs (m: Model; p: ModelObjectProc);

Thefollowing program fragment exemplifies the usage of Ba~orAlkmechanism. The pro
cedure name8etReducedMonitorings used to reduce all monitoring to the curigash filing
settings of all monitorable variables, e.g. in order to increase simulation perfornfance
sendiivity experiment in batch mode.

FROM SimBase IMPORT
Model, Attribute, StashFiling, Tabulation, Graphing,
GetMV, SetMV, DoForAlIMVs, DoForAllModels;

PROCEDURE ReduceMonitoringForMV (m: Model; VAR mv: REAL; VAR dummy: Attribute);
VAR curScaleMin,curScaleMax:REAL; curSF:StashFiling; curT:Tabulation; curG:Graphing;
BEGIN
GetMV(m, mv, curScaleMin, curScaleMax, curSF, curT, curG),
SetMV('m, mv, curScaleMin, curScaleMax, curSF, notinTable, notinGraph);
END ReduceMonitoringForMV ;

PROCEDURE ReduceMonitoringForModel(VAR m: Model; VAR dummy: Attribute);

BEGIN
DoForAllMVs(m, ReduceMonitoringForMV);

R 140

ModelWorks 2.2 - Reference

END ReduceMonitoringForModel;

PROCEDURE SetReducedMonitoring;
BEGIN

DoForAllModels(ReduceMonitoringForModel);
END SetReducedMonitoring;

7.3 Removing Models and Model Objects

Models and model objects can be removed by calling athegbrocedures listed below. Note
that removing means onlyhat the linkage of, e.g. a state variabke to the simulation
environment is removed, not the real varialdeitself, which remains a part of the model
definition program. Once removed, a model or model objectampletely unknown to
ModelWorksand has become inaccessible by ModelWorks' routines. E.g. removed model
objects are no longer listed in IO-windows and can no longer be integrated.

PROCEDURE RemoveM (VAR m: Model);
PROCEDURE RemoveAllModels;

PROCEDURE RemoveSV (m: Model; VAR s : StateVar);
PROCEDURE RemoveMV (m: Model; VAR mv: REAL);
PROCEDURE RemoveP (m: Model; VAR p : Parameter);

Removeprocedures may not be called another time, unless the model or the model object has
been redeclared in the meantime. Remove procedures may also beircalted sub-states
Runningor Pause but with a slightly delayed effeds.a. part IITheory section Manipulating

the model base at run-tinemd Tab. T4). Notethat RemoveMV may affect a running
simulation’s monitoring in the way already describeddecIMVabove.

Calling procedur&kemoveMresults in an implicit removal of all model objects belonginthie
model. In case there is a simulation currently running, in ordelguarantee consistent
simulation resultsit least the modelt®rminategrocedure will be called prior to removing the
model objects. For example, if a modalis removed from within an other modeltautput
procedure, first the current integratistep form will be accomplished by calling itsutput (if
notalready called),nput anddynamicprocedures, than its simulation is terminated by calling
its terminate procedure, and than its model objects are removed f&#. Il Theory section
Manipulating the model base at run-tene Tab. T4).

7.4 Simulation Control and Structured Simulation Runs
The following Modula-2 objects serve the control of simulations.

PROCEDURE SimRun;
This procedure performs an elementaiynulation runwith the current parameter and other
variable settings. Typically this routine issed to execute a series of simulation runs, e.g. in a
loop within procedurénstallExperimen{see belowthis section). Simulation runs can then be
executed under theontrol of the moddér, for instance to construct a whole phase portrait by
means of a single menu command or to identifyoglel parameter. Note th&mRunmay be
called without the standard interactive simulation environment currently running.

PROCEDURE CurrentSimNr(): INTEGER,;

R141

ModelWorks 2.2 - Reference

Returns the current simulation run number k during structsiredlations (k = 1, 2, 3...) (see
part [l Theory Fig. T21). A typical usage of this procedure looks similar to the following
statement:

REPEAT SimRun UNTIL CurrentSimNr()=maxSimNr

Note however that even aborted runs are numbergd.handle properly abortion of structured
simulation runs see below procedirperimentAborted

TYPE
StartConsistencyProcedure = PROCEDURE(): BOOLEAN,;
TerminateConditionProcedure = PROCEDURE(): BOOLEAN;

PROCEDURE InstallStartConsistency(startAllowed: StartConsistencyProcedure);

ProcedurestartAllowedis called at the begin of a simulation run, right aftes execution of the
procedurenitialize (see procedurBeclM), and after resuming a run from the stR@use |If it
returns FALSE, the simulation will be aborted and the simulagomironment immediately
returns into the program stdi simulation Otherwise the simulation is normally continued.
Typically this procedure is used to cheodnsistency in the initial conditions, e.g. to test
relations among parameters and initial valu&nce the simulationist may interactively change
values of parameters independently freath other (entry forms test only syntax and ranges),
this consistency test is important in case the model equationlsl become undefined if the
conditions were not met. Moreover, the moléelmay usehis procedure to compute values of
auxiliary variables, which depend on the current values of parameters.

PROCEDURE InstallTerminateCondition(isAtEnd: TerminateConditionProcedure);

ProcedurasAtEnd is called at the end of each tinj@tegration) step in the program state
Simulating and continuously in the staRause. If it returns TRUE, the simulation will be
terminated. This behaviour can be used to program state events whictoltlael simulation
termination. Note however, that this does not fully conform to a prdpandling of state
events, sinceModelWorks performs no iterations to find the exact location of the event. You
have to prograntc such that the valuesturned is correct even if the current time is not exactly
that of the event, i.e. the procedute must be able to detetite state event even if it occurs
anywhere in the time interval of the current integration $tep

PROCEDURE CurCalcM(): Model;

ProcedureCurCalcMreturns the model of which thmitialize, output input dynamicor
terminatgorocedure is currently being called by ModelWorks. It is typically usadsituation,
where several models use common procedures e.gnputor dynamic Knowing the model,
the model definition program can set e.g. array indices or exhibit a different behaviour.

PROCEDURE PauseRun;

Makes a state transition from the program s$ateulatinginto the program statBause(part Il
Theory Fig. T15, T16 and T24) andwill only return after the simulationist has chosen the
menu comman&esume rununder men®olve Thisfeature allows to temporarily interrupt a
simulation run exactly atarticular point, such as a state event (e.g. a state variable becomes
negative), and allows the simulationist to take some actieg, changing a parameter value,
before resuming the simulation.

PROCEDURE ResumeRun;
Makes the opposite statansition tharPauseRuni.e. from the program stat®ause into the

program stat&imulating This procedure allows to resume simulation aét€y. execution of a
menu command which does not belong to the standard interactive simulation environment.

R 142

ModelWorks 2.2 - Reference

PROCEDURE StopRun;

Makes a state transition from the program st8ieulating into the program state
No Simulation (part I Theory Fig. T15), i.e. stops the current simulation run.

PROCEDURE InstallExperiment(doExperiment: PROC);

Installs arexperimentdoExperimentvhich may be executed by the simulatiorbgt selecting
the menu commanBxecuteExperimentunder menwbsolve The procedureloExperimentis
provided bythe modder and contains typically calls to the proced8imMastelSimRun If
the procedurdnstallExperimenthas at least been called oncethie course of a simulation
session, the menu commarktkecute Experimentundermenu Solve will no longer appear
dimmed but will be active and can be chosen by the simulationist in theNsig@emulation.

TYPE
MWState = (noSimulation, simulating, pause, noModel);

PROCEDURE GetMWState(VAR s: MWState);

The current state of theimulation environmentcan be determined by calling procedure
GetMWStatdrom SimMaster The meaning othe returned values, either noSimulation
simulating pause or noModelcorresponds exactly to the program stateswn in Fig. T15
(part 11 Theory.

TYPE
MWSubState = (noRun, running, noSubState, stopped);

PROCEDURE GetMWSubState(VAR ss: MWSubState);

The current substate of the simulation environnvemte a structured simulation (experimert)
currently in execution, can be determined by calling proced@etMWSubStatefrom
SimMaster The meaning of the returned valgs either noRun running noSubStateor
stoppedcorresponds exactly to the program substates shown in Fig T16 (pHEnebry. If

the valuenoSubStatés returned,no experiment is currently running, i.e. the simulationist has
reached statsimulatingoy choosing the menu comma8dlive/Startrun (s.a. below procedure
ExperimentRunning

PROCEDURE InstallStateChangeSignaling(doAtStateChange: PROC)

Installs the client's procedudibAtStateChangm ModelWorks which will be called each tinae
change ilMWStateor MWSubStateoccurs.

PROCEDURE ExperimentRunning(): BOOLEAN;
ExperimentRunningrom SimMasterreturns TRUE if astructured simulation (experiment) is
currently in execution, i.e. if thesimulationist has reached the stabmulatingby choosing the
menu comman&olve/Execute Experimelfs.a. above procedur@etMWSubStatg

PROCEDURE ExperimentAborted(): BOOLEAN;
ExperimentAbortedrom SimMastereturns TRUE ithe simulationist has stopped (killed) a

running structured simulation (experiment). A typical use of this procadui@ skip super
fluous calls to procedur@imRun E.qg.:

REPEAT

SimRun;
UNTIL (CurrentSimNr()=maxRunNr) OR ExperimentAborted()

R 143

ModelWorks 2.2 - Reference

7.5 Display and Monitoring

7.5.1 WINDOW OPERATIONS

The following Modula-2 objects serve to control the display on the screenthe@rrangement
of windows or the monitoring.

PROCEDURE TileWindows;
PROCEDURE StackWindows;

The two procedures stack or tile windows on the screen. Stadkingith overlapping
windows similar to the ModelWorks predefined start-up displéjed windows don't overlap

andfill the screen as much as possible. The actual arrangement may depend on the screen in
display.

PROCEDURE InstallTileWindowsHandler(doAtTile:PROC);
PROCEDURE InstallStackWindowsHandler(doAtStack:PROC);

The above two procedures allow to install a procedure whiokxecuted when windows are
tiled or stacked.doAtTile or doAtStackwill be called immediately after windows atéed or
stacked, e.g. in order to rearrange additional windows managed by the leodel

The following type enumerates all windows of the ModelWorks simulation environment

TYPE
MWWindow = (MIOW, SVIOW, PIOW, MVIOW, TableW, GraphW, AboutMW, TimeW);

MIOW, SVIOW PIOW and MVIOW designate thdO-windows for the models, state
variables, model parameters, and the monitorable variabledleW GraphWandAboutMW
are the table, graph, antthe aboutmodelwindow with the title "Model Help/Info". The latter
window is displayed if the simulationist clicks intbe question mark button of the models 10
window. TimeWis thewindow in the top right corner of the main screen used to display the
current simulation number and time while in subst&emning or Pause Since the time
window only exists in these substatex) default attributes are maintained for TimeWmay
be passed as a formal parametaiue to the procedureSetWindowlace CloseWindow
GetWindowPlace DisableWindowandEnableWindowbut has no effedf passed to any of
the remaining procedures operating on ModelWorks windows; asagesetting of these
windows its size and position will actually not be changed.

PROCEDURE SetWindowPlace(mww: MWWindow; x,y,w,h: INTEGER);

SetWindowPlacelaces the windowmww with its lower left corner at the positior,y and
resizes it to the widttw and heighth (sizeof outer frame including title bar, frame, and
shadows). The pointxy] is given in pixel coordinates with an origin at the lower left corner
of the main computer screen. If this procedure is cafiethse the window should not already
be open, it will open the window in the proper size at the specified locatid@alls to
SetWindowPlacefor theTimeW will be discarded,f the simulation environment is not in the
stateRunning

PROCEDURE CloseWindow(w: MWWindow);

CloseWindowcloses the windoww and remembers the location plus size for the next
reopening.

PROCEDURE GetWindowPlace(mww: MWWindow; VAR x,y,w,h: INTEGER;
VAR isOpen: BOOLEAN);

R 144

ModelWorks 2.2 - Reference

GetWindowPlaceeturngthe current position of the windomww and whether it is currently
open or not. Since the simulation environment remembers the location and sizeénaioa
when it was open the last time, this procedure retumesiningful values even isOpenshould
be FALSE.

PROCEDURE SetDefltWindowPlace(mww: MWWindow; x,y,w,h: INTEGER);
SetDefltWindowPlacsets the default size and position of the windoww.

PROCEDURE GetDefltWindowPlace(mww: MWWindow; VAR x,y,w,h: INTEGER;
VAR enabled: BOOLEAN);

GetDefltWindowPlaceaeturnsthe default size and position of the windawww plus the
curreniO-window status. Ifenableds TRUE, it means that the editing functions of the 10
window are currently available to the simulationisthis is the case in the stat® simulation
or partially in the statPausebut editing is disabled in the sta&mulating(s.a. part 1l Theory
Fig. T15, in particular the title bars with horizontal lines vs. dimmed bars in Fig. T24)

To control the format in which information is displayed in a particil@window use the
following data structure:

TYPE
IOWColsDisplay = RECORD
descrCol, identCol : BOOLEAN;
CASE iow: MWWindow OF
MIOW : m: RECORD
integMethCol: BOOLEAN;
END(*RECORD*);
| SVIOW : sv: RECORD
unitCol, sVInitCol: BOOLEAN;
fw,dec: INTEGER;
END(*RECORD?);
| PIOW : p: RECORD
unitCol, pValCol, pRtcCol: BOOLEAN;
fw,dec: INTEGER;
END(*RECORD?);
| MVIOW : mv: RECORD
unitCol, scaleMinCol, scaleMaxCol, mVMonSetCol: BOOLEAN;
fw,dec: INTEGER,;
END(*RECORD*);
END(*CASE¥)
END(*RECORD?);

The Booleans determine whether a coluimirio be displayed or not; they correspond to the
check boxes which may be set by the simulationist in the entry form which is activatal
thelO-window buttonSet Upis clicked. The integers specify the format in which to display
real numbers, wheréw is the field width andlecis the number of decimal digits.

PROCEDURE SetlOWColDisplay(mww: MWWindow; wd: IOWColsDisplay);
SetlOWColDisplagllows to set a new setup of the columns and new display formats i@the
window mww. The predefinedlefault of the simulation environment is 3 decimal digits to
display or parameter values; this procedure allows to alter this format to any other value.

PROCEDURE GetlOWColDisplay(mww: MWWindow; VAR wd: IOWColsDisplay);

GetlOWColDisplayeturns the setup of the columns and the display formats currentg iby
the 10-windowmww.

R 145

ModelWorks 2.2 - Reference

Instead of the current values, tf@lowing two procedures affect the default values; otherwise
they function the same way as the previous two procedures:

PROCEDURE SetDefltlOWColDisplay(mww: MWWindow; wd: IOWColsDisplay);
PROCEDURE GetDefltlOWColDisplay(mww: MWWindow; VAR wd: IOWColsDisplay);

The following procedures allow the modkal to customize the simulati@nvironment even a
step further; she may even completely disallowallow any usage of an 10-window. This
control is only available to the modet but not to the simulationist.

PROCEDURE DisableWindow(w: MWWindow);

DisableWindowdisables theModelWorks windoww for anyusage, i.e. neither the opening
nor the editing (I0-windows) by the simulationist is any more possiliiecase the windoww
should be currently operit, is closed. Menu commands possibly associated with the window
(IO-windows, graphand table window) are disabled (dimmed). Note that in case the
AboutMWis disabled, anodel’saboutprocedure will still be executed when the sinidaist
clicks into the question mark button available in the models I0-window. Téligabling of the
AboutMW allows the modéér to entirely replacthe predefined ModelWorks help mechanism
by her own procedures. Similarly, responsibilftyr the display of the current simulation time
may entirely be taken over by the mdéelby disabling th&imeW

PROCEDURE EnableWindow (w: MWWindow);

EnableWindoweverses the effedf DisableWindowand enables the subsequent usage of the
window w by the simulationist to its normal and ftuhctionality. However, the window will

not be opened until the simulationist executes the correspomg#ing command (only possible
for 10-windows, graph and table window) or the motélexplicitly callsSetwindowPlace

TYPE
MWWwindowArrangement = (current, stacked, tiled);

PROCEDURE SetDefltWindowArrangement(a: MWWindowArrangement);

The procedureSetDefltWindowArrangemerallows to set the default positionsizes and
columns-displaysettings (IO-windows only) of all ModelWorks windows to the values
corresponding to stacked or tiled windows, or accordimghe current settings. Tyl usage

of this procedure may look as follows:

SetWindowPlace(MIOW,...);
SetWindowPlace(SVIOW,...);
SetWindowPlace(GraphW,...);

SetDefltWindowArrangement(current);

This solution is more convenient than havittg specify first the current values and then the
defaults with exactly the same values.

PROCEDURE ResetWindows;
copieshe default window positions, sizes and column-display settings (I0-windows only) to
the current values. It has exactly th@me effect as execution by the simulationist of the menu

commandSettings/Reset Windowsavailable at the standard user interface and will close and
(re)open all windows, which are not already in their default states.

7.5.2 GENERAL MONITORING

After having calledSuppressMonitoringll subsequent monitoringill be suppressed.

R 146

ModelWorks 2.2 - Reference

PROCEDURE SuppressMonitoring;

The procedure
PROCEDURE ResumeMonitoring;

resumes all monitoring exactly as it was before proce8uppressMonitoringas called
PROCEDURE InstallClientMonitoring(initClientMon, doClientMon, termClientMon: PROC);

Installs in ModelWorks a client provided monitoring mechanism. During the simutatictine
monitoring proceduredoClientMon is called every time ModelWorks does its standard
monitoring once. Hereby doClientMonwill be called as the last monitoring procedure, i.e.
after ModelWorks calls the stash file, the tabulation, and the graphitoring procedures.
This allows forinstance to draw into the ModelWorks graph window from within the
doClientMon (to this end yomight wish to use the nohile SimGraphUtilsfrom the oponal
client interface). At the begin respectively the endewktry simulation run the poadures
initClientMonrespectivelytermClientMonare called (to locate these events in more details see
the calling squence in Fig. T19, part lITheory. Note thatinitClientMon is caled for t,
respectively i only, and that for all subsequent monitoring, includihg very last one forgfq
respectively k the praceduredoClientMonis used. TypicallyinitClientMon does some initial
preparations such as opening a file or initializing a data structure, and tradis doClientMon
Note also that the peaduretermClientMonis called at the very end of the simulation run,
paticular even after all model'terminatgrocedures have beexecuted. Usually the model's
terminatgrocedures are used to Bza the run, e.g. to compute a mean, aedmClientMons
typically only used to do some house-keeping sagltlosing a file or discarding no longer
needed global data structures.

7.5.3 STASH FILING

PROCEDURE SetStashFileName (sfn: ARRAY OF CHAR);
PROCEDURE GetStashFileName (VAR sfn: ARRAY OF CHAR);

These procedures allow to set or get the current name of thdiktgsiay contain a path, e.g.
MyDisk:Folder:TheFile.DAT). The call t8etStashFileNameill have noeffect until the stash
file is actually opened during a subsequent simulation. Calling this procedure in the ofiddle
simulation run (stat&imulating will rename the current stash file.

The current stash file may be changed at any time by calling
PROCEDURE SwitchStashFile (newsfn: ARRAY OF CHAR);

If SwitchStashFileis called in the stat&imulating, the currentstash file is closed, and
monitoring is continued in the file with nanmewsfn Sincethis may be done in the middle of
a simulation run, as well as in the substéte run, SwitchStashFileallows to distribute the
documentation of individual, very long simulations, as well as different simulation runs
belonging to one and the same experiment among different fil&wit¢thStashFilas called in
the stateNo Simulationit will have the same effect &etStashFileName

IMPORTANT NOTICE: Ifa file with the nampecified in the procedure
SetStashFileNamer SwitchStashFileshould already exist, it will be overwritten withowdny
warning!! This behaviour contrasts with the setting of the name viauiee interface (menu
commandSettings/Select stash file).

PROCEDURE SetStashFileType (filetype, creator: ARRAY OF CHAR);
PROCEDURE GetStashFileType (VAR filetype, creator: ARRAY OF CHAR);

R 147

ModelWorks 2.2 - Reference

On the Macintosh, any file ©f a particular type and is associated with a particular application
characterized by the creator, each given by a 4 character long sthiegpurpose and timing of

the effects byhese routines is exactly the same as that described for the routines affecting the
name of the stash file. The predefined defaults are those inherited from the “Dialog Machine”.

PROCEDURE SetDefltStashFileName(dsfn: ARRAY OF CHAR);
PROCEDURE GetDefltStashFileName(VAR dsfn: ARRAY OF CHAR);

PROCEDURE SetDefltStashFileType(dFiletype,dCreator: ARRAY OF CHAR);
PROCEDURE GetDefltStashFileType(VAR dFiletype,dCreator; ARRAY OF CHAR);

The above procedures allow to get or set the default name, type and wéahar stash file.
Setting of the defaults will not show any effects until a reset is performed by theleradahg

PROCEDURE ResetStashFileNameAndType;

or by the simulationist, when executing the equivalent menu comnfettinggReset Stash
File. Calling ResetStashFileNameAndTypas the same effect as calling the corresponding
Set...procedures with the current defaults.

PROCEDURE Message(m: ARRAY OF CHAR);

Writes the texim onto the stasfile and inserts it in the table. Hereby, the string is
surrounded with quotation marks " and preceded with the reserved word MESSAIBES
procedure allows to bring state events to the user's attention, wimhld otherwise slip by
undetected or it helps the user to locate particular events while viewing large stash files.

PROCEDURE DumpGraph;

If the stash file is currently open (currensiashFilingattribute €) for at least one monitorable
variable, or thesimulationenvironment modeAlways document run ostash fileis active),
DumpGraplhwvrites the current graph onto the stash file. The data are written in the so-called
RTF-Format which can be opened by several, commerciallgilable document processing
software (s.a. previous section on recording flags in the entry fofect description. under
menuSetting3. [Not available in Reflex and PC version]

7.5.4 GRAPHICAL MONITORING

The following objects allow to contrdhe curve attributs used by ModelWorks for display of
individual monitorable variables in thgraph.

TYPE
Stain =
(coal, snow, ruby, emerald, sapphire, turquoise, pink, gold, autoDefCol);
LineStyle =
(unbroken, broken, dashSpotted, spotted, invisible, purge, autoDefStyle);

CONST
autoDefSym = 200C;

Stains and colour variables from modi&WindowlOcorrespond to each other. Thegn be
paired following this sequence:

black, white, red, green, blue, cyan, magenta, yellow

Staincoalis black snow is white, ruby is redetc. The following line stylesre available to
connect points in the graph:

R 148

ModelWorks 2.2 - Reference

unbroken

broken - -------

dashSpotted -----+-e-e-e-

spotted ...

invisible no drawing at all, may be usdd stop drawing of a particular
curve, while others are still drawn

purge used to erase already drawn curves

autoDefStyle line style will bedetermined by ModelWorks according to the

automatic definitiormechanism of curve attributes

To set or get defaults respectively currentve attribute for the monitorable variablenv
belonging to modeh use the following procedures:

PROCEDURE SetCurveAttrForMV(m: Model; VAR mv: REAL;
st: Stain; Is: LineStyle;
sym: CHAR);

PROCEDURE GetCurveAttrForMV(m: Model; VAR mv: REAL;
VAR st: Stain; VAR Is: LineStyle;
VAR sym: CHAR);

PROCEDURE SetDefltCurveAttrForMV(m: Model; VAR mv: REAL;
st: Stain; Is: LineStyle;
sym: CHAR);

PROCEDURE GetDefltCurveAttrForMV(m: Model; VAR mv: REAL;
VAR st: Stain; VAR Is: LineStyle;
VAR sym: CHAR);

Where:
st Stain(color) is used to draw the lines and/or plotting symbols of a curve
Is Style of the connecting lines drawn between monitoring points.
sym Plotting symbol drawn at monitoring points

The latter two procedures which affect the defaults requiresat before becoming effective.
This is not the case for the first two procedures, which take effect immedigtedjours are not
available in the PC version]. Resetting of the curve attributes is possible by means of

PROCEDURE ResetAllCurveAttributes;

which corresponds to themenu commandettings/Reset all model’'s curve attributagailable
to the simulationist at the standard ModelWorks user interface.

Note that if eitheautoDefCql or autoDefStyle or autoDefSynis used, the automatdefinition
mechanism for colours, line styles, and for symbols as providethéysimulation environment
becomes active (see parfllheory Tab. T1). Hence if you wish to really sed curve attribute,
make sure that all(!) attributes are set different fromawtoDeifvalue.

In particular note, that the procedures affecting current values function also in the middle of a
simulation. Thisbehaviour may be useful, for instance to make a portion of a curve for a
certaintime invisible. A typical application is the simultaneous display of a measured time
series and the monitoring of solutions of a system of differential equatiahssome
measurementare missing there arises the need to suppress partially the monitoring, i.e. to
display nothingfor the measurements but to monitor the behaviour of the model equations.
Using proceduré&etCurveAttrForMVwith the line styleinvisible will allow to achieve the
desired effect. The sanedfect can be achieved even with a much more convenient technique:

R 149

ModelWorks 2.2 - Reference

Assign the valueUndefREAL from module DMConversionsto the monitorable variable.
Anytime ModelWorks encounters this value while plotting a monitorable variable, the
corresponding curve is automaticallyterrupted and drawing resumed nicely as soon as the
values are defined againNote, however, this value may lead to program aborts if it is
encountered as operand in calculations. Thus, make sure that this value is only agsgned
for drawing purposes.

Note that if curve attributes acdhanged dynamically there may appear inconsistencies between
the curve attributes used for the curteemselves and those used to draw the legend. This is
because the legend shows only thaseve attribute which are currently activevhile it is
drawn. Unfortunately the simulation environment draws the legenchamy situations for
different reasons and the maeelcan not directly control this drawing. Howeviérthe model

ler follows the following guidelines there should result a satisfying behavioline model
which changes curve attributes dynamically during the coursesiofialation must set all curve
attributes exactly as they should appear in the legend at the end of the prdeethutf
current time t = 4 resp. k = Iy and always at the end of the procediieminate(for an
example see the research sample mbB& moduleLBMObsin theAppendiy.

PROCEDURE ClearGraph;
PROCEDURE ClearTable;

Clear the panel of thgraphor theablewindow, respectively.

7.5.5 SIMULATION ENVIRONMENT MODES

The following four procedures allow to define the so-callgchulation environment mode
They can be used ®&et under program control the preferences available to the simulationist
under the menu commaikile /Preferences

PROCEDURE SetDocumentRunAlwaysMode(dra: BOOLEAN);
PROCEDURE GetDocumentRunAlwaysMode(VAR dra: BOOLEAN);

If the mode «document run always» is activated, every executiom simulation run will be
documented ontstash fileaccording to the current settings of the project descriptors. tNate
the stash file gets rewritten with every new run.

PROCEDURE SetAskStashFileTypeMode(asft: BOOLEAN);
PROCEDURE GetAskStashFileTypeMode(VAR asft: BOOLEAN);

If the mode «ask for stash file type» is activated, every time the simulationist has selewad
stash file a dialogue is displayed allowing to specify the file's type and creator.

PROCEDURE SetRedrawTableAlwaysMode(rta: BOOLEAN);
PROCEDURE GetRedrawTableAlwaysMode(VAR rta: BOOLEAN);

Themode «redraw table always» describes the behaviour of the table window with respect to
modifications of the tabulation monitoring settings. For further explanase@snode «redraw
graph always» below.

PROCEDURE SetCommonPageUpRows(rows: CARDINAL);
PROCEDURE GetCommonPageUpRows(VAR rows: CARDINAL);

This mode controls the number of common rows betwg@ge up inthe table window. A

page up occurs when th@able window is full but more rows should be written; then
ModelWorks attempts to erase most of the table and restarts tabiutatintpe top again. The
numbermrows specifies how many rows at the bottom are not erased but scrolled to the top of
the next page. The rest of the table window is theed to add the rows of the new page.
Thusrows specifies how many rows are common to two consecutive pages.

R 150

ModelWorks 2.2 - Reference

PROCEDURE SetRedrawGraphAlwaysMode(rga: BOOLEAN);
PROCEDURE GetRedrawGraphAlwaysMode(VAR rga: BOOLEAN);

If the modeRedrawGraphAlwayis activated, each modification ahe graphing settings in the
stateNo Simulationwill be displayed immediately, not only #e begin of the next simulation
run. This implies an immediatess of all simulation results eventually currently visible in the
graph assoon the simulationist edits any graphing settings. If this mode is not active, the
current graph will not be touched unless the user starts another simulationpegjirtsthe
whole graph will be redrawn.

PROCEDURE SetColorVectorGraphSaveMode(cvgs: BOOLEAN);
PROCEDURE GetColorVectorGraphSaveMode(VAR cvgs: BOOLEAN);

Above procedures allowo control the mode of graph restoration, graph printing, and transfer
of graphinto clipboard. If the mode «color and vector graph saving» is activateds(is
TRUE), each time the graph window needs to be redrawngttag@h will be reconstructed in
colours. Restoration is necessary after some partsheicame visible again after they have
been covered by another window (sakso description of restore or update mechanism in
moduleDMWindowsof the "Dialog Machine"). Deactivation tfis mode results in storing
graphical output in a hidden bitmap without colours, with a coarser resolatidnrmore modest
memory requirements. Note that this mode won't affect the very diratving of the graph,

i.e. on a color screen you may still get coloured curves, even if this rsbdeld be turned off.
Since the full reconstruction in colours for complicated graphs masidve especially on
monochromamonitors it may be preferable to deactivate this mode (trade-off between colours
and speed). In addition to the colours all graphical output is stored as vectored ofjads.
allows printing and copying to the clipboard of graphs in m&golution quality, but requires a
corresponding amount of memorfNot available in Reflex and PC version]

7.5.6 SETTING OF PREDEFINED DEFAULTS AND GLOBAL RESETTING

PROCEDURE SetPredefinitions;

Sets the defaults for the global simulation parameters, project description, staghafiie,
type, creator) and the windows (positionsplumns displays) to the ModelWorks-predefined
values.

PROCEDURE ResetAll;

Resets alblobal simulation parameters, project description, stash file (name, type, creator),
windows (positions, columns displays) agll as all declared models, state variables, para
meters, monitorable variables (filing, tabulation, graphing, scaling, curve attributesjhiir
currentdefaults. This procedure corresponds to the menu com®ettithgs/Reset all above
available to the simulationist in the ModelWorks standard simulation environment.

7.5.7 CUSTOMIZATION OF KEYBOARD SHORTCUTS FOR MENU COMMANDS

TYPE
MWMenuCommand =

(pageSetUpCmd, printGraphCmd, preferencesCmd, customizeCmd,

(*core m.c.*) setGlobSimParsCmd, setProjDescrCmd, selectStashFileCmd,
resetGlobSimParsCmd, resetProjDescrCmd, resetStashFileCmd,
resetWindowsCmd, resetAllintegrMethodsCmd,
resetAlllnitialValuesCmd, resetAllParametersCmd,
resetAllStashFilingCmd, resetAllTabulationCmd,
resetAllGraphingCmd, resetAllScalingCmd, resetAllCurveAttrsCmd,
resetAllCmd, defineSimEnvCmd,

(*core m.c.*) tileWindowsCmd, stackWindowsCmd, modelsCmd, stateVarsCmd,

R151

ModelWorks 2.2 - Reference

(*core m.c.*) modelParamsCmd, monitorableVarsCmd, tableCmd, clearTableCmd,
(*core m.c.*) graphCmd, clearGraphCmd,
(*core m.c.*) startRunCmd, haltOrResumeRunCmd, stopCmd, startExperimentCmd);

Alias characters associated with ModelWorks menu-commands may be customized ateording
the needsf the simulationist either interactively (see menu comnfaite/Customize.. of the
standard simulation environment) or by meanshef following procedures. While an inter
active specification is only possible for the most important commandssahealled “core”
menucommands (“core m.c.”), the client interface allows to modify the keyboard equivalents
for all commands available in the standard ModelWorks user inteacept the ones listed
under the meng&dit. The newly set alias characters for all ModelWorks menu commands are
immediately used and reméered by thesimulation environment when it is started the next
time.

PROCEDURE SetMenuCmdAliasChar(cmd: MWMenuCommand; alias: CHAR);
PROCEDURE GetMenuCmdAliasChar(cmd: MWMenuCommand; VAR alias: CHAR);

Get, respectively set, an alias characfee. keyboard equivalent or shortcut) associated with a
particular ModelWorks menu-command.

PROCEDURE ResetCoreMenuCmdsAliasChars;
PROCEDURE ResetAllIMenuCmdsAliasChars;

Allow to reset the interactively specifiable alias characters and the alias characairsnehu
commands, respectively, to their default values as describedPant Ill, Reference: User
Interface of this manual. Note that setting or resetting of memomand alias characters is
only possible in the statéo Model or No Simulation.

R 152

Appendix

The Appendix contains sample models, all given in complete source form, to demonsftate
possibilities of ModelWorks and of the auxilidifyrary modules. They have been carefully
selected to be useful for many modellersparticular for the beginner as well as the advanced
modeller. Moreover, it contains technical information on ModelWerkieh are needed in the

daily use of ModelWorks. Finally, especially the material towards the end séegsent
reference purposes.

TheAppendixcontains the following chapters:

The chapteGample Modelexplains the working of selected sampiedels which cover
most of ModelWorks’ more important features and lists their source code.

The chapteL.iteraturdists the references of all literature cited throughout this text.

The chapteModelWorksVersionand Implementatiorexplains the main features of all
available ModelWorks versions plus the availability of the RAMSES software.

The chaptelUse and Definitions of ModelWorks and Library Modweglains the
functioning and use of all the modules which are likely to be relevant fanduzler's
work. It lists first the definitionrmodules of the optional client interface and secondly
of selected auxiliary modules often used in the context of modeling and simulation.

For the modeler the chaptQuick Referenceserves as a quick referenta all the
objects exported by the RAMSES software. In order to allowquick access and
better overview, these listings omit any comments and explanatory texts.

Any serious modeling with ModelWorks requires to consult Appendix regularily and to
carefully study at least those model definition programs otltfagterSample Modelsvhich
are similar to the ones the reader is working with.

Note, theAppendixcontains no details dhe installation and internal implementational aspects
of the software architecture. To learn more about those topics, please cthesideparate
booklet 'Installation Guide and Technical Referencehef RAMSES Software distributed

together with the RAMSES software package or read sufntige publications listed in the part
Literature

Reading Hint: For easier orientation, the pages, figures tatdes of theAppendixare prefixed with the
letter A. Within this part figures and tables are numbered separately, e.g. Fig. Al.

A 153

ModelWorks 2.2 - Appendix (Sample Models)

A Sample Models

The following sample modetiefinition programs have all been implemendéed tested with the
ModelWorks Macintosh version®.2 and V2.2/1l, the IBM PC Windows-Version V2.2/PC,
and some with the V2.0/Reflex and the B&m-Version 1.1/PC. Except fderassAphids
they are distributed in source form, eventually eweith some additional sample models not
listed in this chapter. For the Macintosh all source files reside ioliter Sample Mode]dor
the IBM PC in the directofMW\SAMPLES All distributed sample models are reatdy be
run.

Thesample models have been selected according to the following criteria: a) They have been
referenced in some parts of this text such as the pautdrial or part Il Theory b) they
illustrate a typical use of ModelWorks to implemany of the fundamental elementary or
structured model types; c) they demonstrate useful implementation techniquesgepretent
more advanced applications such as sensitivity analysis or paraichatéfication, which are
often essentiain the context of modeling and simulation of non-linear systems. It is
recommended to study the sample models carefully, in particular those appdar to be
similar to the applications in which the readerinterested; because of the open nature of
ModelWorks it is important to understand the design principles behind ModelW ookdyniot

an abstract, but also in thepecific ways for which the design strives to provide optimal
solutions. Not only pictures can tell more than 1000 words!

A 154

ModelWorks 2.2 - Appendix (Sample Models)

A.1 THE CONTINUOUS TIME SAMPLE MODELS (DESS) OF THE TUTORIAL

A.1.1 The Sample Model “Logistic Grass Growth’eqgistic

The following listing defines the sample model describethe part I Tutorial in the section
Geting started with the simulation environmenEor explanations see the subsectidme
sample model

MODULE Logistic;

)
* MODEL: Logistic grass growth *)
* Author: mu, 9.4.88, ETHZ *)

Py

FROM SimBase IMPORT
Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
StashFiling, Tabulation, Graphing, DeclMV, SetSimTime,
Nolnitialize, Nolnput, NoOutput, NoTerminate, NoAbout,
StateVar, Derivative, Parameter;

FROM SimMaster IMPORT RunSimEnvironment;

VAR

m: Model;
grass: StateVar,
grassDot: Derivative;
cl, c2: Parameter;

PROCEDURE Dynamic;
BEGIN

grassDot:= cl*grass - c2*grass*grass;
END Dynamic;

PROCEDURE ModelObjects;
BEGIN
DeclISV(grass, grassDot,1.0, 0.0, 10000.0,
"Grass", "G", "g dry weight/m~2");

DecIMV(grass, 0.0,1000.0, "Grass", "G", "g dry weight/m"2",
notOnFile, writelnTable, isY);

DecIMV(grassDot, 0.0,500.0, "Grass derivative", "dG/dt", "g dry weight/m”2/day",
notOnFile, notinTable, notinGraph);

DeclP(c1, 0.7, 0.0, 10.0, rtc,
"c1 (growth rate of grass)”, "cl1", "/day");
DeclP(c2, 0.001, 0.0, 1.0, rtc,
"c2 (self inhibition coefficient of grass)”, "c2", "m”2/g dw/day");
END ModelObjects;

PROCEDURE ModelDefinitions;
BEGIN
DecIM(m, Euler, Nolnitialize, Nolnput, NoOutput, Dynamic,
NoTerminate, ModelObjects, "Logistic grass growth model",
"LogGrowth", NoAbout);
SetSimTime(0.0,30.0);
END ModelDefinitions;

BEGIN
RunSimEnvironment(ModelDefinitions);
END Logistic

A 155

ModelWorks 2.2 - Appendix (Sample Models)

A.1.2 The New Model -GrassAphids

The following listing defines the sample model described innth@ual part [Tutorial in the
sectionGetting started with modeling-or explanations see the subsecfitie new model

MODULE GrassAphids;

(Kkkkk *
MODEL: GrassAphids, Lotka-Volterra grass and aphids model

Frank Thommen, 29.11.91, ETHZ

Kkkkk *)

FROM SimBase IMPORT
Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
StashFiling, Tabulation, Graphing, DecIMV, SetSimTime,
Nolnitialize, Nolnput, NoOutput, NoTerminate, NoAbout,
StateVar, Derivative, Parameter;

FROM SimMaster IMPORT RunSimEnvironment;

VAR
m: Model;
grass, aphids: StateVar;
grassDot, aphidsDot: Derivative;
cl, c2, c3, c4, c5: Parameter;

PROCEDURE Dynamic;

BEGIN
grassDot := cl*grass - c2*grass*grass - c3*grass*aphids;
aphidsDot:= c3*c4*grass*aphids - c5*aphids;

END Dynamic;

PROCEDURE ModelObijects;
BEGIN
DeclSV(grass, grassDot,200.0, 0.0, 10000.0,
"Grass", "G", "g dry weight/m"2");
DeclSV(aphids, aphidsDot,20.0, 0.0, 1000.0,
"Aphids", "A", "g dry weight/m"2");

DecIMV(grass, 0.0,10000.0, "Grass", "G", "g dry weight/m"2",
notOnFile, writeInTable, isY);

DecIMV(grassDot, 0.0,500.0, "Grass derivative", "dG/dt", "g dry weight/m”2/day",
notOnFile, notinTable, notinGraph);

DecIMV(aphids, 0.0, 1500.0,"Aphids", "A","g dry weight/m~2",
notOnFile, writeInTable, isY);

DeclP(c1, 0.4, 0.0, 10.0, rtc,

"c1 (growth rate of grass)”, "c1", "/day");
DeclP(c2, 8.0E-5, 0.0, 1.0, rtc,

"c2 (self inhibition coefficient of grass)”, "c2", "m”2/g dw/day");
DeclP(c3, 1.5E-3, 0.0, 1.0, rtc,

"c3 (coupling parameter)”, "c3", "m~2/g dw/day");
DeclP(c4, 0.1, 0.0, 10.0, rtc,

"c4 (ratio of grass net use by aphids)”, "c4", "-");
DeclP(c5, 0.2, 0.0, 10.0, rtc,

"c5 (death rate of aphids)”, "c5", "/day");

END ModelObjects;

PROCEDURE ModelDefinitions;
BEGIN

A 156

ModelWorks 2.2 - Appendix (Sample Models)

DecIM(m, Heun, Nolnitialize, Nolnput, NoOutput, Dynamic,
NoTerminate, ModelObjects, "Aphid-grass model (Lotka-Volterra)",
"GrassAphids", NoAbout);

SetSimTime(0.0, 100.0);

END ModelDefinitions;

BEGIN
RunSimEnvironment(ModelDefinitions);
END GrassAphids

A 157

ModelWorks 2.2 - Appendix (Sample Models)

A.2 A DISCRETE TIME MODEL (SQM) - INSECT

Insect populations often reproducedrstinct steps, which is particularily conspicuous for
many univoltineinsects. Should the growth of their population follow a logistic pattern, it
could be easily modeleds a discrete time analogon (SQM) of the logistic growth model
presented in part Tutorial(s.a. above,Logistig. From thecontinuous time logistic growth
equation (1)

cL_

x(®)
didt = ax®-x? = aft-xOh0 = a® o x0 = 0 @

c2
and the general relationship (2)
XTAD - XO gty @)

At

we can derive witliit = 1 and t = k the following nonlinear difference equation (3), which
describes a discrete time model for insect growth:

xkr) = x) + o Xxig = {1+ 127} 3)
where: State variable:
insect density or # per ha grassland: X(t)
Initial amount of insects/initial value: x(0) = 2.0 #/ha

Model parameters:
intrinsic growth rate (yea¥): r=0.7 yeart
carrying capacity (#/ha): K = 7000 #/ha

1.0 7
0.8 7 e
IERRERRER AR R
D_ﬁ— . . N H
0.4 -
0.2
l:l_l:l_ H H . . - .
—r r r 11
0.5 1.0 1.5
Curves Mirnimum Max i mum Unit
® 0.000 100, Q00 #,/m"2

Fig. Al: Bifurcation plot drawn by the structured simulation (experimentjhaf
sample modeinsect. Model behavior is shown in function of growth parameter r.

A 158

ModelWorks 2.2 - Appendix (Sample Models)

The following listing shows the corresponding model definition proghasect In general itis
very similar to the sample modeobgistic(see above). However, instead tife derivativexDot
we declarexNew of typeNewState It represents x(k+1) whereas x(K) is representexl. by

MODULE Insect;

(Kk kkk K*kkkkkk Kkk

MODEL: Insect af, 21/Dez/93, ETHZ
Discrete time logistic growth, e.g. modeling the growth
of an insect population with non-overlapping generations

Remark: The installed experiment draws a bifurcation plot

nnnnnnnnnn)

FROM DMWindIO IMPORT Write, WriteString, WriteLn;
FROM DMMessages IMPORT Ask;

FROM SimBase IMPORT
Model, StateVar, NewState, Parameter, AuxVar, Derivative,
IntegrationMethod, DeclM, DeclSV, DeclP, RTCType, StashFiling,
Tabulation, Graphing, DeclMV, SetSimTime,
Nolnitialize, Nolnput, NoOutput, NoTerminate, NoAbout,
PDeclared, SetMV, GetMV, SetP, SetRedrawGraphAlwaysMode,
SetCurveAttrForMV, GetCurveAttrForMV, Stain, LineStyle;

FROM SimMaster IMPORT RunSimEnvironment, InstallExperiment,
SimRun, CurrentStep, ExperimentAborted, ExperimentRunning;

VAR

m : Model;

X :StateVar; xNew: NewState; r,K : Parameter;
rMin, rMax, rDeltaBig, rDelta: Parameter;

PROCEDURE Dynamic;

BEGIN
xNew:= (1.0 + r*(1.0 - x/K))*x;
END Dynamic;
PROCEDURE About;
BEGIN
WriteString("Difference equation form (SQM) of logistic population growth:"); WriteLn;
WriteLn;
WriteString(" x(k+1) = [1+r* 1-x(K)/K]*x(k)"); WriteLn;
WriteLn;
WriteString(" where"); WriteLn;
WriteString(" x - population density (# of insects per m"2)"); WriteLn;
WriteString(" r - per capita growth rate"); WriteLn;
WriteString(" K - carrying capacity (max. population density)"); WriteLn;
WriteString(" k - discrete time k");
END About;
PROCEDURE Objects;
BEGIN

DeclSV(x, xNew,1.0, 0.0, 100.0, "Insect population density", "x", "#/m"2");

DeclP(r, 0.3, 0.0, 10.0, rtc, "Growth rate of insect population”, "r", "year*-1");
DeclP(K, 70.0, 0.0, 100.0, rtc, "Carrying capacity”, "K", "#/m"2");

DecIMV(x, 0.0, 100.0, "Insect population density", "x", "#/m"2",

notOnFile, writeInTable, isY);
END Objects;

A 159

ModelWorks 2.2 - Appendix (Sample Models)

PROCEDURE Output;
BEGIN

IF ExperimentRunning() AND (CurrentStep()=70) THEN (* no more transient behavior *)

SetCurveAttrForMV(m,x, sapphire, invisible, "+"
END;
END Output;

PROCEDURE DrawBifurcationPlot;
CONST yes =1;
VAR i,answer: INTEGER; curScaleMin, curScaleMax: REAL;
curSF: StashFiling; curT,tbT: Tabulation; curG: Graphing;
curStain; Stain; curLStyle: LineStyle; curSym, tbSym: CHAR,;
BEGIN
(* Add some model objects to support zooming into bifurcation plot *)
IF NOT PDeclared(m,rDelta) THEN
DecIMV(r, 0.0, 3.0, "Intrinsic growth rate of insects", "r", "year*-1",
notOnFile, notinTable, notinGraph);
DeclP(rMin, 0.3, 0.0, 3.0, rtc,
"Begin of range of r to plot bifurcations”, "rMin", "year-1");
DeclP(rMax, 3.0, 0.0, 3.0, rtc,
"End of range of r to plot bifurcations”, "rMax", "year*-1");
DeclP(rDeltaBig, 0.1, 0.0, 10.0, rtc,
“"Increment (big) of r (before 1st bifurcation)”, "rDeltaBig", "year*-1");
DeclP(rDelta, 0.025, 0.0, 10.0, rtc,
"Increment (small) of r (after 1st bifurcation)”, "rDelta", "year*-1");
END(*IF¥);
(* Prepare monitoring for bifurcation plot *)
GetMV(m,r, curScaleMin, curScaleMax, curSF, curT, curG);
SetMV(m,r, rMin, rMax, curSF, curT, isX);
GetMV(m,x, curScaleMin, curScaleMax, curSF, curT, curG);
GetCurveAttrForMV(m,x, curStain, curLStyle, curSym);
Ask("Draw also transient behaviour?","Yes|No",8,answer);

IF answer=yes THEN tbSym:="."; tbT:= curT ELSE tbSym:= 0C; tbT:= notinTable END;

SetMV(m,x, curScaleMin, curScaleMax, curSF, tbT, isY);
r:=rMin;
WHILE (r<rMax) AND NOT ExperimentAborted() DO

SetCurveAttrForMV(m,x, emerald,invisible,toSym);

SimRun;

IF r<(2.0-rDeltaBig) THEN (* before very first bifurcation *)

SetP(m,r, r + rDeltaBig)
ELSE
SetP(m,r, r + rDelta)

END;
END(*WHILE?);
(* Restore previous monitoring settings but avoid immediate
clearing of bifurcation plot: *)
SetRedrawGraphAlwaysMode(FALSE); (* defers implicit clearing *)
SetMV(m,x, curScaleMin, curScaleMax, curSF, curT, curG);
GetMV(m,r, curScaleMin, curScaleMax, curSF, curT, curG);
SetMV(m,r, curScaleMin, curScaleMax, curSF, curT, notinGraph);
SetCurveAttrForMV(m,x, curStain,curLStyle,curSym);
SetRedrawGraphAlwaysMode(TRUE);

END DrawBifurcationPlot;

PROCEDURE ModelDefinitions;
BEGIN
DecIM(m, discreteTime, Nolnitialize, Nolnput, Output, Dynamic,
NoTerminate, Objects, "Logistic insect population dynamics",
"LogGrowth", About);
SetSimTime(0.0,100.0);
InstallExperiment(DrawBifurcationPlot);
END ModelDefinitions;

BEGIN

A 160

ModelWorks 2.2 - Appendix (Sample Models)

RunSimEnvironment(ModelDefinitions);
END Insect.

Note, in contrasto the continuous time logistic equation, this model exhibits an astonishingly
wide array of behaviors, which depend on thalue of parameter r: The equilibrium x(k) = K
is asymptotically stable if r < 2, in particular tleguilibrium is reached without any oscillations
if r < 1 and damped oscillations result if 1 <r < 2; neutrally stable oscillationzadeiced if r

= 2; ifr > 2 oscillations result, their amplitude increases with r and gwentually give way to
deterministic chaotibehavior: In the range of 2 r < 2.449 results a stable two-point cycle,
between 2.44% r < 2.544 a stable four-point cycle etc. till cha@s> 2.57). For instance
observe the behaviour for r = 0.7, 1.99,(= 1'000), 2.0 (t;,q= 5'000), and 3.0 ({,q = 100)

or execute the installed experiment (Fig. Allror more details on this topic you may wish to
readMAY (1974, 1975, 1976, 1981), for the mathematical backgrodmdy & OSTER (1976),

or on the relevance of chaotic models for ecological sysBERRYMAN & MILLSTEIN (1989).

Al61

ModelWorks 2.2 - Appendix (Sample Models)

A.3 A DISCRETE EVENT MODEL (DEVS) - DIVERSITY

Assume we have an island which has been hit by a vulcano eruption difiel bBis been wiped
out. But therestill exist n species on the contintent. After how many years will the same
diversity be reestablished on the island as on the continent?

To keep things as simple as possible let us assume thsiatiet is very big, i.e. in our model

we can ignore any subsequent reextinction. Given these assumptions, the distdreceskaind

to the continentand assuming per year a constant mean proahilthat an individual arrives

on the islandwe can model the dynamics of the number of species as the result of a Poisson
process, whichdescribes the arrival of individuals on the island.

For each specigsve need to know whether it is present on the island or not. Thus the state
vector of this model consists of elements which detieéenumber of individualsjxwhich live

on the island antelongs to species j. Since only arrivals can change the state, it follows the
following instantaneous state transition function

X; (t+1 an individual of species j invades the island

- no individuals arriving on the islaridi
Xj(©)

where

Xj Number of individuals of species j living on the island [#]
t Continuous left-hand side of time before and up to the discrete event arrival

It models any changes which may occur in the state vectoin order to characterizéhe
reestablishment of species on the islanduse an eveness index E (6) based on the Shannon
Weaver diversity index (7a):

E = H/ Hnax (6)
where
n
H=Y ¢ Odd (7a)
=1

and if diversity maximal (even distributiory, € 1/n)
n
Hmax= Y 1/n0d 1/n = Idn (7h)
=1

where

Id logarithmus dualis

n maximum number of species
q relative density of species j

In order to compute E we need for all species their relative dendjtresqj/ xj. Finally, since
we are interested in the time t* required to restore the maximal diversitywhen the diversity

A 162

ModelWorks 2.2 - Appendix (Sample Models)

index H according to equation (7a) comes closetglds given by equation (7b), we have to
know wheneverthe output variable E approaches approximately 1; this is the case if the
following condition holds

1-E<ce (7)

€ a small number

when t* is seequal to the current time t. The goal of the simulation is to determine t* in
function ofA and n.

p E[[|=—= Table EEEI
1.0 1 Tirne
MESSAGE : "t¥ = 34 49"
MESS AGE ; "sampleSize = 100"
0.3 1
_ =
0.6 7
0.4 7
0.2
I:l'l:l_llll'|""|""|""|""|
0.0 10.0 20.0 30.0 40,0 S0.0
time
Curues Minimum Mz i mum Unit
— 0000 5000 []

Fig. A2: Result of a stochastic simulation experimanade with the DEVS
(Discrete event system specification) sample moDalersity This model
simulates the fate of the diversity on an island afteag been hit by a catastrophic
vulcano eruption. Initially all species from the island have been wipaid The
reinvasion of individuals from the intact continent is simulated as a Possoess
with the probabilityA of arrival of an individual of species j per time unit (with
n=20 species and a sample siz&®@fsimulation runs the average number of years
needed to restonmaximal diversity ¢ = 0.1) has been estimated #is= 34.49
years).

MODULE Diversity;
(n

MODEL: Diversity Restoration of diversity on an island
after a vulcano eruption (a DEVS)

af, 21.Dec.93, ETHZ

A 163

ModelWorks 2.2 - Appendix (Sample Models)

)

FROM DMConversions IMPORT IntToString, RealToString, RealFormat;
FROM DMStrings IMPORT Concatenate, Append;

FROM SimBase IMPORT
Model, StateVar, NewState, Parameter, AuxVar, Derivative,
IntegrationMethod, DecIM, DeclSV, DeclP, RTCType, StashFiling,
Tabulation, Graphing, DeclMV, SetSimTime, Nolnitialize,
Nolnput, NoOutput, NoTerminate, NoAbout, RemoveSV,
notDeclaredModel, MDeclared, ClearTable, Message;

FROM SimMaster IMPORT RunSimEnvironment, SimRun,
InstallExperiment, CurrentTime, StopRun, ExperimentAborted;

FROM SimEvents IMPORT nilTransaction, Transaction, StateTransition,
ScheduleEvent, DecIDEVM;

FROM RandGen IMPORT U, Randomize;
FROM RandGen0 IMPORT InstallU0, SetJPar, J, SetNegExpPar, NegEXp;
FROM MathLib IMPORT Ln;

CONST
arrival = 1; (* EventClass *)
nMax = 100; (* max. possible nr of species *)
maxPopSize = 1000.0;

VAR
m: Model;
n: INTEGER; (* actual number of species on continent *)
nPar: Parameter; (* used to determine n interactively via I0-window *)
X : ARRAY [1..nMax] OF StateVar; (* population sizes *)
lambda: Parameter;
eps: Parameter,;
sampleSize: Parameter;
H: AuxVar;
Hmax: AuxVar;
tStar: AuxVar;

PROCEDURE Initialize;
VAR j: INTEGER; dummyNewState: NewState; descr: ARRAY [0..63] OF CHAR,;
ident,jStr: ARRAY [0..15] OF CHAR;
BEGIN
n := TRUNC(nPar);
FORj=1TOn DO
IntToString(j,jStr,0);
Concatenate("Size of population of species ",jStr,descr);
Concatenate("x[",jStr,ident); Append(ident,"]");
DeclSV(x[j], dummyNewsState, 0.0, 0.0, maxPopSize/nPar, descr, ident, "#");
END(*FOR®*);
Hmax := Ln(nPar);
SetJPar(1,n);
SetNegExpPar(lambda);
ScheduleEvent(arrival, NegExp(),nilTransaction);
END Initialize;

PROCEDURE Arrival(ta: Transaction);
VAR j: INTEGER;
BEGIN
1:=30; X[= x[] + 1.0;
ScheduleEvent(arrival,NegExp(),nilTransaction);
END Arrival;

PROCEDURE Output;
VAR sumX, dj: REAL; j: INTEGER,;

BEGIN
sumX:=0.0; FOR j:= 1 TO n DO sumX:= sumX + x[j] END;
H:=0.0;

Al64

ModelWorks 2.2 - Appendix (Sample Models)

FOR j:=1 TO n DO IF x[j]>0.0 THEN dj := x[j}/sumX; H := H + Ln(dj)*dj END END(*FOR®);
H:=-H;
IF (1.0-H/Hmax)<=eps THEN StopRun END(*IF*);

END Output;

PROCEDURE Terminate;

VAR j: INTEGER,;
BEGIN

tStar := CurrentTime();

n := TRUNC(nPar);

FOR j:=1 TO n DO RemoveSV(m,x[j]) END(*FOR*);
END Terminate;

PROCEDURE EstimateTStarHat;
VAR tStarHat,tStarSum: REAL; k: INTEGER;
PROCEDURE Report(m: ARRAY OF CHAR; x: REAL);
VAR rStr: ARRAY [0..15] OF CHAR; msg: ARRAY [0..127] OF CHAR;
BEGIN (*Report*)
RealToString(x,rStr,0,2,FixedFormat);
Concatenate(m, rStr, msg);
Message(msg);
END Report;
BEGIN (*EstimateTStarHat*)
k := 0; tStarSum := 0.0;
WHILE NOT ExperimentAborted() AND (FLOAT(k)<sampleSize) DO
SimRun;
IF NOT ExperimentAborted() THEN tStarSum := tStarSum + tStar; INC(k) END;
END(*WHILE?);

IF k>0 THEN
tStarHat := tStarSum/FLOAT(k);
ClearTable;
Report("t* =" tStarHat);
Report("sampleSize =", FLOAT(K));
END(*IF*);

END EstimateTStarHat;

PROCEDURE ModelObjects;
BEGIN (*ModelObjects*)
DecIMV(H, 0.0, 5.0, "Shannon-Weaver diversity index", "H", ",
notOnFile, notinTable, isY);

DeclP(nPar, 20.0, 0.0, FLOAT(nMax), noRtc,
"# of species on continent", "nPar", "# spec.");
(* actual state vector declaration deferred to Initialize *)

DeclP(lambda, 1.0, 0.0, 10000.0, noRtc,

"Mean # individuals arriving on island per At", "lambda", "#lyear");
DeclP(eps, 0.1, 0.0, 1.0, rtc,

"Relative tolerance between H and Hmax", "eps", "%");
DeclP(sampleSize, 10.0, 0.0, 10000.0, noRtc,

“# of runs in experiment”, "sampleSize", "#");
END ModelObjects;

PROCEDURE ModelDefinitions;
VAR stf: ARRAY [arrival..arrival] OF StateTransition;
BEGIN
stf[arrival].ec := arrival; stf[arrival].fct := Arrival;
DeclDEVM(m, Initialize, Nolnput, Output, stf, Terminate, ModelObjects,
"Restoration of diversity after vulcano eruption”, "Diversity", NoAbout);
SetSimTime(0.0,50.0);
InstallExperiment(EstimateT StarHat);
END ModelDefinitions;

BEGIN
InstallUo(U);

A 165

ModelWorks 2.2 - Appendix (Sample Models)

RunSimEnvironment(ModelDefinitions);
END Diversity.

The instantanous state transition function (5) is implementéddrm of a separate procedure
Arrival, which is passed as actual argument instead of procetiuramicwhile declaringthe
DEVS model DecIDEVN.. This procedure isalled by ModelWorks whenever an event of
typearrival i.e. the arrival of an individual on the island, is encountered.

Such events are best scheduled by the procedluieal, since the time interval to belapsed
between twoevents, can be determined according to following reasons: From theory follows
that the distribution of the timmtervals T between the elementary events follows a negative
exponential model, i.e. the probability thatevents occum a time interval of lengtht follows

the cumulative distribution function £(= 1 - e*1. Variates from such a distributiazan be
producedyy using the random number generdil@gExpfrom moduleRandGen Hence, in
order to simulate a series of evera$ type arrival is produced by calling procedure
ScheduleEvent(arrival, tau, nilTransactioalter having executed the instantanous state
transition function (5). Note thdty definition instantanous state transition functions may
update the state vector immediately. To get the sequence of ssleeduling started, procedure
Initialize callsScheduleEvenat least once. To set tiparametei, the SetNegExpPars called

at the begin of eadlun (in procedurdnitialize) and consequently is a parameter which may
notbe changed while a simulation is runningpRtg. As soon as t* can be determined, any
further simulation would be useless; in this situation the cumentcan be stopped, e.g. by
calling StopRunfrom SimMaster

Since t* is actually the result olséochastic process, many simulation runs should be executed
beforef* is determinedFig. A2). Therefore the experiment proceduBstimateTStarHas
installed as an experiment and performs several simulation runs before thém&aomputed

at the enaf the experimenEstimateTStarHdt.a. below sectiorStochastic Simulatiopsand
Messagdrom SimBasas used to display the result (Fig. A2).

The dimension of the state vector is variable, since it depends on the paraifaterThe latter

is implemented like any other model paramter, i.eeah be changed via the 10-windowiodel
Parameters As a consequence, the state variables are not declared within procedure
ModelObjects Instead proceduraitialize declares the stateector at the begin of a simulation
run and proceduréerminatadiscardst immediately after completion of a run. Therefore, the
state vector should not be changed during simulations, heiRees of typenoRtc

A 166

ModelWorks 2.2 - Appendix (Sample Models)

A.4 TYPICAL APPLICATIONS

A.4.1 Batch Phase Portrait of Lotka-Volterrd -V PhasePl ot

III.E'_
0.6

III.4'_

0.2 7

0.0
————m—
o.o 10000 . 0 200000 S0000. 0 400000 20000, 0
®

Curves Hinimum Max i mum Unit
—y 0.000 1000 . Q00 #

Fig. A3: Phase portrait produced by the installed experimenbcedure
PhasePortraitDuring this structure simulation were executed k=5 simulatios,

each produced a closed trajectory. | addition to the trajectory werededsen

short pieces of the tangential slopes.

The following model definition program allows to simulate the famiooika-Volterra predater
prey model and to produce a phase portrait in the state space (Fig. A3) by wfeans
preprogrammed experiment, i.e. procedieasePortrait

MODULE LVPhasePlot; (* af 15/01/88, dg 06/03/93, dg 25/04/96 *)

*kk

(* Lotka-Volterra prey-predator model *)

(xxx kkkkk * xx)

FROM DMWindIO IMPORT
SetPos, WriteString, SetPen, LineTo, SetColor, cyan,
SetClipping, RemoveClipping;

FROM DMWindows IMPORT RectArea;

FROM SimBase IMPORT
DeclM, IntegrationMethod, DeclSV, StashFiling, Tabulation,
Graphing, DecIMV, DeclP, RTCType, Model, SetSimTime,
InstallClientMonitoring, TileWindows, DoNothing, SetSV,
SetDefltWindowArrangement, MWWindowArrangement, GetMV, Nolnput,
NoOutput, NoTerminate, StateVar, Derivative, Parameter;

FROM SimMaster IMPORT
RunSimEnvironment, SimRun, InstallExperiment, CurrentTime;

A 167

ModelWorks 2.2 - Appendix (Sample Models)

FROM SimGraphUtils IMPORT
SelectForOutputGraph, GraphToWindowPoint, WindowToGraphPoint;

VAR
m: Model;
X, y: StateVar;
xDot, yDot: Derivative;
cl,c2,c3,c4,c5: Parameter;
runNo: INTEGER; withVectors: Parameter;
monintCount: INTEGER; phaseSpaceGraph: BOOLEAN,;
curSMinx, curSMaxx, curSMiny, curSMaxy: REAL;
panelr: RectArea; vectorint: Parameter;

PROCEDURE ShowEqus;
CONST Im = 3;
BEGIN
SetPos(3,Im); WriteString("Lotka-Volterra prey (x) - *);
WriteString("predator (y) model");
SetPos(5,Im); WriteString(" dx/dt = c1*x - c2*x*x - c3*x*y");
SetPos(6,Im); WriteString(" dy/dt = c3*c4*x*y - c5*y");
END ShowEqus;

PROCEDURE Initialize;

BEGIN
CASE runNo OF

1: SetSV(m,x,4.0E3); SetSV(m,y,250.0);

| 2: SetSV(m,x,5.0E3); SetSV(m,y,300.0);
| 3: SetSV(m,x,6.0E3); SetSV(m,y,350.0);
| 4: SetSV(m,x,7.0E3); SetSV(m,y,400.0);
| 5: SetSV(m,x,8.0E3); SetSV(m,y,450.0);
| 6: SetSV(m,x,8.0E3); SetSV(m,y,475.0);
ELSE
END(*CASE¥);

END Initialize;

PROCEDURE PhasePortrait;
BEGIN

FOR runNo:=1 TO 5 DO SimRun END(*FOR*); runNo:= 0;
END PhasePortrait;

PROCEDURE Dynamic;
BEGIN
XDot:= C1*X - C2*x*X - C3*x*y;
yDot:= c3*c4*x*y - c5*y;
END Dynamic;

PROCEDURE InitClientMonit;
VAR curSF: StashFiling; curT: Tabulation; curGx,curGy: Graphing;
BEGIN
GetMV(m,x, curSMinx,curSMaxx, curSF, curT, curGx);
GetMV(m,y, curSMiny,curSMaxy, curSF, curT, curGy);
phaseSpaceGraph := ((curGx = isX) AND (curGy = isY));
IF phaseSpaceGraph THEN
WITH panelr DO
GraphToWindowPoint(curSMinx,0.0,x,y);
GraphToWindowPoint(curSMaxx,0.0,w,y); w := w-X;
GraphToWindowPoint(curSMinx,1.0,x,h); h := h-y;
INC(x); INC(y); DEC(w,2); DEC(h,2);
END(*WITH?*);
monIntCount := 0;
END(*IF*);
END InitClientMonit;

A 168

PROCEDURE DrawVectors;
CONST vele = 10;

VAR xx,yy: INTEGER; dx,dy, slope, x1,x2,y1,y2: REAL; clipr: RectArea;

PROCEDURE Min(x,y: INTEGER): INTEGER;
BEGIN

IF x<y THEN RETURN x ELSE RETURN y END;
END Min;

PROCEDURE Max(x,y: INTEGER): INTEGER,;
BEGIN

IF x>y THEN RETURN x ELSE RETURN y END;
END Max;

BEGIN (*. DrawVectors .*)
IF phaseSpaceGraph AND (withVectors>0.0)
AND ((monIntCount MOD TRUNC(vectorint)) = 0)
THEN
SelectForOutputGraph; SetColor(cyan);
slope := yDot/xDot;
GraphToWindowPoint(x,(y-curSMiny)/(curSMaxy-curSMiny),xx,yy);
WITH clipr DO
X := Max(xx-vele,panelr.x); y := Max(yy-vele,panelr.y);
w := Min(xx+vele,panelr.x+panelr.w); w :=w - X;
h := Min(yy+vele,panelr.y+panelr.h); h := h - y;
END(*WITH?);
WindowToGraphPoint(xx-vele,yy,x1,y1); dx := x1-x; y1 := y+slope*dx;
WindowToGraphPoint(xx+vele,yy,x2,y2); dx := x2-x; y2 := y+slope*dx;
GraphToWindowPoint(x1,(y1-curSMiny)/(curSMaxy-curSMiny),xx,yy);
SetPen(xx,yy);
GraphToWindowPoint(x2,(y2-curSMiny)/(curSMaxy-curSMiny),xx,yy);
SetClipping(clipr);
LineTo(xx,yy);
RemoveClipping;
END(*IF*);
INC(monintCount);
END DrawVectors;

PROCEDURE ModelObjects;
BEGIN
DeclSV(x, xDot,4.0E3, 0.0, 1.0E5,
"Prey population (density)", "x", "#");
DeclSV(y, yDot,250.0, 0.0, 1.0E4,
"Predator population (density)", "y", "#");

DecIMV(x, 0.0,50000.0, "Prey population (density)", "x",
"#", notOnFile, writeInTable, isX);

DecIMV(y, 0.0, 1000.0,"Predator population (density)",
"y", "#", notOnFile, writeInTable, isY);

DeclP(c1, 1.0, 0.0, 100.0, rtc,

“c1 (birth rate of x)", "c1", "/time");
DeclP(c2, 0.0, 0.0, 1.0, rtc,

"c2 (self inhibition coefficient of x)", "c2", "/#/time");
DeclP(c3, 2.0E-3, 0.0, 1.0, rtc,

“c3 (coupling parameter)”, "c3", "/#/time");
DeclP(c4, 0.5E-2, 0.0, 10.0, rtc,

"c4 (ratio of x net use by y)", "c4", "---");
DeclP(c5, 0.08, 0.0, 10.0, rtc,

"c5 (death rate of y)", "c5", "ftime");
DeclP(vectorint, 3.0, 1.0, 1000.0, rtc,

"# monitoring intervals when to draw vectors”, "vectorint",

"monitoring intervals™);
DeclP(withVectors, 1.0, 0.0, 1.0, rtc,

“"Draw vectors (0-no/1-yes)", "withVectors", "");
runNo:=0;

ModelWorks 2.2 - Appendix (Sample Models)

A 169

ModelWorks 2.2 - Appendix (Sample Models)

END ModelObjects;

PROCEDURE ModelDeclaration;
BEGIN
DeclM(m, Heun, Initialize, Nolnput, NoOutput, Dynamic, NoTerminate,
ModelObjects,
"Lotka-Volterra prey-predator model", "LV-model", ShowEqus);
SetSimTime(0.0,30.0);
InstallExperiment(PhasePortrait);
InstallClientMonitoring(InitClientMonit, DrawVectors,DoNothing);
TileWindows; SetDefltWindowArrangement(current);
END ModelDeclaration;

BEGIN
RunSimEnvironment(ModelDeclaration);
END LVPhasePlot.

A 170

ModelWorks 2.2 - Appendix (Sample Models)

A.4.2 Interactive Phase Portrait of the Van-der-Pol OscillateiD Pol

The following model definition program allows to simulate the fam@as-der-Pol oscillator
and to determine interactively, i.e. by a mouse-click, the starting point of trajectorite state
space.

The Van-der-Pol oscillator is given by this autonomonsn-linear, second order differential
equation

Z-p@-3Hz+2z =0

This equation can be brought into canonical form by introducing the state variblesy and
defined as follows:

X = z
n@a- 2z-z

y:z :>y:z:

and we obtaira second order system of ordinary, first order differential equations (canconical
form):

X =y

Hd- Ry - x

y

This system has an unstable singularity in the origin
stable limit cycle (Fig. A4).

ofth space and an asymptotically

F - - - n
& Shell File Edit Settings Windows Solue Mon 18:14
Graph State variables
State variable names Initial #
1.0 1 oo L o _ e
0,= 9 ':r Yan der Pol Oscillator]
w0 Lot = y) 50 |
0.8 - y (yDot o= P01 =20y -5 4829 ¥
- ,,.- -"-.I_I.I)
0.6 - ot ﬂ
| _.—-lrr-l'ifr/ﬁ;h\ al |—
] b IO T T
0.4 7] 5 Model parameters =—P1g|
f'] o 4 s|_|Ep dent Walue &
0.2 ov | ¥an der Pol Oscillator ™
ar
s 1.0 N
4 o WY Far M
0.0 Y
L LI B B LA R "' T T T 1 T
-4.0 -z.0 n.o 2.0 4.0
X
Curuas Mirimum Maz i mum Unit
E— -5 000 5. 000 [] =)

Fig. A4: Phase portrait of the Van-der-Pol oscillatorsecond order, @aonomous
non-linear system of ordinary differenteduations. This sample model definition
program denonstrates the use of the "Dialog Machime'conjunction with the
auxiiary library moduleSimGraphUtils It allows thesimulationist to set iemctr

vely the new initial conditions in thetate space shown in the windo@raph
(mousewas clicked at points marked with 0). Once a new initial state vector has
been dined, the next run will produce a trajectory starting at the clicked point.

Al71

ModelWorks 2.2 - Appendix (Sample Models)

This implementation demonstrates the use of the "Dialog MachmkESimGraphUtilsto set
interactively the initial values of the state vector of a secorder model system. Given the- si
mulationist hasset the monitoring currently such, that the winddsraph displays the state
space, a mouse click into the graph window's contiénst halts any eventually still running-si
mulation, then interprets the point where the mouse has been clicked as theitrdwalues of
the state vector, and marks this pomth the character 'o’. As soon as the simulationist now
starts another simulation run by choosing the menu com@alve/Start rurffor instance with
the keyboard equivalent R) the next trajectory drawn starts at the clicked point. Bhalsavior
allows to construct interactively a phase portrait as depicted in Fig. A4.

This program behavior is achieved by installing for the wind@vapha handler, i.e.procedure
GetAndSetNewlnits To install GetAndSetNewlnitsuse procedurénstallGraphClickHandler
from moduleSimGraphUtilsfrom the optional client interface of ModelWorkModelWorks
installs therthe handler into the "Dialog Machine”, which caieiAndSetNewlnitseach time
the user clicks into the ctemt of the windowGraph

ModelWorks' client monitoring mechanism ist used to draw an extra horizim&ahrough the
origin, normally not shown by ModelWorks. DrawAbscissais installed as the client
monitoringinitialization routine, i.e. as actual argument for formal parametgClientMon of
procedurelnstallClientMonitoringfrom module SimBase Rememberthat the ordinate is
always scaled to interval [0..1] onlybecause the graph must be able to display more than just
one curve.

These implementations &fetAndSetNewlnitsas wellas DrawAbscissdunction for both state
space representationse. for the graph x vs. y as well as y vs. x; the procedures
IsMVONOrdinateespectivelyisMVOnAbscissallow to determine whiclmonitorable variable,
l.e. x ory, is currently displayed as the ordinate resp. abscigdhalgorithms will then adjust
accordingly, regardless which way the simulationist happens to have specifiesatieespace
representation.

MODULE VDPaol;

(*+
Model: VDPol

Copyright (c) 1989 by Andreas Fischlin and Harald Bugmann
& Swiss Federal Institute of Technology Zurich ETHZ
Systems Ecology Group

ETH-Zentrum

CH-8092 Zurich

Switzerland

Purpose:

Simulation of the Van-der-Pol oscillator with an unstable
singularity in the origin of the state space and a
assymptotically stable limit cycle. This implementation, a
ModelWorks model definition program, allows to determine
interactively the initial conditions by clicking with the

mouse into the window Graph, given it displays currently the
state space.

Implementation and Revisions:

Author Date Description

af 29/07/87 Firstimplementation
af 26/01/93 Clicking into state space to

Al72

ModelWorks 2.2 - Appendix (Sample Models)

set new initial condition added
dg 04/03/93 Import lists cleaned up
af 18/03/93 New support by SimGraphUtils used
dg 25/04/96 Cleaned up for PC compatibility

FROM DMWindIO IMPORT
SetColor, black, SetPen, LineTo, GetLastMouseClick, ClickKind,
DrawSym, Color;

FROM SimGraphUtils IMPORT
Abscissa, CurrentAbscissa, SelectForOutputGraph, PointToMVVal,
MVValToPoint, InstallGraphClickHandler, StainToColor;

FROM SimBase IMPORT
StateVar, Derivative, Parameter, DeclM, IntegrationMethod,
DeclSV, GetMV, GetDefltSV, StashFiling, Tabulation, Graphing,
DecIMV, DeclP, RTCType, Model, SetSimTime, SetMoninterval,
SetlntegrationStep, SetDefltCurveAttrForMV, Stain, LineStyle,
GetCurveAttrForMV, autoDefSym, SetSV, InstallClientMonitoring,
Nolnitialize, Nolnput, NoOutput, NoTerminate, NoAbout,
DoNothing;

FROM SimMaster IMPORT RunSimEnvironment, StopRun;

VAR
m: Model;
X, Y StateVar;
xDot, yDot: Derivative;
mu: Parameter;

PROCEDURE GetAndSetNewlnits;
VAR xr,yr: REAL; curG: Graphing; curStain: Stain; curCol: Color;
curLineStyle: LineStyle; curSym: CHAR,; xi,yi: INTEGER; click: ClickKind;
BEGIN
GetlLastMouseClick(xi,yi,click);
xr := PointToMVVal(xi,yi,m,x,curG);
IF (curG=isX) OR (curG=isY) THEN SetSV(m,x,xr) END;
IF (curG=isY) THEN GetCurveAttrForMV(m,x,curStain, curLineStyle, curSym) END;
yr := PointToMVVal(xi,yi,m,y,curG);
IF (curG=isX) OR (curG=isY) THEN SetSV(m,y,yr) END;
IF (curG=isY) THEN GetCurveAttrForMV(m,y,curStain, curLineStyle, curSym) END;
SelectForOutputGraph;
StainToColor(curStain,curCol); SetColor(curCol);
SetPen(xi,yi); DrawSym('0");
StopRun;
END GetAndSetNewlnits;

PROCEDURE DrawAbscissa; (* is initClientMon procedure *)

VAR xx,yy: INTEGER; curX: Abscissa; curGx,curGy: Graphing;

BEGIN

SelectForOutputGraph; SetColor(black);

CurrentAbscissa(curX);

XX := MVValToPoint(0.0,m,x,curGx);

yy := MVValToPoint(0.0,m,y,curGy);

IF (curGx=isX) AND (curGy=isY) THEN
SetPen(MVValToPoint(curX.xMin,m,x,curGx),yy);
LineTo(MVValToPoint(curX.xMax,m,x,curGx),yy);

ELSIF (curGy=isX) AND (curGx=isY) THEN
SetPen(MVValToPoint(curX.xMin,m,y,curGy),xx);
LineTo(MVValToPoint(curX.xMax,m,y,curGy),xx);

END(*IF*);

END DrawAbscissa;

PROCEDURE Dynamic;

A173

ModelWorks 2.2 - Appendix (Sample Models)

BEGIN

xDot:=y;

yDot:= mu*(1.0-x*x)*y-x;
END Dynamic;

PROCEDURE ModelObjects;

BEGIN
DeclSV(x, xDot,1.0, -5.0, +5.0, "x (xDot := y)", "x", ");
DeCISV(y yDOt 1. O -5. 0 +5. O "y (yDot = u(l XAZ)y X)" T lm)’

DecIMV(x,-5.0,5.0,"x (abscissa)","x","™,notOnFile,notInTable,isX);
SetDefltCurveAttrForMV(m,x,ruby,unbroken,0C);
DecIMV(y,-5.0,5.0,"y (ordinate)","y","",notOnFile,notInTable,isY);
SetDefltCurveAttrForMV(m,y,emerald,unbroken,0C);

DeclP(mu, 1.0, -10.0, 10.0, rtc, "u (oscillator parameter)”, "u", ");
END ModelObjects;

PROCEDURE ModelDefinitions;

BEGIN
DecIM(m, Euler, Nolnitialize, Nolnput, NoOutput, Dynamic, NoTerminate, ModelObjects,

"Van der Pol Oscillator”, "VDPol", NoAbout);

SetSimTime(0.0,20.0); SetMonlnterval(0.2); SetintegrationStep(0.05);
InstallClientMonitoring(DrawAbscissa,DoNothing,DoNothing);
InstallGraphClickHandler(GetAndSetNewlnits);

END ModelDefinitions;

BEGIN
ModelDefinitions;
RunSimEnvironment(DoNothing);
END VDPol.

Al74

ModelWorks 2.2 - Appendix (Sample Models)

A.4.3 Animation of the Age Pyramid of the SwissSwissPop

The following sample model simulatése Swiss human population starting from the demo
graphic state and properties in the year 1988e model considers only the age structure (n =
100 age classes) differentiated for sex but neither immigration nor emigration. Henuoaléie
has been formulated as an autonomdinsar, discrete timé Leslie matrix model with the fel
lowing equations:

x(k+1) = L x(k)

where
f0 f1 f2 fa-3 fa—2 fa—l
So1 0 0 0 0 0
0 S1o 0 0 0 0

L= |0 0 Sy3 0 0 0

0 0 0 Sians O 0
0 0 0 0 Sn-2n-1 0

All demographic parameters such as fecungligntl survival § are assumed to remaionstant
and were derived from official statistics valid for tear kg = 1988. This sample model defi
nition pragram also demonstrates thedigw ofdata, i.e. the initial state vector, from a file by
means of the auxiliary library moduReadData

ReadInitialStateVectorFromFitaes first to open the data filBwissPop88.DATautomatically

by calling procedur®penDataFilrom ReadData If OpenDataFilean't open the data file, it

will display first a message informing the simulationist about the problem and then ask her to
locate the data file via the standard file opening diategtExistingFilefrom DMFileg.

ReadlnitialStateVectorFromFils installed in thesimulation environment via procedutastalt
DefSimEnvfrom SimMaster ThereforeReadInitialStateVectorFromFileill be called ato-
maically during the initialization of the simulation environment (peet 11 Theory sectionIni-
tidizationof the simulation environméntout can be called again as many times the si-mu-la
tio-nist wishes, e.g. to use another file or after having edited theSiMssPop88.DAT There
fore, if stateVectorlnitializeds true ReadlnitialStateVectorFromFileises OpenADataFile
which will always open the data file via the standard file opening dialog.

The following excerpt from the data filBwissPop88.DATshows whatdata the proedure
ReadInitialStateVectorFromFiexpects:

age class size

0 79700
1 75700
2 74900
3 74000
97 1484
98 1115
99 746
100 377

1This example represents the special case where the discreteiimestricted to integer numbers k only.

A 175

ModelWorks 2.2 - Appendix (Sample Models)

The data are read free-format, howeweadInitialStateVectorFromFilexpects first a header
line, which it will skip, and then exactly 101 data pairs, each consisting ofitigex and the
size of the age clasfReadDatwavill test for each expected number its syntax andpthasibility
of the read value by comparing it with an interval ($8etint or GetRealfrom ReadDaba
Wherever ReadDatdetects an error condition, it will inform the usabout the cause andcks
tion at which the error was detected and asks the user whether she wishes toabetingie or

abort the reading process.

L=
]
[}

=1

Age Structure

Age Structure

100

S0

]
S7044.0 Females Males s7044.0

[

100

L
a318.00 Fernales

Fales

8318.0

=

Fig. A5: Client monitoring of the age structure of a Leslie matngdel of the hu

man population of Switzerland. On the left the agrecture of the Swiss in 1988,
on the right at the end of the simulationyear 2188, i.e. when the population has

reached approximately a steady-state age structure.

Note that simulations are not possible if the diddacontaining the irtial state vector could not
be successfully opened or processed, since proceduBtai/edorinitialized which is
installedvia InstallStartConsistencinto the simulation emronment, will return FALSE if the
reading of thedata from the file should have failed for whaker regon (file could not be

found, opened, contains data different from the needepledisely expeded ones etc.).

Moreover this sample model demonstrates the utabtE funtions tointerpolate for every age
class the fecundity and the survival (auxiliary librampduleTabFung and a typical client mo
nitoring of theage structure by using auxiliary library modibeawAgePyramidFig. A5).

The latter allows to watch the evolving age structure continuoasty to detect when the shape

of the age pyramid does no longer change, i.e. the stationary age structure has been reached.

MODULE SwissPop;

A 176

Model: SwissPop

Copyright (c) 1989 by Harald Bugmann, Andreas Fischlin
& Swiss Federal Institute of Technology Zurich ETHZ
Systems Ecology Group

ETH-Zentrum

CH-8092 Zurich

Switzerland

Purpose:

Population dynamics of Switzerland with an age structure (100
age classes) Leslie model with sex differentiation. The

initial state vector for the year 1988 is read from a data

file (SwissPop88.DAT), which reads the size for every age
class into the state vector. Age and sex specific fecundity and
survival are formulated by interpolating within table functions
for age specific mortality function (one for both sexes) and

an age specific fecundity function for the women.

References:
Statistisches Jahrbuch der Schweiz - 1989. Verlag Neue
Zircher Zeitung und Bundesamt fiir Statistik.
ISBN 3 85823 250 5.
p.24 Table 1.4 (Population)
p.36 and 39 (Fecundity, mortality).

Implementation and Revisions:

Author Date Description

hb 18.06.90 Firstimplementation (DM 2.0,
MacMETH 2.6+, ModelWorks 2.0)

hb 22.06.90 Minor improvements & bug fixes

af 25/01/93 Fixing bugs in state vector initialization
and complete overhaul to include this module
as a sample model in the ModelWorks Manual
Appendix; uses now ReadData

dg 06/03/93 Import lists cleaned up

FROM DMConversions IMPORT IntToString;
FROM DMStrings IMPORT Append;
FROM DMMessages IMPORT Warn;

FROM SimBase IMPORT
Model, DeclIM, IntegrationMethod,

StateVar, NewState, DeclSV, SetSV, Parameter, DeclP, RTCType,

StashFiling, Tabulation, Graphing, DeclMV, AuxVar,
SetSimTime, Nolnitialize, Nolnput,

NoOutput, NoTerminate, NoAbout, DoNothing,
InstallClientMonitoring, SetMonlInterval;

FROM SimMaster IMPORT
InstallStartConsistency, InstallDefSimEnv,
RunSimEnvironment;

ModelWorks 2.2 - Appendix (Sample Models)

Al77

ModelWorks 2.2 - Appendix (Sample Models)

FROM TabFunc IMPORT TabFUNC, DeclTabF, Yie, Yi, SetTabF;

FROM ReadData IMPORT
OpenADataFile, OpenDataFile, CloseDataFile, GetReal, GetInt, TestEOF,
SkipHeaderLine, readingAborted;

FROM DrawAgePyram IMPORT
SetPyramidParameters, GetPyramidParameters, MakePyramid,
ShowPyramidWindow, DiscardPyramid, DrawPyramid, AgePyramid,
ResetPyramid, HidePyramidWindow;

(n nnnnnnn)

CONST
maxAge = 100;
defltBirthSexRatio = 0.48;
sexRatio = 0.52;

TYPE
StateVector = ARRAY [0..maxAge] OF StateVar;
NewStateVector = ARRAY [0..maxAge] OF NewState;

VAR
m : Model;
men, women : ARRAY [0..maxAge] OF StateVar;
menNew, womenNew : NewStateVector;
ageClass, mortWomen, mortMen : ARRAY [0..11] OF Parameter;
ageClassFec, fecundity : ARRAY [0..8] OF Parameter;
offspring, birthSexRatio,
totalWomen, totalMen, totalPopulation : AuxVar;
agePyramid: AgePyramid;
mortMenT, mortWomenT, fecT : TabFUNC;
stateVectorlnitialized: BOOLEAN;

PROCEDURE ReadInitialStateVectorFromFile;
CONST maxTolerated = 1.0E+8/FLOAT(maxAge);
VAR fn: ARRAY [0..127] OF CHAR; VAR opened: BOOLEAN;
k,ageClass: INTEGER; ageClassSize: AuxVar;
BEGIN
fn := "SwissPop88.DAT";
IF stateVectorlnitialized THEN
OpenADataFile(fn,opened);
ELSE
OpenDataFile(fn,opened);
END(*IF¥);
IF opened THEN
SkipHeaderLine;
FOR k:=0 TO maxAge DO
TestEOF; Getlnt("age class"k, ageClass, k,k); (* ageClass = k expected *)
TestEOF; GetReal("size of age class" k, ageClassSize, 0.0,maxTolerated);
IF NOT readingAborted THEN
women[ageClass] := sexRatio * ageClassSize;
men[ageClass] := ageClassSize - women[ageClass];
SetSV(m,women[ageClass],women[ageClass]);
SetSV(m,men[ageClass],men[ageClass]);
stateVectorlnitialized := TRUE;
ELSE
stateVectorlnitialized := FALSE; (* only partially assigned *)
RETURN
END(*IF¥);
END(*FOR¥);
CloseDataFile;
END(*IF¥);
END ReadInitialStateVVectorFromFile;

PROCEDURE StateVectorlnitialized(): BOOLEAN,;
BEGIN

A178

ModelWorks 2.2 - Appendix (Sample Models)

RETURN stateVectorlnitialized
END StateVectorlnitialized;

PROCEDURE Dynamic;
VAR i: INTEGER,;
BEGIN
(* calculate surviving people in each age class *)
FORi:= 1 TO maxAge DO
womenNew(i] := (1.0 - Yie(mortWomenT, FLOAT(i-1))) * women[i-1];
menNew[i] :=(1.0 - Yie(mortMenT, FLOAT(i-1))) * men([i-1];
END; (* FOR *)

(* sum all offspring for the age classes 15 to 49 *)
offspring := 0.0;
FOR i:= 15 TO 49 DO

offspring := offspring + Yi(fecT, FLOAT(i))*women([i];
END; (* FOR *)

(* calculate babies born *)

womenNew([0] := birthSexRatio * offspring;

menNew[0] := (1.0 - birthSexRatio) * offspring;
END Dynamic;

PROCEDURE Output;
VAR i: INTEGER;
BEGIN
totalWomen := 0.0;
totalMen := 0.0;
FOR i:= 0 TO maxAge DO
totalWomen := totalWomen + women([i];
totalMen := totalMen + men([i];
END; (* FOR *)
totalPopulation := totalMen + totalWomen;
END Output;

PROCEDURE PyramidMonitoring;
BEGIN
ShowPyramidWindow(agePyramid);
DrawPyramid (agePyramid, women, men);
END PyramidMonitoring;

PROCEDURE ModelObjects;
VAR i: INTEGER,;
string : ARRAY [1..3] OF CHAR,;
womenDescr, womenldent, menDescr, menldent : ARRAY [0..30] OF CHAR;

BEGIN
DecIMV(totalWomen, 0.0, 7.0E6, "Total women", " > women",
"#", notOnFile, writeInTable, isY);
DecIMV(totalMen, 0.0, 7.0E6, "Total men", " > men",
"#", notOnFile, writeInTable, isY);
DecIMV(totalPopulation, 0.0, 7.0E6, "Total population”, " > pop",

"#', notOnFile, writeInTable, isY);

FOR i:= 0 TO maxAge DO
IntToString(i, string, 3);
womenDescr := "Women of age "; Append(womenDescr, string);
womenldent := "f"; Append(womenldent, string);
DeclSV(women[i], womenNew([i], 0.0, 0.0, 1.0ES6,
womenDescr, womenldent, "#");
DeclMV(women[i], 0.0, 150000.0, womenDescr, womenldent,
"#", notOnFile, notinTable, notinGraph);
END(*FOR¥);

FOR i:= 0 TO maxAge DO
IntToString(i, string, 3);

A179

ModelWorks 2.2 - Appendix (Sample Models)

menDescr := "men of age "; Append(menDescr, string);

menldent :="m "; Append(menldent, string);
DeclISV(men([i], menNew([i], 0.0, 0.0, 1.0ES,
menDescr, menldent, "#");

DecIMV(men(i], 0.0, 150000.0, menDescr, menldent,

"#", notOnFile, notinTable, notinGraph);

END(*FOR*);

MakePyramid(agePyramid);

DeclP(birthSexRatio, defltBirthSexRatio, 0.0, 1.0, rtc,
"Percentage of female babies",

ageClass[0] :=

ageClass[1] :=

ageClass[2] := 15.0;
ageClass[3] := 25.0;
ageClass[4] := 35.0;
ageClass[5] := 45.0;
ageClass[6] := 55.0;
ageClass[7] := 62.5;
ageClass[8] := 67.5;

ageClass[9] := 75.0;
ageClass[10]:= 85.0;
ageClass[11]:= 95.0;
DecITabF(mortMenT, ageCIass, mortMen, 12, TRUE,

0.0; mortMen[0] := 0.0077,;
5.5; mortMen[1] := 0.0003;

mortMen[2] := 0.0006;
mortMen([3] := 0.0015;
mortMen[4] := 0.0015;
mortMen[5] := 0.0027;
mortMen([6] := 0.0076;
mortMen[7] := 0.0156;
mortMen[8] := 0.0254;
mortMen[9] := 0.0520;
mortMen[10]:= 0.1139;
mortMen[11]:= 0.7482;

"Mortality of men",

non

"age",

"o,

mortality”,

years", "lyear",

0.0, 100.0, 0.0, 1.0);

ageClass[0] :=

ageClass[1] :=

ageClass[2] := 150
ageClass[3] := 25.0;
ageClass[4] := 35.0;
ageClass[5] := 45.0;
ageClass[6] := 55.0;
ageClass[7] := 62.5;
ageClass[8] := 67.5;

ageClass[9] := 75.0;

ageClass[10]:= 85.0; mortWomen[10]:=
ageClass[11]:= 95.0; mortWomen[11]:=
DeclTabF(mortWomenT, ageClass, mortWomen, 12, TRUE,

0; mortWomen[0] := 0.0059;
5; mortWomen[1] := 0.0003;

mortWomen[2] := 0.0003;
mortWomen[3] := 0.0005;
mortWomen([4] := 0.0007;
mortWomen[5] := 0.0016;
mortWomen[6] := 0.0036;
mortWomen[7] := 0.0067;
mortWomen[8] := 0.0114;
mortWomen[9] := 0.0270;

"Mortality of women",
"age", "mortality”, "years", "lyear",
0.0, 100.0, 0.0, 1.0);

ageClassFec[0] :
ageClassFec|[1] :
ageClassFec|[2] :
ageClassFec[3] :
ageClassFecl[4] :
ageClassFec|5] :
ageClassFec[6] :
ageClassFec|[7] :

— e e

"Fecundity",

15.0; fecundity[0] := 0.0;

17.0; fecundity[1] := 0.0045;
22.0; fecundity[2] := 0.0512;
27.0; fecundity[3] := 0.1283;
32.0; fecundity[4] := 0.0946;
37.0; fecundity[5] := 0.0305;
42.0; fecundity[6] := 0.0043;
47.0; fecundity[7] := 0.0003;
ageClassFec|[8] := 50.0; fecundity[8] := 0.0000;
DeclTabF(fecT, ageClassFec, fecundity, 9, TRUE,

"age", "Fecundity", "years", "ch/fem/yr",
0.0, 100.0, 0.0, 1.0);

END ModelObjects;

PROCEDURE ModelDefinition;

BEGIN

DecIM(m, discreteTime, Nolnitialize, Nolnput, Output, Dynamic,
NoTerminate, ModelObjects, "Population model for Switzerland (CH)",

NoAbout);

A 180

"% fem. babies", "%");

0.0923;
0.7703;

"CH Pop",

ModelWorks 2.2 - Appendix (Sample Models)

SetSimTime(1988.0, 2188.0);

SetMoninterval(5.0);

InstallClientMonitoring(DoNothing, PyramidMonitoring, DoNothing);
InstallStartConsistency(StateVectorlnitialized);
stateVectorlnitialized := FALSE;

InstallDefSimEnv(ReadlnitialStateVectorFromFile);
END ModelDefinition;

BEGIN

RunSimEnvironment(ModelDefinition);
END SwissPop.

A 181

ModelWorks 2.2 - Appendix (Sample Models)

A.4.4 Sensitivity Analysis - Sensitivity

To perform asensitivity analysis we use a structured simulation experiment: Given a set of n
model parameters and for each parameter a triple of values, subk dswer boundary of a
confidence intervalthe mean, and the upper boundary of the confidence interval (e.g.

5%), we are interesteh the sensitivity of the model behavior in respect to the changes in the
parameters as given by these triplets. Thus it is necessary to eaesiatalation run for every
combination of parameter values.

First the parameter values can be stored on a text file similar to a format like this one:

min pl mean pl max pl descriptor of p1 pl unit pl
min p2 mean p2 max p2 descriptor of p2 p2 unit p2
min pn mean pn max pn descriptor of pn pn unit pn

For instance this parameter file might contain these data:

0.109 0.234 0.472 Growth rate 1 r day”-1
35.6 42.3 49.8 Half-saturation c. Ks pg/l
1.0E5 2.5E5 5.0E5 Initial algal dens. x0 cells/ml

A full sensitivity analysis can then be realized in form of the following program code:

CONSTn=3;
TYPE PVal = (cur, min, mean, max);
PType = RECORD
v: ARRAY [cur..max] OF REAL;
descr,ident,unit: ARRAY [0..64] OF CHAR;

END;
VAR p: ARRAY [1..n] OF PType;

PROCEDURE DeclModelObjects;
VAR i: [1..n]; j: [min..max]; parFile: TextFile 2;
BEGIN
GetExistingFile(parFile, "Open parameter file");
FORi:=1TOn DO
FOR j:= min TO max DO GetReal(parFile,p[i].v[j]) END;
SkipGap(parFile); ReadChars(parFile,p[i].descr);
SkipGap(parFile); ReadChars(parFile,p[i].ident);
SkipGap(parFile); ReadChars(parFile,p[i].unit);
END;

Close(parFile);

FOR i:=1 TO n DO WITH p[i] DO
DeclP(v[cur],v[mean],0.0,MAX(REAL),noRtc,descr,ident,unit)

END END;

DeclSV(...
E'l.\iD DeclModelObjects;

PROCEDURE MyExperiment;
VAR i,j,k: [min..max];
BEGIN
FOR i:= min TO max DO
FOR j:= min TO max DO
FOR k:= min TO max DO
SetP(m,p[1].v[cur], p[1].V[i]);
SetP(m,p{2].v[cur], p[2].v[i]);
SetP(m,p[3].v[cur], p[3].v[K]);
SimRun
END
END
END;
END MyExperiment;

1in order to be able to use blanks in thieldle of a descriptor and still be able to write the data onto the text
file in a free format use so-called hasgaces(on the Macintosh Option“space-bar) or underline within a
descriptor.

2The objectsTextFile, GetExistingFile GetReal SkipGap ReadCharsandCloseare to be imported from the
"Dialog Machine" modul®MFiles.

A 182

ModelWorks 2.2 - Appendix (Sample Models)

or alternatively the proceduidyExperimentmay berogrammed in the general recursive vari
ant, which works for any n:

PROCEDURE MyExperiment;
PROCEDURE Sensitivity(i: CARDINAL);
VAR j: [min..max];
BEGIN (*Sensitivity*)
FOR j:= min TO max DO SetP(m,pli].v[cur], p[i]. v[]])
IF i<n THEN Sensitivity(i+1) ELSE SimRun END
END(*FOR*);
END Sensitivity;
BEGIN (*MyExperiment*)
Sensitivity(1);
END MyExperiment;

Note however, such an experiment may quickly grow to an enormous task! Givendel pa
rameters, each with k values and eaxdmbination to be tested, the number of simulation runs
becomes'k Above simple example with n = 3 g@Emeters, each with k = 3 values (mimean,
max), requires for a fulbensitivity analysisilready 3 = 27 simulation runs.

MODULE Sensitivity;

(Kk kkk K*kkkkkk Kkk *kk

ModelWorks model: Sensitivity

Copyright ©1989 by Andreas Fischlin and Swiss
Federal Institute of Technology Zurich ETHZ
Department of Environmental Sciences

Systems Ecology Group

ETH-Zentrum

CH-8092 Zurich

Switzerland

Version written for:
‘Dialog Machine' V1.0 (User interface)
MacMETH V2.6 (1-Pass Modula-2 implementation)
ModelWorks V1.2 (Modelling & Simulation)

Purpose Demonstrates a model parameter sensitivity using
ModelWorks

Remarks lllustrates a manual example (Theory programming
structured simulations)

Implementation and Revisions:

Author Date Description

af 05/06/89 First implementation (DM 1.0,
MacMETH 2.6, ModelWorks 1.2)
dg 25/04/96 Cleaned up for PC compatibility

FROM DMFiles IMPORT
GetExistingFile, TextFile, GetReal, SkipGap, ReadChars, Close,
Response;

FROM DMWindows IMPORT
RectArea, Window, WindowKind, ScrollBars, CloseAttr, ZoomAttr,
WFFixPoint, WindowFrame, CreateWindow, AutoRestoreProc,
WindowEXxists, PutOnTop;

FROM DMWindIO IMPORT

SelectForOutput, EraseContent, SetPos, Write, WriteLn,
WriteString, WriteReal, WriteInt, SetWindowFont, WindowFont,

A 183

ModelWorks 2.2 - Appendix (Sample Models)

FontStyle;

FROM SimBase IMPORT
Model, IntegrationMethod, DeclM, StateVar, Derivative, DeclSV,
AuxVar, Parameter, RTCType, DeclP, SetP, SetDefltP,
ResetAllParameters, StashFiling, Tabulation, Graphing, DecIMV,
SetSimTime, SetMoninterval, SetIntegrationStep, Nolnput,
NoOutput, NoTerminate, NoAbout, CloseWindow, MWWindow,
GetWindowPlace;

FROM SimMaster IMPORT RunSimEnvironment, SimRun, InstallExperiment,
CurrentSimNr, InstallDefSimEnv;

CONSTn=3;
TYPE PVal = (cur, min, mean, max); SensiRange = [min..max];
PType = RECORD
v: ARRAY [cur..max] OF Parameter;
descr,ident,unit: ARRAY [0..64] OF CHAR;

END;
VAR p: ARRAY [1..n] OF PType;
m: Model;

x: StateVar; xDot: Derivative;
s: StateVar; sDot: Derivative;
mu: AuxVar;

Y: Parameter;

parSetW: Window;

PROCEDURE Initialize;

BEGIN (*Initialize*)
SelectForOutput(parSetW);
WriteString('Run Nr. ="); Writelnt(CurrentSimNr(),2);
x:= p[3].v[cur];

END Initialize;

PROCEDURE Dynamic;

BEGIN
mu:= p[1].v[cur]*s/(p[2].v[cur]+s);
xDot:= mu*x;
sDot:= - mu/Y;

END Dynamic;

PROCEDURE DecIModelObjects;
BEGIN
DeclSV(x, xDot,1.0ES5, 0.0, 1.0ES,
‘Algal density’', 'x', 'cells/ml');
DeclISV(s, sDot,100.0, 0.0, MAX(REAL),
‘Orthophosphate PO4-P', 's', 'ug/l");

DecIMV(x,0.0,1.0E7,
'Algal density', 'x', ‘cells/ml’,
notOnFile,notinTable,isY);
DecIMV(s,0.0,110.0,
'Orthophosphate PO4-P', 's', 'ug/l',
notOnFile,notinTable,isY);
DecIMV(mu,0.0,110.0,
'Relative growth rate of algae', 'y, 'day™-1',
notOnFile,notinTable,notinGraph);
DecIMV(xDot,0.0,110.0,
'‘Growth rate of algae', 'dx/dt', ‘cells/ml/day’,
notOnFile,notinTable,notinGraph);
DecIMV(sDot,-10.0,0.0,
‘Consumption rate of PO2-P by algae’, 'ds/dt', 'ug/l/day’,
notOnFile,notinTable,notinGraph);

A 184

DeclP(p[1].v[cur],0.0,0.0,MAX(REAL),noRtc,"parameter 1","p1","ul");
DeclP(p[2].v[cur],0.0,0.0,MAX(REAL),noRtc,"parameter 2","p2","u2");
DeclP(p[3].v[cur],0.0,0.0,MAX(REAL),noRtc,"parameter 3","p3","u3");
DeclP(Y,0.04,0.0,MAX(REAL),noRtc,Yield',"Y",'cells/ml/ug/l");

END DeclModelObjects;

PROCEDURE ReadAndSetParameters;
VAR i: [1..n]; j: SensiRange; parFile: TextFile ;
PROCEDURE ShowOrOpenParameterSpace;
VAR parSetWf: WindowFrame; isOpen: BOOLEAN;
BEGIN

WITH parSetWf DO GetWindowPlace(TableW,x,y,w,h,isOpen) END;

IF isOpen THEN CloseWindow(TableW) END(*IF*);

IF WindowExists(parSetW) THEN
PutOnTop(parSetWw);

ELSE
CreateWindow(parSetW,GrowOrShrinkOrDrag, WithoutScrollBars,

WithCloseBox,WithZoomBox,bottomLeft, parSetWr,
'‘Parameter Sets', AutoRestoreProc);
SetWindowFont(Monaco,9,FontStyle);
END(*IF*);
SetPos(1,1);
END ShowOrOpenParameterSpace;
BEGIN
GetExistingFile(parFile, ‘Open parameter file "Sensitivity. DAT™);
IF parFile.res=done THEN

FORi:=1TOn DO
FOR j:= min TO max DO GetReal(parFile,pl[i].v[j]) END;
SkipGap(parFile); ReadChars(parFile,p[i].descr);
SkipGap(parFile); ReadChars(parFile,p[i].ident);
SkipGap(parFile); ReadChars(parFile,p[i].unit);

END;

Close(parFile);

FOR i:= 1 TO n DO WITH p[i] DO
SetDefltP(m,v[cur],v[mean],0.0,MAX(REAL),noRtc,descr,ident,unit);
ResetAllParameters;

END END;

ShowOrOpenParameterSpace;

END(*IF¥);
END ReadAndSetParameters;

PROCEDURE RecordParSet(i: INTEGER,; j,k: SensiRange);
VAR [: INTEGER,;
BEGIN (*RecordParSet*)
SelectForOutput(parSetW);
SetPos(CurrentSimNr(),1);
Writelnt(i,2); Write(' *); WriteInt(ORD(j),2); Write(' "); WriteInt(ORD(k),2);
WriteString(":);
FORI:=1TO n DO
WriteString(p[l].ident); WriteString(' =";
WriteReal(p[l].v[cur],8,3); WriteString(, ");
END(*FOR%);
END RecordParSet;
(*.
PROCEDURE MyExperiment;
VAR i,j,k: SensiRange;
BEGIN
FOR i:= min TO max DO
FOR j:= min TO max DO
FOR k:=min TO max DO
SetP(m,p[1].v[cur], p[1].v(i]);
SetP(m,p[2].v[cur], p[2].V[i]);
SetP(m,p([3].v[cur], p[3].v[K]);
SimRun
END
END
END;

ModelWorks 2.2 - Appendix (Sample Models)

A 185

ModelWorks 2.2 - Appendix (Sample Models)

END MyExperiment;
)

PROCEDURE MyExperiment;
PROCEDURE Sensitivity(i: INTEGER,; k: SensiRange);
VAR j: SensiRange;
BEGIN
FOR j:= min TO max DO
SetP(m,p[i].v[cur], p[i]-v[i]);
IF i<n THEN Sensitivity(i+1,j) ELSE
RecordParSet(i,j,k); SimRun;
END;
END(*FOR?);
END Sensitivity;
BEGIN
CloseWindow(TableW);
SelectForOutput(parSetW); EraseContent; SetPos(1,1);
Sensitivity(1,min);
END MyExperiment;

PROCEDURE ModelDefinitions;
BEGIN
DeclM(m, Euler, Initialize, Nolnput, NoOutput, Dynamic, NoTerminate, DecIModelObjects,
'Sensitivity of Michaelis-Menthen algal growth', 'm', NoAbout);
SetSimTime(0.0,8.0); SetMonlinterval(0.5); SetintegrationStep(0.1);
InstallExperiment(MyExperiment);
InstallDefSimEnv(ReadAndSetParameters);
END ModelDefinitions;

BEGIN
RunSimEnvironment(ModelDefinitions);
END Sensitivity.

A 186

ModelWorks 2.2 - Appendix (Sample Models)

A.4.5 Parameter Identification Gausel dentif

GAUSE (1934) has pursued the question whether classical poputhtiamics models such as
the Verhulst (logistic) or the Lotka-Volterra equations actually represeet population
processes. He reared several populatioinsicroorganisms such as the cilid@aramecium
caudatunin the laboratory. In one experiment he tried to fit the observed population densities

Day t X(t) Day t X(t) Day t X(t) Day t X(t)
0 2 4 39 8 50 12 57
1 5 5 52 9 76 13 70
2 22 6 54 10 69 14 55
3 16 7 47 11 51 15 59

with the logistic equation

dx()/dt = r%ﬁ X(t)

where

x(t) the density of ciliates in number of animals per 0.5 ml
K carrying capacity: maximum density of ciliates

r per capita growth rate

The following program modul&auseldentilemonstrates the usé a ModelWorks structured
simulation (routinddentify installed as an experiment videclExperimenfrom SimMastey to
identify the unknownmodel parameters K and r by means of the optimization module
IdentifyPars The minimization routines dilentifyParsrequire thatGauseldentitomputesa
performance index which expresses gmdness of fit between the simulated and observed
populationdensities. If the model equations would be analytically unsolvable, which is often
the case, the performance index can dody computed by a full simulation run, given some
estimates for the unknown parameters exist. The identificaligorithm will then try to adjust
the parameters such, that the perfomance index improves, i.e. is minimizdthough the
logistic equation can be solved analytically, the followipgpgram code follows an architecture
which is applicable to any ModelWorks model.

MODULE Gauseldentif; (* af 23/01/93, dg 06/03/93, dg 25/04/96 *)
(nnnnnn

MODEL: Gauseldentif - Identifies model parameters
for logistic growth equation
applied to the experiment by
Gause (1934) rearing the ciliate
Paramaecium caudatum.

Reference: Gause, G.F., 1934. The struggle for existence.
Baltimore: Williams and Wilkins. 163pp.

A. Fischlin, 23/Jan/93, Systems Ecology ETHZ

xxxxxxxxxxxx * kkkkkkkkkkkkkkkkrkkk)

FROM DMSystem IMPORT SuperScreen, MainScreen, TitleBarHeight;
FROM DMStrings IMPORT Concatenate, Append, AppendCh;

FROM DMConversions IMPORT RealToString, RealFormat, IntToString;
FROM DMMessages IMPORT Warn;

A 187

ModelWorks 2.2 - Appendix (Sample Models)

FROM DMWindIO IMPORT
DisplayPredefinedPicture, BackgroundWidth, BackgroundHeight,
ScaleUC, UCFrame, EraseContent, SetUCPen, UCLineTo, DrawSym,
SelectForOutput, Area, pat, GreyContent, SetPen, WriteString,
WriteReal, CellHeight, CellWidth, StringWidth, SetWindowFont,
WindowFont, FontStyle;

FROM DMWindows IMPORT
RectArea, Window, WindowKind, ScrollBars, CloseAttr, ZoomAittr,
WFFixPoint, WindowFrame, CreateWindow, AutoRestoreProc,
GetWindowFrame, PutOnTop, WindowExists, RemoveWindow,
AddWindowHandler, WindowHandlers;

FROM SimBase IMPORT
Model, StateVar, NewState, Parameter, AuxVar,
Derivative, IntegrationMethod, DecIM, DeclSV, DeclP, RTCType,
StashFiling, GetP, SetP, GetMV, SetMV, Message,
SetDefltCurveAttrForMV, Stain, LineStyle, MWWindow,
GetDefltWindowPlace, GetWindowPlace, SetDefltWindowPlace,
SetWindowPlace, MWWindowArrangement, SetDefltWindowArrangement,
Tabulation, Graphing, DecIMV, SetSimTime, Nolnitialize, Nolnput,
NoOutput, NoTerminate, NoAbout, GetDefltP, SetDefltP;

FROM SimMaster IMPORT
RunSimEnvironment, InstallStartConsistency, InstallExperiment,
SimRun, CurrentSimNr, CurrentTime;

FROM SimGraphUtils IMPORT
DeclIDispData, timelsindep, DisplayTime;

FROM SimDeltaCalc IMPORT
DeltaVar, InitDeltaStat, AccuDelta, GetDeltaStat,
WriteDeltaStatMsg;

FROM IdentifyPars IMPORT
MinimizeAfterDialog, UnmarkAllParsForldentification,
MarkParForldentification;

CONST
fstDay = 0; lastDay = 16;
KMin = 0.0; KMax =100.0; (* Plausible range for K *)
rMin = 0.0; rMax = 3.0; (* Plausible range for r *)

VAR
m: Model;
X: StateVar;
xDot: Derivative;
K,r: Parameter;
parSpace: RECORD
w: Window;
wf: WindowFrame;
oldK, oldr: Parameter;
END;
gauseExp: RECORD
day,ciliateCount,dummy: ARRAY [fstDay..lastDay] OF REAL,;
xMeasured: REAL; (* monitoring variable for ciliate counts *)
delta: DeltaVar; (* A =x - xMeasured *)
END;

PROCEDURE GausesMeasurements; (* Gause, 1934, p. 145, Table 4 *)
BEGIN
gauseExp.day[0]:= 0.; gauseExp.ciliateCount[0]:= 2,;
gauseExp.day[1]:= 1.; gauseExp.ciliateCount[1]:=5.;
gauseExp.day[2]:= 2.; gauseExp.ciliateCount| 2]:=22.;
gauseExp.day[3]:= 3.; gauseExp.ciliateCount[3]:=16.;
gauseExp.day[4]:= 4.; gauseExp.ciliateCount[4]:=39.;

A 188

ModelWorks 2.2 - Appendix (Sample Models)

gauseExp.day[5]:= 5.; gauseExp.ciliateCount[5]:=52.;
gauseExp.day[6]:= 6.; gauseExp.ciliateCount[6]:=54.;
gauseExp.day[7]:= 7.; gauseExp.ciliateCount[7]:=47.;
gauseExp.day[8]:= 8.; gauseExp.ciliateCount[8]:=50.;
gauseExp.day[9]:= 9.; gauseExp.ciliateCount[9]:=76.;
gauseExp.day[10]:= 10.; gauseExp.ciliateCount[10]:=69.;
gauseExp.day[11]:= 11.; gauseExp.ciliateCount[11]:=51.;
gauseExp.day[12]:= 12.; gauseExp.ciliateCount[12]:=57.;
gauseExp.day[13]:= 13.; gauseExp.ciliateCount[13]:=70.;
gauseExp.day[14]:= 14.; gauseExp.ciliateCount[14]:=53.;
gauseExp.day[15]:= 15.; gauseExp.ciliateCount[15]:=59.;
gauseExp.day[16]:= 16.; gauseExp.ciliateCount[16]:=57.;
END GausesMeasurements;

PROCEDURE Initialize;

BEGIN
InitDeltaStat(gauseExp.xMeasured,CurrentTime(),x,gauseExp.delta);

END Initialize;

PROCEDURE Output;

BEGIN
AccuDelta(gauseExp.delta,CurrentTime(),x);

END Output;

PROCEDURE Dynamic;
BEGIN

xDot:= r*((K-x)/K)*x;
END Dynamic;

PROCEDURE ParametersPlausible(): BOOLEAN;
VAR plausible: BOOLEAN; strl,str2,rStr: ARRAY [0..31] OF CHAR,;
BEGIN
plausible := (K>KMin) AND (K<=KMax) AND (r>rMin) AND (r<=rMax);
IF NOT plausible THEN
RealToString(KMin,str1,0,1,FixedFormat); Append(strl,” < K <=");
RealToString(KMax,rStr,0,1,FixedFormat); Append(strl,rStr);
RealToString(rMin,str2,0,1,FixedFormat); Append(str2,” <r <=");
RealToString(rMax,rStr,0,1,FixedFormat); Append(str2,rStr);
Warn("The parameters have become inplausible! Valid ranges are:",strl,str2);
END(*IF*);
RETURN plausible
END ParametersPlausible;

PROCEDURE ShowNewParameters;
VAR bottom: RectArea; (*. debugging .*)
BEGIN
SelectForOutput(parSpace.w);
SetUCPen(parSpace.oldK,parSpace.oldr); UCLineTo(K,r); DrawSym("");
parSpace.oldK := K; parSpace.oldr :=r;
END ShowNewParameters;

PROCEDURE ShowPerformance(perflndex: REAL);
VAR bottom: RectArea;
BEGIN
SelectForOutput(parSpace.w);
bottom.x := 0; bottom.y :=0;
bottom.h := 20+CellHeight(); bottom.w := 100*CellWidth();
Area(bottom,pat[light]);
SetPen(20,20); WriteString("Performance index (> AN2)=");
WriteReal(perflndex,0,3);
WriteString(" with Kr=");
WriteReal(K,0,3); WriteString(", "); WriteReal(r,0,3);
END ShowPerformance;

A 189

ModelWorks 2.2 - Appendix (Sample Models)

PROCEDURE RedrawParameterSpace(u: Windowy);

CONST fw = 6; dec = 3;

VAR curMinr,curMaxr,curMinK,curMaxK: REAL;

curSF: StashFiling; curT: Tabulation; curG: Graphing;
rstr: ARRAY [0..31] OF CHAR,; label: ARRAY [0..127] OF CHAR;

BEGIN

SelectForOutput(parSpace.w);

GetWindowFrame(u,parSpace.wf);

GetMV(m,K,curMinK,curMaxK,curSF,curT,curG);

GetMV(m,r,curMinr,curMaxr,curSF,curT,curG);

parSpace.wf.x := 20; parSpace.wf.y := 50;

parSpace.wf.w := parSpace.wf.w - 2*parSpace.wf.x;

parSpace.wf.h := parSpace.wf.h - parSpace.wf.x - parSpace.wf.y;

ScaleUC(parSpace.wf,curMinK,curMaxK,curMinr,curMaxr);

EraseContent; UCFrame;

label :="K - carrying capacity (Min=",

RealToString(curMinK,rstr,fw,dec,FixedFormat);

Append(label,rstr); Append(label," / Max =");

RealToString(curMaxK,rstr,fw,dec,FixedFormat);

Append(label,rstr); AppendCh(label,")");

SetPen(parSpace.wf.x+parSpace.wf.w-StringWidth(label),parSpace.wf.y-CellHeight());

WriteString(label);

SetPen(parSpace.wf.x,parSpace.wf.y+parSpace.wf.h+CellHeight() DIV 2);

WriteString("r - per capita growth rate");

WriteString(" (Min ="); WriteReal(curMinr,fw,dec);

WriteString(" / Max = "); WriteReal(curMaxr,fw,dec);

WriteString("));

SetUCPen(K,r); parSpace.oldK :=K; parSpace.oldr :=r; DrawSym("*");
END RedrawParameterSpace;

PROCEDURE ShowOrOpenParameterSpace;
BEGIN
IF WindowExists(parSpace.w) THEN
PutOnTop(parSpace.w);
ELSE
CreateWindow(parSpace.w,GrowOrShrinkOrDrag,WithoutScrollBars,
WithCloseBox,WithZoomBox,bottomLeft, parSpace.wf,
'Parameter space', AutoRestoreProc);
SetWindowFont(Geneva,9,FontStyle);
AddWindowHandler(parSpace.w,redefined,RedrawParameterSpace,0);
END(*IF*);
RedrawParameterSpace(parSpace.w);
END ShowOrOpenParameterSpace;

PROCEDURE PutGraphOnTop;
VAR x,y,w,h: INTEGER; isOpen: BOOLEAN;

BEGIN
GetWindowPlace(GraphW,x,y,w,h,isOpen);
SetWindowPlace(GraphW,x,y,w,h);

END PutGraphOnTop;

PROCEDURE Performancelndex(): REAL;
VAR sumY, sumY2, sumAbsY: REAL; count: INTEGER;

BEGIN
IF CurrentSimNr()=1 THEN ShowOrOpenParameterSpace END(*IF*);
ShowNewParameters;
SimRun;
GetDeltaStat(gauseExp.xMeasured,sumY, sumY2, sumAbsY,count);
WriteDeltaStatMsg(gauseExp.xMeasured);
ShowPerformance(sumY2);
RETURN sumY2

END Performancelndex;

PROCEDURE Identify;

A 190

ModelWorks 2.2 - Appendix (Sample Models)

VAR oldPerflnd,newPerfind: REAL; str: ARRAY [0..127] OF CHAR,;
neededRuns: INTEGER;
oldK,oldr, newK,newr: Parameter;
oldMinK,oldMaxK,oldMinr,oldMaxr,
oldDfltK, oldDfltr, newDfltK, newDfltr,
newMinK,newMaxK,newMinr,newMaxr: Parameter;
descrK,identK,unitK,descrr,identr,unitr: ARRAY [0..127] OF CHAR,;
runTimeChangekK, runTimeChanger: RTCType;

PROCEDURE SaveOldParVals;
BEGIN (* SaveOldParVals *)
GetP(m,K,oldK); GetP(m,r,oldr);
GetDefltP(m,K,oldDfltK,oldMinK,oldMaxK,runTimeChangekK,
descrK, identK, unitK);
GetDefltP(m,r,oldDfltr,oldMinr,oldMaxr,runTimeChanger,
desctr, identr, unitr);
END SaveOldParVals;

PROCEDURE SaveNewParVals;
BEGIN (* SaveNewParVals *)
GetP(m,K,newK); GetP(m,r,newr);
GetDefltP(m,K,newDfltK,newMinK,newMaxK,runTimeChangek,
descrK, identK, unitK);
GetDefltP(m,r,newDfltr,newMinr,newMaxr,runTimeChanger,
desctr, identr, unitr);
END SaveNewParVals;

PROCEDURE RestoreQldParVals;
BEGIN (* RestoreOldParVals *)
SetDefltP(m,K,oldDfltK,oldMinK,oldMaxK,runTimeChangek,
descrK, identK, unitK);
SetDefltP(m,r,oldDfltr,oldMinr,oldMaxr,runTimeChanger,
descrr, identr, unitr);
SetP(m,K,oldK); SetP(m,r,oldr);
END RestoreOldParVals;

PROCEDURE RestoreNewParVals;
BEGIN (* RestoreNewParVals *)
SetDefltP(m,K,newDfltK,newMinK,newMaxK,runTimeChangeK,
descrK, identK, unitK);
SetDefltP(m,r,newDfltr,newMinr,newMaxr,runTimeChanger,
descrr, identr, unitr);
SetP(m,K,newK); SetP(m,r,newr);
END RestoreNewParVals;

BEGIN (*Identify*)
SaveOldParVals;
UnmarkAllParsForldentification;
MarkParForldentification(K); MarkParForldentification(r);
ShowOrOpenParameterSpace;
oldPerflnd := Performancelndex();

MinimizeAfterDialog(Performancelndex);
PutGraphOnTop;
neededRuns := CurrentSimNr()-1 (*determination of oldPerfind does not count*);

(* Since graph window has been closed, redraw initial simulation run *)
SaveNewParVals; RestoreOldParVals;
SimRun;

(* Calculate new performance index and display results *)
RestoreNewParVals;

newPerfind := Performancelndex();
RealToString(oldPerflnd,str,0,5,ScientificNotation);

Concatenate("Before > AN2 =" str,str);
Message(str);
RealToString(newPerflnd,str,0,5,ScientificNotation);
Concatenate("After > AN2 =" str,str);
Message(str);

A191

ModelWorks 2.2 - Appendix (Sample Models)

IntToString(neededRuns,str,0);
Concatenate("Optimization required ",str,str);
Append(str,” runs");
Message(str);

END Identify;

PROCEDURE ModelObjects;
BEGIN
DeclSV(x, xDot,2.0, 0.0, 100.0,
"Population density Paramaecium caudatum®, "x", "#/0.5ml");

DecIMV(x, 0.0,KMax, "Ciliate density (Paramaecium caudatum)”, "x", "#/0.5ml",
notOnFile, writeInTable, isY);
SetDefltCurveAttrForMV(m,x,ruby,unbroken,0C);
DecIMV(xDot, 0.0,5.0, "Density derivative", "dx/dt", "#/0.5ml/day",
notOnFile, notinTable, notinGraph);
DeclMV(gauseExp.xMeasured, 0.0,100.0, "Meausered ciliate density", "xMeasured",
"#/0.5ml/day",
notOnFile, notinTable, isY);
SetDefltCurveAttrForMV(m,gauseExp.xMeasured,ruby,invisible,"*");
DecIMV(K, KMin, KMax, "Carrying capacity”, "K", "#/0.5ml",
notOnFile, notinTable, notinGraph);
DeclMV(r, rMin, rMax, "Per capita growth rate", "r", "/day",
notOnFile, notinTable, notinGraph);

DeclP(K, 10.0, KMin, KMax, rtc,
"K (carrying capacity of x)", "K", "#/0.5ml");
DeclP(r, 1.0, rMin, rMax, rtc,
"r (growth rate of x)", "r", "/day");
END ModelObjects;

PROCEDURE About;
VAR pictRect: RectArea;
BEGIN
WITH pictRect DO x:=2; y:=-290; w:=498; h:=290 END(*WITH?*);
DisplayPredefinedPicture("Gauseldentif.R",23011,pictRect);
END About;

PROCEDURE ModelDefinitions;
VAR supScr,x,y,w,h,nc: INTEGER; enabled: BOOLEAN;
BEGIN
DeclM(m, Euler, Initialize, Nolnput, Output, Dynamic,
NoTerminate, ModelObjects, "Gause experiment & logistic growth model”,
"Gause", About);
SetSimTime(0.0,16.0);
InstallStartConsistency(ParametersPlausible);
SetDefltWindowArrangement(tiled);

GetWindowPlace(GraphW,parSpace.wf.x,parSpace.wf.y,parSpace.wf.w,parSpace.wf.h,enabled);
SuperScreen(supScr,x,y,w,h,nc, TRUE(*color priority*));
IF supScr<>MainScreen() THEN
SetDefltWindowPlace(GraphW,x+2,y+3,w-6,h-TitleBarHeight()-5);
END(*IF¥);
w:=506; h:=297;
X := (BackgroundWidth()-w) DIV 2; y := (BackgroundHeight()-h) DIV 2;
SetDefltWindowPlace(AboutMW,x,y,506,297);
DeclDispData(m,gauseExp.xMeasured,m,timelsindep,gauseExp.day,gauseExp.ciliateCount,
gauseExp.dummy,gauseExp.dummy,17, FALSE(*withErrBars*),showAtInit);
InstallExperiment(ldentify);
END ModelDefinitions;

BEGIN
GausesMeasurements;
RunSimEnvironment(ModelDefinitions);
END Gauseldentif.

A 192

ModelWorks 2.2 - Appendix (Sample Models)

The modulddentifyParsallows to determine interactively which parameters are taéstified,

to select a minimization algorithm, and to launch the minimization (procedure
MinimizeAfterDialoQ To this purposédentifyParsuses the ModelWorks modul8snBase
and SimObjects Then procedureDeclIDispDatdrom SimGraphUtilsis used to enter and
display the measurements obtained by Gause. The actual measuremestsgaed initially

by procedurgsausesMeasurementssee procedur@erformancelndexvhich computes the
performance index by callingimRunandthen returns the accumulated sum of squares. Note
that procedurénitialize, which is called at thdegin of every simulation run, sets first the sum
of squares to 0 by a call to routit@tDeltaStatfrom SimDeltaCalc The routinesAccuDelta
called in procedur®utputduring every integration step, ardetDeltaStafrom SimDeltaCalc
called afteiSimRun are used to actually compute the sum of squares of the differeetvesen

the discrete-time observations and the simulated continousfiopelation densities, only
whenever measurements are available.

r R R R _ .
& Shell File Edit Settings Windows Solve sun 22:41 (7] [
Model paramete Table
- Ident Walug £ Time £
- | 15.00000000 59654358339
| Bause experiment &7 = oennggog 5968452454
ik I9.653 | 1550000000 59 68453135
Par | ¥ 0.574 % 1575000000 S9Em4TISZY
MESSAGE : "Delta statistics for xMeasured”
MESSAGE: " I 4= -6 2065E+00 E a2 = 9.7175E+02 E|al= 9.8797E+01 *
MESSAGE: "Before £ A°2 = 2. 74604E+04"
MESSAGE: "After T 4°2 = 9.71752E+02"
|_ MESS AGE : "Optimization required S5 runs" |_
Graph E[I=——= Parameter space F1EE
e r - per capita growth rate (Min= 0,000 F Max = 3.000)
0.8 o *
* +*
0.5
0.2
0.0
T T
00 25 S0 7.5 10,0 12,5 15.0
time K - carrying capacity (Min = 0,000 f Max = 100.0)
Curwes Hinimum M@z i mum Unit i
—— 0,000 100, 000 ®0.5m Performance index [4*2) = 71 752
+ xMeasure 0.000 100, 000 #,fn.|_ @

Fig. A6: Result of a parameter identification: The experinintGAUSE (1934)
rearing the ciliaté?aramecium caudatifrobserved denisities) wdited with the
logistic equation (— simulated densitiesgefore the optimization r = 1.0, K =
10.0 (lower curve in the windowGrapl), after the optimization r = 0.974, K =
59.7 (upper curve in the windowsraph. The optimized performance index was
the sum of squares of the differences between simulated and obpemeadtion
densities at the points where measurements were availalilee optimization
algorithm wasAmoebawhich required 56 simulation runs to achieve this result.

Gauseldentifllows also to observe the progress of the identification in the parameterrspace
vs. K (Fig. A6 lower right window). The routineShowOrOpenParameterSpmcealledat the
begin of the experimententify, which creates an additional windoWwarametespace using
procedureCreateWindowfrom DMWindows ShowOrOpenParameterSpaeseby calls
procedure RedrawParameterSpace RedrawParameterSpaagses DMWindowICs user
coordinate plotting mechanism to draw the graph's panel arghow the initial parameter
combination. RedrawParameterSparsealso called, eachime the simulationist resizes the
window, so that the graph r vs. K adjusts automatically to the windoatsrent size. Then

A 193

ModelWorks 2.2 - Appendix (Sample Models)

after each simulation run the new parameter combinasodrawn by means of procedure
ShowNewParametersalled again from withinPerformancelndexand displayed inthe
parameter 10-window by calling for each parameter the ro@et®from SimBase

Finally the experimenidentify documentshe results by executing two additional simulation
runs, first with the original parameters (lower curire Fig. A6 lower left window Graph) and
then with the newlyidentified parameter values (upper curve in Fig. A6 lower left window
Graph). Both runs together with the measurements (shown as scattergraph with sytiools
Fig. A6 lower left window Grapl) are displayed and procedukessagdrom SimBaseis
used to displayhe over-all improvement of the performance index (Fig. A6, upper right
window Tablg. Note that some optimization algorithms are often not robust; hence, the
procedurd’arametersPlausihbikeinstalledoy means of proceduilestallStartConsistencfrom
SimBaseto test the plausibility of the current parameter valbe®re actually starting any
simulation. In case r or K should be out of the ran@edin..rMax respectively
[KMin..KMax] the simulationist is warned and the identification can even be aborted.

Fig. A6 shows the results of the parameter identification startittp the way-off parameter
estimates r = 1.0 and K = 10.0. With these parameters the logistic equiatthrces the lower
curve as shown in the windowraph(Fig. A6, lower left corner). After the optimization with
the parameter identification algorithAmoebathe parameters were r = 0.974 and K = 59.7
which results in the upper curve the window Graph The performance index was improved
from 2.746110% to 971.752 hereby requiring 56 simulation runs, each run shoven@sEnt on
the curve in the windowParamter spag€ig. A6 lower right corner).

A 194

ModelWorks 2.2 - Appendix (Sample Models)

A.4.6 Stochastic Simulations

Stochastic simulations requinsually to run elaborate simulations, i.e.s&ructured simulation
run or experiment followed by a statistical analysis of the results. The random natutkeof
individual runs is produced by meanssofcalledpseudo ratlom number genera®i(see e.g.
library moduleRandGenRandGenpPand RandNormal

A.4.6.1 Third Order Finite Markov ChainMarkov

The following model definitiorprogramMarkov demonstrates the typical use of the pseudo
rardom number generattf for samplinguniformly distributed variates in the auxiliary library
moduleRandGerand serves as an examfde stochastic simuteoons. The program simulates

a discrete time finite, 3rd-order Markov chain process. By default it modsdgalation where
each individual can be in ort# the following states: healthy, ill, and dead; but this model can
be adapted interactively to aoyher 3rd-order Markov chain process. Moreover, the program
has been written such, that it can be easitiapted to simulate Markov chain processes of a
different order.

The program accesses frequently the "Dialog Machine"; for instance it exteatintderd user
interface by installing the merdarkovwith the commandDefine... This menu command
allows the simulationist to alter the meaning of theté8es (procedurAssignStatesNampeand
to set the coditients of theMarkov matrix (procedur®efineMarkoy in a more convenient
way than this is possible with the 10-windoModel Parameters

The model does not compute the temporal evolutioprobability vectors, but rather simulates
the fate of a vector of individuals (x: ARRAY ([firstindiv..lastindiv] OF Stat@ The initial

state of these individuals isampled according to the initial state probabilitiegp within
procedurdnitialize. Depending on the parametandomizeéherandom number generator is
either randomized@ndomize= 1) to get for each run a different resulteset (andomize= 0)

to allow to repeat the simulation, hereby using exattity same pseudo random number series.
Procedurénitialize also initializesseveral auxiliary and statistical variablpacg fs, ¢, n, F to
allow for the computation of frequenciegpaccholds the accumulated transition probabilites
from the Markov matrixP; thus allowing for a more efficient calculation of transitiahging

the stochastic simulation. The vecfsrcontains the accumulated state frequencies as the main
monitorable variables, computefiom the current states of the individuals (s.a. procedure
Dynami¢. The matrixF contains the frequencies of all transitions occured since the begin of
the simulation run, hereby using the countand n; the matrixc, contains the counts of all
transitions, and vecton, the counts othe transitions starting from a particular state regardless
of the destination state.

The coefficients of any probability vector suchi@igp or of a row of the Markov matri must
add up to the surh. The Markov matri? can not only be edited by means of the additional
menu comman®efine.., but also via the 10-windowModelParameters Moreover, the latter

is also true for the initial state probabilitisstp. Hence, the simulationist may eassypecify
illegal parameters violating any of theforementioned conditions, leading to meanass
simulation results. ModelWorks allows to suppress any such illegal simulatigmeviging a
mechanism for the installation ottansistency testing function procedure. The listed program
installs the function proceduréestConsistencpy calling procedurelnstallStartConsistency
from SimBase TestConsistencis called at the very begin @ach simulation run or after a
pause and returns only TRUE if none of the aforementioned conditiongo&ted. |If it
should return FALSE the simulation will be aborted and the simulationistbailinformed
about this fact.

Each elemendf the vector of individualsx is of the finite enumeration tyggtate not of type

StateVar Since the mapping during every accesshef real constants 1.0, 2.0, and 3.0 to the
constantone two, and threeof theenumeration typeéStatevia a type conversion would be

A 195

ModelWorks 2.2 - Appendix (Sample Models)

quite inefficient, this model definition program does not decéarg state variables in the simu
lation environment. Instead procedudgnamicmaintains thetate vectox by first computing

the new statexDashand then assigningDashto x, similar to the way ModelWorkspdates the
state of discrete time models.

This program alsdemonstrates the use of state events. Since the default process contains an
absorbing state, further computations beydhe state "all dead", i.e. probability vector
[healthy,ill,dead] becomeg0,0,1], are superfluous. The terminate condition testing mecha
nism ofModelWorks (see function procedukéiDeadinstalled vialnstallTerminateCondition

will stop a running simulation anytime this state event is encountered.

As it holds in general for stochastic models, structured simulationpaatieularly important,

for instance to estimate means or distributions. fiteeedurerheExperimengallows to assess
statistics such as the expected medi g of the frequenciegj i, of all transitions for the
time interval K, Ks]. It first asksthe simulationist for the experiment's sample sizaxRuns

i.e. how many runs the experiment shall encompass, by calling the function procedure
NrRunsGiven If the simulationist has actualgnteredmaxRunsthe experiment continues by
suppressing all stash filing, since the transient behavior is of no inteneshe final state
distribution. Then the experiment forckge parameter randomize to 1.0, thus ensuring that
true samples can be collected, and asks by a call to procEdeméeNewFilefrom DMFilesthe
simulationist to specify the fileecordHdefaulthameMarkov.DAT) onto which the simulation
results shall be recorded.

If the file recordF has been created successfully, a header linerigen and the actual
experiment starts. Note that the simulationist abort the experiment any time by a call to
menu commandolve/Stop (Kill) run which will have the effect that the function procedure
ExperimentAborteffom SimMastereturns TRUE. At the end of every run the elementhef
sampled matrixX; are written onto the fileecordk The content of this file might loo&imilar to
the following excerpt:

R F[1,1] F[1,2] F[1,3] F2.1 ... F[3.,2] F[3.3] n

1 0.7510 0.1980 0.0510 05718 ... 0.0000 1.0000 77
2 0.7459 0.1987 0.0555 0.5965 ... 0.0000 1.0000 90
3 0.7435 0.2082 0.0483 0.6110 ... 0.0000 1.0000 101
4 0.7575 0.1914 0.0511 0.5802 ... 0.0000 1.0000 91
5 0.7549 0.1859 0.0592 0.5928 ... 0.0000 1.0000 66

Legend:

Run - Number of simulation run within experiment

F[i,j] - Relative frequency of transition from state i to state j

n - Number of transitions used to estimate F[i,j]
Experiment started on 01/Feb/1993 at 09:52:37
Experiment ended on 01/Feb/1993 at 09:53:09

The meanyj ki = 1/my fijj k) (h<=maxRun} is a reestimate of the coefficients of the Markov
matrix pfj k] - To actuall%/ compute [jk], variances or other statistics use a statistical data
analysis application such 8satViewt to analyze the fileecordF StatViewcouldbe used suc
cessfully to read the simulation results directly by choosingrieu commandmport..and
sdecting file Markov.DATplus to compute and analyze the estimates sucfygs p

MODULE Markov;

ModelWorks model: Markov

1statView 512+™ is an interactive statistics & graplpeskage from Abacus Concepts, Inc., published by
Brainpower, Inc., 24009 Ventura Blvd., Suite 250, Calabasas, CA 91302

A 196

Copyright 1989 by Andreas Fischlin and Swiss
Federal Institute of Technology Zurich ETHZ
Department of Environmental Sciences
Systems Ecology Group

ETH-Zentrum

CH-8092 Zurich

Switzerland

Version written for:
ModelWorks V2.0 (Modelling & Simulation)

Purpose Simulates a stochastic process defined by a given

Markov matrix in order to estimate the matrix
from the statistics collected during the simulations.

Implementation and Revisions:

Author Date

Description

af 18/10/89 First implementation (DM 2.0,
MacMETH 2.6+, ModelWorks 1.3)

af 21/10/89 Extended to interactive renaming of states

af 03/05/90 Refining of experiment for direct import
by StatView 512+ statistics program

af 25/11/90 Adaption for DM 2.02, i.e. uses DMClock.Now
and DMClock.Today instead of
DateAndTime.GetDateAndTime

ft 29/11/90 Adaption for MW 2.031, i.e. uses Types
Parameter and AuxVar

dg 06/03/93 Import lists cleaned up

af 23/03/92 Adaptation to new MW 2.2

dg 25/04/96 Cleaned up for PC compatibility

FROM DMSystem IMPORT
SuperScreen, MainScreen, MenuBarHeight, TitleBarHeight;
FROM DMStrings IMPORT
Append, AppendCh, AssignString;
FROM DMConversions IMPORT
IntToString;
FROM DMWindIO IMPORT
BackgroundHeight, BackgroundWidth;
FROM DMMenus IMPORT
Menu, Command, AccessStatus, Marking, InstallMenu,
InstallCommand, InstallAliasChar;
FROM DMFiles IMPORT
TextFile, CreateNewFile, Close, WriteEOL, PutReal, Response,
WriteChar, WriteChars, Putinteger;
FROM DMEntryForms IMPORT
FormFrame, WriteLabel, DefltUse, CharField, StringField,
CardField, IntField, RealField, PushButton, RadioButtonID,
DefineRadioButtonSet, RadioButton, CheckBox, UseEntryForm;
FROM DMClock IMPORT
Today, Now;

FROM RandGen IMPORT
U, ResetSeeds, Randomize;
FROM WriteDatTim IMPORT
DateAndTimeRec, DateFormat, TimeFormat, WriteDate, WriteTime;

FROM SimBase IMPORT
Model, IntegrationMethod, DecIM, RTCType, DeclP, StashFiling,
Tabulation, Graphing, DeclMV, SetMonlnterval,
SetintegrationStep, SetMV, GetMV, SetP, SetDefltP, SetDefltMV,
GetDefltMV, LineStyle, GetCurveAttrForMV, SetCurveAttrForMV,

ModelWorks 2.2 - Appendix (Sample Models)

A 197

ModelWorks 2.2 - Appendix (Sample Models)

ClearGraph, GetDefltCurveAttrForMV, SetDefltCurveAttrForMV,
Stain, MWWindowArrangement, SetDefltWindowArrangement,
MWWindow, GetDefltWindowPlace, SetDefltWindowPlace, Nolnput,
NoOutput, NoTerminate, NoAbout, Parameter, AuxVar;

FROM SimMaster IMPORT
RunSimEnvironment, SimRun, InstallDefSimEnv,
InstallStartConsistency, InstallTerminateCondition,
ExperimentAborted, InstallExperiment, CurrentStep;

CONST

firstindiv = 1; lastindiv = 100;
TYPE

Individuals = [firstindiv..lastIndiv];

TYPE
State = (one, two, three);
CONST
firstState = MIN(State); lastState = MAX(State);

VAR
m: Model;
x,xDash: ARRAY f[firstindiv..lastIndiv] OF State;
(* pseudo state vars, i.e. not declared to ModelWorks *)

P: ARRAY [firstState..lastState],[firstState..lastState] OF Parameter;
(*Markov matrix*)

Pacc: ARRAY [firstState..lastState],[firstState..lastState] OF REAL,;
(*Matrix containing accumulated transition probabilities*)

initp: ARRAY ([firstState..lastState] OF Parameter;
(*Probabilities used to compute initial states*)

fs: ARRAY [firstState..lastState] OF AuxVar;
(*frequencies of states*)

F: ARRAY [firstState..lastState],[firstState..lastState] OF AuxVar;
(*frequencies of transitions*)

C: ARRAY [firstState..lastState],[firstState..lastState] OF INTEGER,;
(*counting of transitions®)

n: ARRAY ([firstState..lastState] OF INTEGER;
(*number of transitions starting from a state*)

randomize: Parameter; (* controls seed randomization *)

PROCEDURE PRED(s: State): State;
BEGIN

DEC(s); RETURN s;
END PRED;

PROCEDURE SUCC(s: State): State;
BEGIN

INC(s); RETURN s;
END SUCC;

PROCEDURE Initialize;
VAR I: Individuals; is,js: State; u : REAL;
BEGIN (*Initialize*)
IF randomize>0.0 THEN Randomize ELSE ResetSeeds END;
FOR is:= firstState TO lastState DO fsJis] := 0.0 END(*FOR*);
FOR [;=firstindiv TO lastindiv DO
u = U();
IF u<=initp[one] THEN
X[l] := one
ELSIF u<=(initp[one]+initp[two]) THEN
X[I] := two
ELSE
X[l] := three

A 198

END(*IF*);
fs[x[M] := fs[x[]] + 1.0;
END(*FOR*);
FOR is:= firstState TO lastState DO
FOR js:= firstState TO lastState DO
Clis,js] :=0;
Flis,js] := 0.0;
END(*FOR*);
nfis] :=0;
END(*FOR*);
FOR is:= firstState TO lastState DO
Paccfis, firstState] := PJis,firstState];
FOR js:= SUCC(firstState) TO lastState DO
Pacc|is,js] := Pacc[is,PRED(js)] + P[is,js];
END(*FOR*);
END(*FOR*);
fs[firstState] := fs[firstState]/FLOAT (lastIndiv-firstindiv+1);
FOR is:= SUCC(firstState) TO lastState DO
fs[is] := fsS[PRED(is)] + fs[is]/[FLOAT (lastIndiv-firstindiv+1);
END(*FOR*);
END Initialize;

PROCEDURE InitSimSess;
VAR is,js: State; curMin, curMax: REAL;
curStain: Stain; curStyle: LineStyle; curSym: CHAR,;
curFiling: StashFiling; curTabul: Tabulation; curGraphing: Graphing;
BEGIN
FOR is:= firstState TO lastState DO
FOR js:= firstState TO lastState DO
IF is<>three THEN
GetCurveAttrForMV(m, Flis,js], curStain, curStyle, curSym);
SetCurveAttrForMV(m, F[is,js], gold, spotted, 0C);
ELSE
GetMV(m, F[is,js], curMin, curMax,
curFiling, curTabul, curGraphing);
SetMV(m, F[is,js], curMin, curMax,
curFiling, curTabul, notinGraph);
END(*IF*);
END(*FOR?);
END(*FOR%);
ClearGraph;
END InitSimSess;

PROCEDURE Dynamic;
VAR I: Individuals; is,js: State;
PROCEDURE Transition(oldS: State; VAR newsS: State);
VAR u: REAL;
BEGIN (*Transition*)
u = U();
IF u<=Pacc[oldS,one] THEN
newsS :=one
ELSIF u<=Pacc[oldS,two] THEN
news := two
ELSE
newsS :=three
END(*IF*);
END Transition;
BEGIN (*Dynamic*)
(* init state frequencies *)
FOR is:= firstState TO lastState DO fs[is] := 0.0 END;
(* compute new state vars & compute statistics *)
FOR [:= firstindiv TO lastindiv DO
Transition(x[l],xDash[l]);
INC(C[x[I],xDash[l]]); INC(n[x[I]]); fs[x[]] := fs[x[I]] + 1.0;
END(*FOR*);

ModelWorks 2.2 - Appendix (Sample Models)

A 199

ModelWorks 2.2 - Appendix (Sample Models)

(* update pseudo state vars *)
FOR [:=firstindiv TO lastindiv DO
X[l] := xDash[l];
END(*FOR?*);
FOR is:= firstState TO lastState DO
FOR js:= firstState TO lastState DO
IF n[is]<>0 THEN
F[is,js] := FLOAT(C]is,js])/FLOAT(n[is]);
ELSE

Flis,js] := 0.0;
END(*IF*);
END(*FOR?);
END(*FOR*);
fs[firstState] := fs[firstState]/FLOAT (lastIndiv-firstindiv+1);
FOR is:= SUCC(firstState) TO lastState DO
fsis] := fS[PRED(is)] + fs[is]/FLOAT (lastIndiv-firstindiv+1);
END(*FOR*);
END Dynamic;

PROCEDURE CircaEqual(x,y,eps: REAL): BOOLEAN;
BEGIN (*CircaEqual*)

RETURN ((x-eps)<=y) AND (y<=(x+eps))
END CircaEqual;

PROCEDURE TestConsistency(): BOOLEAN;
VAR is,js: State; sum: REAL; sofarOk: BOOLEAN;
BEGIN (*TestConsistency*)
sum :=0.0;
FOR is:= firstState TO lastState DO
sum := sum + initp[is];
END(*FOR¥);
sofarOk := CircaEqual(sum,1.0,1.0E-3);
FOR is:= firstState TO lastState DO
sum :=0.0;
FOR js:= firstState TO lastState DO
sum := sum + P[is,js];
END(*FOR?);
sofarOk := sofarOk AND CircaEqual(sum,1.0,1.0E-3);
END(*FOR?);
RETURN sofarOk
END TestConsistency;

PROCEDURE AllDead(): BOOLEAN;
BEGIN
RETURN CircaEqual(fs[one],0.0,1.0E-3)
AND CircaEqual(fs[two]-fs[one],0.0,1.0E-3);
END AllDead:;

VAR
myMenu: Menu; defMarkovCmd: Command;
nameStateOne, nameStateTwo, nameStateThree: ARRAY [0..40] OF CHAR;

PROCEDURE AssignStatesNames(n1,n2,n3: ARRAY OF CHAR);
VAR I: Individuals; is,js: State;
istr, descr,ident: ARRAY [0..40] OF CHAR,;

PROCEDURE StateToString (s: State; VAR str: ARRAY OF CHAR);
BEGIN (*StateToString*)

CASE s OF

one : AssignString(nameStateOne,str);

| two : AssignString(nameStateTwo,str);

| three : AssignString(nameStateThree,str);

END(*CASE?);
END StateToString;

A 200

BEGIN (*. AssignStatesNames .*)
AssignString(n1,nameStateOne);
AssignString(n2,nameStateTwo);
AssignString(n3,nameStateThree);

FOR is:= firstState TO lastState DO
AssignString(“Initial prob. of state ",descr);
StateToString(is,istr); Append(descr,istr);
ident := "initp[";

IntToString(ORD(is)+1,istr,0); Append(ident,istr);

AppendCh(ident,"");

SetDefltP(m,initplis],initp]is],0.0,1.0,
rtc,descr,ident,"");

END(*FOR*);

FOR is:= firstState TO lastState DO
FOR js:= firstState TO lastState DO

AssignString("Prob. Transition ",descr);

StateToString(is,istr); Append(descr,istr);

Append(descr,"—>");

StateToString(js,istr); Append(descr,istr);

ident := "P[";

IntToString(ORD(is)+1,istr,0); Append(ident,istr);

AppendCh(ident,",");

IntToString(ORD(js)+1,istr,0); Append(ident,istr);

AppendCh(ident,"]");

SetDefltP(m,P[is,js],P[is,js].0.0,1.0, rtc, descr,ident,"™);
END(*FOR*);

END(*FOR*);

(* declaration of monitorable variables *)

FOR is:= firstState TO lastState DO
AssignString(“State freq. ",descr);
StateToString(is,istr); Append(descr,istr);
ident := "fs[";

IntToString(ORD(is)+1,istr,0); Append(ident,istr);

AppendCh(ident,"");

SetDefltMV(m,fs[is],0.0,1.0, descr,ident,™",
notOnFile,notinTable,isY);
END(*FOR*);
FOR is:= firstState TO lastState DO
FOR js:= firstState TO lastState DO
AssignString("Freq. transition ",descr);
StateToString(is,istr); Append(descr,istr);
Append(descr,"—>");
StateToString(js,istr); Append(descr,istr);
ident :="F[";
IntToString(ORD(is)+1,istr,0); Append(ident,istr);
AppendCh(ident,",");
IntToString(ORD(js)+1,istr,0); Append(ident,istr);
AppendCh(ident,"]");
SetDefltMV(m,Fis,js],0.0,1.0, descr,ident,™",

writeOnFile,writeInTable,isY);

END(*FOR%);

END(*FOR*);

END AssignStatesNames;

PROCEDURE DefineMarkov;
CONST lem = 3; tabl = 25; tab2 = 35; tab3 = 45;
VAR ef: FormFrame; ok: BOOLEAN; cl: INTEGER;
BEGIN
cl:=2;
WriteLabel(cl,lem,"Define Markov Process:"); INC(cl);
WriteLabel(cl,lem,"State");
WriteLabel(cl,tabl,"Transition probabilities"); INC(cl);
StringField(cl,lem,15,nameStateOne,useAsDeflt);
RealField(cl,tab1,7,P[one,one],useAsDeflt,0.0,1.0);
RealField(cl,tab2,7,P[one,two],useAsDeflt,0.0,1.0);
RealField(cl,tab3,7,P[one,three],useAsDeflt,0.0,1.0);
INC(cl);
StringField(cl,lem,15,nameStateTwo,useAsDeflt);

ModelWorks 2.2 - Appendix (Sample Models)

A 201

ModelWorks 2.2 - Appendix (Sample Models)

RealField(cl,tab1,7,P[two,0one],useAsDeflt,0.0,1.0);
RealField(cl,tab2,7,P[two,two],useAsDeflt,0.0,1.0);
RealField(cl,tab3,7,P[two,three],useAsDeflt,0.0,1.0);
INC(cl);
StringField(cl,lem,15,nameStateThree,useAsDeflt);
RealField(cl,tabl,7,P[three,one],useAsDeflt,0.0,1.0);
RealField(cl,tab2,7,P[three,two],useAsDeflt,0.0,1.0);
RealField(cl,tab3,7,P[three,three],useAsDeflt,0.0,1.0);
INC(cl);
ef.x:= 0; ef.y:= -1 (*display entry form in middle of screen*);
ef.lines:= cl+1; ef.columns:= 55;
UseEntryForm(ef,0k);
IF ok THEN AssignStatesNames(nameStateOne,nameState Two,nameStateThree) END;
END DefineMarkov;

PROCEDURE ModelObjects;
VAR I: Individuals; is,js: State;
istr, descr,ident: ARRAY [0..40] OF CHAR,;
BEGIN (*Objects®)
(* declaration of parameters *)
FOR is:= firstState TO lastState DO
DeclP(initp[is],1.0/FLOAT(ORD(lastState)+1),0.0,1.0,
rtc,"™,"™,"™);

END(*FOR?);

DeclP(randomize,0.0,0.0,1.0,
rtc,"Randomize option (= 0 don't, = 1 do randomize)",
“randomize","[0..1]");

P[one,two] := 0.2;

P[one,three] := 0.05;

P[one,one] := 1.0 - P[one,two] - P[one,three];

P[two,two] := 0.3;

P[two,three] := 0.1;

P[two,one] := 1.0 - P[two,two] - P[two,three];

P[three,two] := 0.0;

P[three,one] := 0.0;

P[three,three] := 1.0;

FOR is:= firstState TO lastState DO

FOR js:= firstState TO lastState DO
DeclP(P[is,js],P[is,js],0.0,1.0, rtc, "™,"™,"™");
END(*FOR®);
END(*FOR®*);

(* compute initial states *)
Initialize;

(* declaration of monitorable variables *)
FOR is:= firstState TO lastState DO
DecIMV(fs[is],0.0,1.0, "™,"™"",
notOnFile,notinTable,isY);
END(*FOR®*);
SetDefltCurveAttrForMV(m, fs[one], emerald, unbroken, "s");
SetDefltCurveAttrForMV(m, fs[two], ruby, unbroken, "0");
SetDefltCurveAttrForMV(m, fs[three], coal, unbroken, "+");
FOR is:= firstState TO lastState DO
FOR js:= firstState TO lastState DO
DecIMV(F[is,js],0.0,1.0, "™,™ "™,
writeOnFile,writeInTable,isY);
SetDefltCurveAttrForMV(m, F[is,js], autoDefCol, autoDefStyle, OC);
END(*FOR®);
END(*FOR?);
AssignStatesNames("healthy","ill","dead");
END ModelObjects;

VAR
recordF: TextFile;

PROCEDURE WriteOnFile(ch: CHAR); (* Needed by RecordDateTime *)

A 202

ModelWorks 2.2 - Appendix (Sample Models)

BEGIN
WriteChar(recordF,ch);
END WriteOnFile;

PROCEDURE TheExperiment;
CONST TAB = 11C;
VAR is,js: State;
dt: DateAndTimeRec; curMin, curMax: REAL;
curFiling: StashFiling; curTabul: Tabulation; curGraphing: Graphing;
dummysStr, ident: ARRAY [0..63] OF CHAR;i, maxRuns: CARDINAL;

PROCEDURE NrRunsGiven(): BOOLEAN,;
CONST lem = 5; tab = 35; VAR ef: FormFrame; ok: BOOLEAN; cl: INTEGER;
BEGIN (*NrRunsGiven*)
cl:=2;
WriteLabel(cl,lem,"How many runs:");
CardField(cl,tab,7,maxRuns,useAsDeflt,1, MAX(CARDINAL)); INC(cl);
ef.x:= 0; ef.y:=-1 (* display entry form in middle of screen *);
ef.lines:= cl+1; ef.columns:= 55;
UseEntryForm(ef,0k);
RETURN ok
END NrRunsGiven;

PROCEDURE GetDateAndTime(VAR dt: DateAndTimeRec);
BEGIN

Today (dt.year,dt.month,dt.day, dt.dayOfWeek);

Now (dt.hour,dt.minute, dt.second);
END GetDateAndTime;

PROCEDURE RecordDateTime(s: ARRAY OF CHAR; dt: DateAndTimeRec);
BEGIN
WriteChars(recordF,s);
WriteDate(dt,WriteOnFile,letMonth); WriteChars(recordF," at ");
WriteTime(dt,WriteOnFile,brief24hSecs); WriteEOL(recordF);
END RecordDateTime;

BEGIN (*TheExperiment*)
maxRuns := 100;
IF NrRunsGiven() THEN
FOR is:= firstState TO lastState DO
FOR js:= firstState TO lastState DO
GetMV(m, F[is,js], curMin, curMax,
curFiling, curTabul, curGraphing);
SetMV(m, Fiis,js], curMin, curMax,
notOnFile, curTabul, curGraphing);
END(*FOR¥);
GetMV/(m, fs[is], curMin, curMax,
curFiling, curTabul, curGraphing);
SetMV/(m, fs[is], curMin, curMax,
notOnFile, curTabul, curGraphing);
SetP(m, initp][is], 0.0);
END(*FOR?);
SetP(m,initp[one], 1.0);
SetP(m,randomize,1.0);
CreateNewFile(recordF,"Record results on file","Markov.DAT");
IF recordF.res=done THEN
GetDateAndTime(dt);
WriteChars(recordF,"Run"); WriteChar (recordF, TAB);
FOR is:= firstState TO lastState DO
FOR js:= firstState TO lastState DO
GetDefltMV(m,F[is,js],curMin, curMax,
dummysStr,ident,dummyStr,
curFiling, curTabul, curGraphing);
WriteChars(recordF,ident); WriteChar (recordF, TAB);
END(*FOR®);
END(*FOR®);
WriteChars(recordF,"n");
WriteEOL (recordF);

A 203

ModelWorks 2.2 - Appendix (Sample Models)

i=1;
WHILE (i <= maxRuns) AND NOT ExperimentAborted() DO

SimRun;

Putinteger(recordF,i,0); WriteChar (recordF, TAB);

FOR is:= firstState TO lastState DO

FOR js:= firstState TO lastState DO
PutReal(recordF,F[is,js],8,4); WriteChar (recordF,TAB);
END(*FOR?);

END(*FOR¥);

Putinteger(recordF,CurrentStep(),0);

WriteEOL (recordF);

INC(i);
END(*WHILE®);
WriteChars(recordF, "Legend:"); WriteEOL(recordF);
WriteChars(recordF, " Run - Number of simulation run within experiment");
WriteEOL(recordF);

WiteGars(recordr, " Hi,j] - Rdative frequency of transition fromstate i to state j");
WriteEOL (recordF);
WriteChars(recordF, " n - Number of transitions used to estimate F[i,j|");
WriteEOL(recordF);
RecordDateTime("Experiment started on ",dt);
GetDateAndTime(dt);
RecordDateTime("Experiment ended on ",dt);
Close(recordF);
END(*IF*);
END(*IF¥);
END TheExperiment;

PROCEDURE Definitions;

CONST marg = 2;

VAR supScr,x,y,w,h,nc: INTEGER; enabl: BOOLEAN;
BEGIN

DecIM(m, discreteTime, Initialize, Nolnput, NoOutput, Dynamic, NoTerminate,
ModelObjects, 'Markov chain simulated’, 'm’, NoAbout);

SetlntegrationStep(1.0);

SetMoninterval(1.0);

InstallDefSimEnv(InitSimSess);

InstallStartConsistency(TestConsistency);

InstallTerminateCondition(AllDead);

InstallExperiment(TheExperiment);

SetDefltWindowArrangement(tiled);

SuperScreen(supScr,x,y,w,h,nc, TRUE(*color priority*));

IF supScr<>MainScreen() THEN
SetDefltWindowPlace(GraphW,x+2,y+3,w-6,h-TitleBarHeight()-5);
GetDefltWindowPlace(TableW,x,y,w,h,enabl);
SetDefltWindowPlace(TableW,x,y,BackgroundWidth(),h);

ELSE
SetDefltWindowPlace(GraphW,marg,

TitleBarHeight()+marg+(BackgroundHeight()-2*marg) DIV 3,

BackgroundWidth()-2*marg,

(BackgroundHeight()-MenuBarHeight()-2*marg)*2 DIV 3);
SetDefltWindowPlace(TableW,marg,

marg,

BackgroundWidth()-2*marg,

(BackgroundHeight()-2*marg) DIV 3);

END(*IF*¥);

InstallMenu(myMenu,'Markov',enabled);

InstallCommand(myMenu,defMarkovCmd,"Define...",

DefineMarkov,enabled, unchecked);

InstallAliasChar(myMenu,defMarkovCmd, "W");

END Definitions;

BEGIN
RunSimEnvironment(Definitions);
END Markov.

A 204

ModelWorks 2.2 - Appendix (Sample Models)

A.4.6.2 Statistical Analysis of Simulation Resultsstochl ogGrow
Repeating many individual simulation runs allows to estimate by mefatie so-calledMonte

Carlo simulationtechnique the properties such as ieans or the variances of the resulting
randomvariables which the model generates. Sample m@&techLogGrowis based on a
continuous time logistiogrowth model (s.a. sample moddlogistiQ where the model
parameters vary stochastically during every integratio step. In ordamdlyze the stochastic
properties of the mean behavior of such a model, several asmsexecuted and iteratively
analyzed by means of tlaixiliary moduleStochStat This allows to estimate a confidence
interval of mean behavior as estimated by the Monte-Carlo technique.

MODULE StochLogGrow;

(*
Module StochLogGrow

Purpose

Demonstration of the simulation of a stochastic growth process
and the statistical analysis of the simulation results.

The model simulates a logistic growth of the biomass of a
grass species. The growth parameters r and K are normally
distributed random variables, which are sampled anew during
each time step of the numerical integration. This procedure

is to simulate the variability of the environment. A Monte

Carlo experiment (procedure MonteCarloExperiment) allows to
sample multiple realisations of this stochastic process in

order to estimate the expected value of the state variable

plus an interval of confidence by means of module StochStat.

Revision history:

Author Date Description

tn 24/04/90 First implementation demonstrating use of StochStat
AF 14/12/93 Preparation as a sample model
dg 25/04/96 Cleaned up for PC compatibility

%)

FROM DMWindIO IMPORT SetMode, PaintMode;
FROM DMMessages IMPORT Inform;

FROM RandGen IMPORT U, Randomize;

FROM RandNormal IMPORT Np, InstallU;

FROM StochStat IMPORT
StatArray, Prob2Tail, DeclStatArray, RemoveStatArray,
PutValue, DeclDispMV, DisplayArray;

FROM SimBase IMPORT
Model, IntegrationMethod, DeclM, DeclISV, DeclP, RTCType,
StashFiling, Tabulation, Graphing, DeclMV, SetSimTime,
Nolnitialize, Nolnput, NoOutput, NoTerminate, NoAbout,
DoNothing, StateVar, Derivative, AuxVar, Parameter,
SetDefltCurveAttrForMV, Stain, LineStyle, GetCurveAttrForMV,
SetCurveAttrForMV, GetGlobSimPars, ClearGraph,
InstallClientMonitoring;

FROM SimMaster IMPORT
SimRun, RunSimEnvironment, CurrentTime, InstallExperiment,
ExperimentRunning, ExperimentAborted,;

FROM SimGraphUtils IMPORT timelsindep;

A 205

ModelWorks 2.2 - Appendix (Sample Models)

CONST
grass0 = 1.0;
grassMax = 10000.0;
VAR
m: Model;
grass: StateVar;
grassDot: Derivative;
expectedGrass,
r, K AuxVar;
mur, mukK,

sigmar, sigmaK: Parameter;

maxRuns, nRun,
clrAll,rand: REAL;
statArray: StatArray;
jt: INTEGER,;

PROCEDURE Dynamic;
PROCEDURE AvoidOverflow(VAR grass: StateVar);
BEGIN
IF grass<grassO THEN (*force grass=grass0*) grass:= grass0 END;
END AvoidOverflow;
BEGIN
AvoidOverflow(grass);
r:= Np(mur, sigmar);
K := Np(muK, sigmaK);
grassDot:= r*((K-grass)/K)*grass;
END Dynamic;

PROCEDURE DoMonit;
BEGIN
IF ExperimentRunning() THEN
INC(jt); PutValue(statArray, jt, CurrentTime(), grass);
END(*IF*);
END DoMonit;

PROCEDURE ModelObjects;
BEGIN
DeclSV(grass, grassDot,grass0, 0.0, grassMax,
"Grass", "G", "g dry weight/m”2");

DecIMV(grass, 0.0, 1000.0, "Grass", "G", "g dry weight/m"2",
notOnFile, notinTable, isY);

SetDefltCurveAttrForMV(m, grass, emerald, unbroken, 0C);

DeclMV(expectedGrass, 0.0, 1000.0, "BExpected val ue of grass", "HQ", "g dry we ght/ m?2",
notOnFile, notinTable, isY);

SetDefltCurveAttrForMV(m, expectedGrass, turquoise, unbroken, 0C);

DeclP(mur, 0.7, 0.0, 10.0, rtc,

"Mean of r (=growth rate of grass)", "u(r)", "day™-1");
DeclP(mukK, mur/0.001, 0.0, grassMax, rtc,

"Mean of K (=carrying capacity)", "u(K)", "m”2/g dw/day");
DeclP(sigmar, 0.5, 0.0, 10.0, rtc,

"Standard deviation of r (=growth rate of grass)", "s(r)", "day"-1");
DeclP(sigmaK, muK*0.3, 0.0, grassMax, rtc,

"Standard deviation of K (=carrying capacity)", "s(K)", "m”2/g dw/day");

DeclP(maxRuns, 20.0, 0.0, 100.0, rtc,

"Number of runs in experiment", "# runs", "#");
DeclP(nRun, maxRuns/5.0, 0.0, 100.0, rtc,

"Show statistics each nRun'th run”, "nRun", "#");
DeclP(clrAll, 0.0, 0.0, 1.0, rtc,

A 206

ModelWorks 2.2 - Appendix (Sample Models)

"Clear graph regularily (1=yes/0=no)", "clrAll", ");
DeclP(rand, 1.0, 0.0, 1.0, rtc,
"Randomize experiment (1=yes/0=no)", "rand", ™);
END ModelObjects;

PROCEDURE MonteCarloExperiment;
VAR i : INTEGER;
t0, tend, h, er, ¢, hm: REAL;
curSt: Stain; curLS: LineStyle; curCh: CHAR;
PROCEDURE ShowsStatistics(stErrBar,stMue: Stain; mueCh: CHAR);
BEGIN
SetCurveAttrForMV(m, expectedGrass, stErrBar, unbroken, 0C);
DisplayArray(statArray, TRUE, prob950);
SetCurveAttrForMV(m, expectedGrass, stMue, unbroken, mueCh);
DisplayArray(statArray, FALSE, prob950);
END ShowStatistics;
PROCEDURE ROUND(x: REAL): INTEGER,;
BEGIN
RETURN TRUNC(x+0.5)
END ROUND;
BEGIN (*MonteCarloExperiment*)
GetGlobSimPars(t0, tend, h, er, ¢, hm);
DeclStatArray(statArray, ROUND((tend-t0)/hm + 1.0));
DeclDispMV(statArray, m, expectedGrass, m, timelsindep);
GetCurveAttrForMV(m, grass, curSt, curLS, curCh);
IF ROUND(rand)=1 THEN Randomize END;
i=0;
LOOP
jt:=0; INC(i);
SimRun;
IF (i=ROUND(maxRuns)) OR ExperimentAborted() THEN EXIT END;
IF (i MOD ROUND(nRun)) = 0 THEN (* show statistics *)
IF ODD(i DIV ROUND(nRun)) THEN
IF (ROUND(clrAll)=0) AND (i=ROUND(nRun)) THEN (* very first time *)
(* hide from now on individual run results to keep graph simpler *)
Inform("From now on individual run results will be hidden.",
"But the converging statistics will be shown instead.",
SetCurveAttrForMV(m, grass, curSt, invisible, 0C);
ClearGraph;
END(*IF*);
ShowsStatistics(turquoise,turquoise,0C);
ELSE
IF ROUND(cIrAll)=1 THEN
Inform("Attention: graph will now be cleared to avoid",
"clutter! However, the statistics shown next",
"summarizes the whole simulation history.");
ClearGraph;
END;
ShowsStatistics(sapphire,sapphire,0C);
END(*IF*);
END(*IF¥);
END(*LOOP?);
IFi>0 THEN
ShowsStatistics(pink,ruby,"");
END(*IF*);
RemoveStatArray(statArray);
SetCurveAttrForMV(m, grass, curSt, curLS, curCh);
END MonteCarloExperiment;

PROCEDURE ModelDefinitions;
BEGIN
DecIM(m, Euler, Nolnitialize, Nolnput, NoOutput, Dynamic,
NoTerminate, ModelObjects, "Stochastic logistic grass growth"”,
"StochGrass", NoAbout);
SetSimTime(0.0,30.0);
InstallExperiment(MonteCarloExperiment);

A 207

ModelWorks 2.2 - Appendix (Sample Models)

InstallClientMonitoring(DoNothing, DoMonit, DoNothing);
InstallU(U);
END ModelDefinitions;

BEGIN
RunSimEnvironment(ModelDefinitions);
END StochLogGrow.

A 208

ModelWorks 2.2 - Appendix (Sample Models)

A.4.7 Modular Modeling -GreenHouse

Thereare two basic techniques ofiodular modeling First, declaring several ModelWorks
models within the sammodel definition program; second, splitting a structured model system
into several submodels, where each module contairgngle submodel (s.a heory chapter
Structured Model Definition Programs (Modular Mode)ing)

The sample modelGreenHousedemonstrates the second technique, i.e. the splitting of a
structured model systeinto several submodels implemented as independent modules. It
simulates the green-houséfect based on a simplified version of the global carbon cycle
(Fig. A7) between atmosphere and terrestrial biospheflehe two compartments atmosphere
and biosphere are modeled separately, so that the behavior of each comportantstadied
independently or in a combined way (Fig. A8).

Atmosphere

UH

T CO2 | CO2° NPP D R

L _»| Biota

I—» Soils

| =

Biosphere

Fig. A7: Main components and interactions modeled by Haenple model
GreenHouse Atmosphere and biosphere form a structured model sysidmch

can be modeled in a modularay where both spheres are represented as a
submodel. In the corresponding mod#gfinition program, each sphere is
implemented in form of a separate module.

It is intuitively appealing to separate the whelgstem into two components or submodels, i.e.

the atmosphere and the biosphere. The submodel atmosphere is defined by module
GHAtmospherdGH stands foiGreenHouse), the biosphere including the soils by module
GHBiosphere Since we need to make some overall observatmmghe global C-cycle, we

can add an additional module call&dHObserve(Fig. A8). It can also be formulated as a
submodel, which isconvenient, since it observes total carbon injected as an integral of annual
anthropogenical fluxesYet, note that such an observer, despite its internal dynamics, has no
influence orthe dynamics of the global carbon cycle modelled by the two other submodels; it
only receivesinputs which are output by these two other submodels. Finally we require a
program module to bind all parts together, i.e. modBldMaster(Fig. A8).

A 209

ModelWorks 2.2 - Appendix (Sample Models)

Since this structure offers much flexibility | recommd to implement structured mectisding
to this technique (see partTheorychaptef-ormalism$. Moreover, since this structure is the
same for other systems (see e.g. research sample BiEbelow), it can be supported by a
general auxiliary module, i.eStructModAux The latter allows to announcga a simple
interface the dynamic instantiation (declaration) of submadddispendently from each other.
Thus, any master module is built similar t@&HMaster and becomes very simple.
StructModAux offers the simulationist a mechanism to activate deactivate submodels
dynamically viamenu commands from within the simulation environment (see pdrhelory
chapterFunctions sectionUser Interface Customizatjorif the modeller wishes tprevent the
removal of a particular submodduring simulations, the procedur&eactivateyzModel can
remove the submodetyz only conditionally, i.e. after inspecting the current staié the
simulation environment by a call to proced@etMW Statédrom moduleSimMaster

GHMaster

TEEEE

[|
GHODb- GHAtmo GHBio- Struct
server sphere ModAux
ModelWorks Dialog Machine

& DMMathLib

Fig. A8: Module structure of the sample mo@kenHouse

All these modules form a so-called RAMSESoject. Alist of all the files which hold the
involved modules is contained in a project description file, here c&ieiMaster.PRJ]

GHAtmosphere.DEF
GHBiosphere.DEF
GHObserver.DEF
GHAtmosphere.MOD
GHBiosphere.MOD
GHObserver.MOD
GHMaster.MOD
GHMaster.R

10n the IBM PC use the "Make" facility of the used development environment to achieve a similar result.

A 210

ModelWorks 2.2 - Appendix (Sample Models)

The master modul&HMasterimports fromevery submodel module and installs the submodel
activating routines irstructModAuxs mechanism:

MODULE GHMaster;

*

Module GHMaster (Master module of structured model Green-House)

Purpose: Demonstration of modular modeling using RAMSES
and ModelWorks software.

The structured model simulates the global carbon cycle; in
particular the interaction between the compartment atmosphere
and terrestrial biosphere under an anthropogenetic

green-house gas forcing. The model has been derived from data
and some model equations described in the following references.

References :

Schneider, S.H., 1989. The greenhouse effect: science and
policy. Science 243: 771-81.

Kohlmaier,G.H., Janecek, A. & Kindermann, J., 1990. In: Bouwman,
A.F. (ed.), Soils and the greenhouse effect. John Wiley &
Sons: 415-422.

Bolin, B., 1986. How much CO2 will remain in the atmopshere?. In:
Bolin, B., Dd6s, B.R., Jager, J. & Warrick, R.A. (eds.), The
greenhouse effect, climatic change and ecosystems. Wiley,
Chichester a.0. (SCOPE Vol. 29): 93-156.

Revision history:

Author Date Description

AF 3/11/93 Firstimplementation
%)

FROM DMMenus IMPORT Command, InstallCommand, Separator, InstallSeparator,
AccessStatus, Marking;

(* Imports from ModelWorks (Sim) *)

FROM SimBase IMPORT SetDefltGlobSimPars, MWWindowArrangement;
FROM SimMaster IMPORT RunSimEnvironment;

FROM SimGraphUtils IMPORT PlaceGraphOnSuperScreen;

FROM StructModAux IMPORT InstallCustomMenu, SetSimEnv, AssignSubModel,
InstallMyGlobPreferences, customM;
FROM Help IMPORT ShowHelpWindow, SetHelpFileName, SetResourceFileName;

(* Imports from modular model definitions (GH-modules) *)
FROM GHAtmosphere IMPORT atmosModelDescr,
ActivateAtmosModel, DeactivateAtmosModel, AtmosModellsActive;

FROM GHBiosphere IMPORT biosModelDescr,
ActivateBiosModel, DeactivateBiosModel, BiosModellsActive;

FROM GHObserver IMPORT obsModelDescr,
ActivateObsModel, DeactivateObsModel, ObsModellsActive;

VAR
atmos, bios, bios2, obs: INTEGER;

A?211

ModelWorks 2.2 - Appendix (Sample Models)

helpCmd: Command,;

PROCEDURE GiveHelp;

BEGIN
SetHelpFileName("GreenHouse Help");
SetResourceFileName("GreenHouse Help");
ShowHelpWindow;

END GiveHelp;

PROCEDURE InitSimEnv;
BEGIN

InstallCustomMenu("Models","Activation...","L");

SetSimEnv(atmos,bios,obs);

InstallSeparator(customM,line);

InstallCommand(customM,helpCmd, "On the model...", GiveHelp, enabled,unchecked);
END InitSimEnv;

PROCEDURE SetMyGlobPreferences;

BEGIN
SetDefltGlobSimPars(1900.0, 2300.0, 0.5, 0.0001, 1.0, 10.0);
PlaceGraphOnSuperScreen(tiled);

END SetMyGlobPreferences;

BEGIN
InstallMyGlobPreferences(SetMyGlobPreferences);
AssignSubModel(atmos, atmosModelDescr,
ActivateAtmosModel, DeactivateAtmosModel, AtmosModellsActive);
AssignSubModel(bios, biosModelDescr,
ActivateBiosModel, DeactivateBiosModel, BiosModellsActive);
AssignSubModel(obs, obsModelDescr,
ActivateObsModel, DeactivateObsModel, ObsModellsActive);
RunSimEnvironment(InitSimEnv);
END GHMaster.

Each submodel has to provide a similar interfaé@st, it has to export its output variables on
behalf of the moduleshich need the input (see also parfTheory section Structured Model
Definition Programs (Modular Modeling) particularFig. T28). Second, it has to provide
procedures which allowGHMasterto announcethe submodel to the auxiliary module
StructModAux The following two definition modules for the submodels atmosphere and
biosphere illustrate this technique:

DEFINITION MODULE GHAtmosphere;

(nnnnn *
Module GHAtmosphere (Version 1.0)

Copyright (c) 1993 by Andreas Fischlin and Swiss
Federal Institute of Technology Zirich ETHZ

Purpose Submodel modeling the C-dynamics of the atmosphere

Remark This module is the submodel Atmosphere of the
structured model Green-House (GH)

Programming

o Design and Implementation
A. Fischlin 15/12/93

A 212

ModelWorks 2.2 - Appendix (Sample Models)

Systems Ecology

Institute of Terrestrial Ecology

Department of Environmental Sciences

Swiss Federal Institute of Technology Zurich ETHZ
Grabenstr. 3

CH-8952 Schlieren/Zurich

Switzerland

Last revision of definition: 15/12/93 AF

FROM SimBase IMPORT AuxVar, Parameter, OutVar;

(* exported for submodel Biosphere *)

VAR
CO2: OutVar; (* CO2-concentration in the atmosphere *)
CO020: Parameter; (* Initial CO2-concentration in the atmosphere *)
deltaT: OutVar; (* change in global annual mean near surface temperature,

e.g. global warming caused by CO2-increase *)
(* exported for submodel Observer only: *)

clnAnthros: OutVar; (* Anthropogenic CO2 C-input-flux into atmosphere
from fossil fuel burning *)

cDeltalnAtmos: OutVar; (* Change of carbon stored in atmosphere *)

fRemInA: Parameter; (* Fraction of the net C-input-flux into atmosphere
which remains there, i.e. which is not absorbed
by oceans *)

(* exported for GHMaster only: *)

CONST
atmosModelDescr = "Atmosphere”;

PROCEDURE ActivateAtmosModel;
PROCEDURE DeactivateAtmosModel;
PROCEDURE AtmosModellsActive(): BOOLEAN;

END GHAtmosphere.

DEFINITION MODULE GHBiosphere;

(Kkkkk K*kkkkkk Kkkkk *kk

Module GHBiosphere (Version 1.0)

Copyright (c) 1993 by Andreas Fischlin and Swiss
Federal Institute of Technology Zirich ETHZ

Purpose Submodel modeling the C-dynamics of the biosphere
composed of the biota and soils

Remark This module is the submodel Biosphere of the
structured model Green-House (GH)

Programming

o0 Design and Implementation
A. Fischlin 15/12/93

A 213

ModelWorks 2.2 - Appendix (Sample Models)

Systems Ecology

Institute of Terrestrial Ecology

Department of Environmental Sciences

Swiss Federal Institute of Technology Zurich ETHZ
Grabenstr. 3

CH-8952 Schlieren/Zurich

Switzerland

Last revision of definition: 15/12/93 AF

Kkk Kk kkkkk Kkk Kkkkkkk)

FROM SimBase IMPORT AuxVar, Parameter, OutVar;

(* exported for submodel Atmosphere: *)

VAR

prodBio: OutVar; (* productive world biota (NPP) *)

Q10AB: Parameter; (* Q10-value for atmospere -> biosphere C-flux,
i.e. C-fixation by photosynthesis *)

decSOM: OutVar; (* C in Soil Organic Matter (SOM) exposed to
oxidation *)

Q10SA: Parameter; (* Q10-value for soils -> atmospere C-flux,
i.e. soil respiration *)

deforestation: OutVar; (* C flux biosphere -> atmospere due to
land use changes, i.e. deforestation *)

PROCEDURE TEffect(Q10ij: Parameter; deltaT: AuxVar): AuxVar;
(* Change of the C-flux from compartment i to j, caused by a
temperature change deltaT (assumes a change or Q10-value of Q10jj
per 10° temperature change) *)

PROCEDURE CO2Fertilization(CO2conc: AuxVar): AuxVar;
(* Increase of the atmospere -> biosphere C-flux caused by the
photosynthesis, a fertilization effect due to an increased
ambient CO2-concentration in the biosphere *)

(* exported for submodel Observer only: *)

VAR
cDeltalnBios: OutVar; (* Total change of carbon stored in biosphere
(biota and soails) *)
cBiof: OutVar; (* Fraction (%) of biota from total carbon pools *)

(* exported for GHMaster only: *)

CONST
biosModelDescr = "Terrestrial biosphere”;

PROCEDURE ActivateBiosModel;
PROCEDURE DeactivateBiosModel;
PROCEDURE BiosModellsActive(): BOOLEAN;

END GHBiosphere.

The model equationsf the two submodels are then provided by the implementation modules,
which resemblen their structure that of a simple, unstructured model definition program
(compare e.g. with sample modebgistiq. Thefollowing two implementation modules for
the submodels atmosphere and biosphere illustrate this technique:

A 214

ModelWorks 2.2 - Appendix (Sample Models)

IMPLEMENTATION MODULE GHAtmosphere;

(*

Implementation and Revisions:

Author Date Description

AF 21/12/93 First implementation
%)

FROM DMMathLib IMPORT Ln;

FROM SimBase IMPORT
Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
StashFiling, Tabulation, Graphing, DecIMV, SetSimTime,
Nolnitialize, Nolnput, NoOutput, NoTerminate, NoAbout,
StateVar, Derivative, Parameter, AuxVar, InVar,
MDeclared, RemoveM, GetSV, notDeclaredModel;

FROM SimMaster IMPORT CurrentTime;

FROM GHBiosphere IMPORT prodBio, Q10SA, Q10AB, decSOM, deforestation,
TEffect, CO2Fertilization;

VAR
atmosM: Model;
cAtmo: StateVar; (* C content of atmosphere *)
cAtmoDot: Derivative;
ffB: StateVar; (* Annual fossil fuel burning *)
ffBDot: Derivative;

releaseBySoil: InVar; (* C-input-flux from soils into atmosphere *)

uptakeByBiota: InVar; (* C-output-flux from atmosphere into biosphere,
C-fixation by photosynthesis *)

netGainBios: InVar; (* net gain of C from biosphere *)

CONST
cAtmo00 = 700.0; (* Default initial C content of atmosphere *)
C0200 = 330.0; (* Default initial CO2-concentration in the atmosphere *)
deltaT0 = 0.0; (* Initial temperature change *)
fRemInAO = 0.45; (* Default fraction of net C-input-flux remaining in

the atmosphere, i.e. not *)
deltaT2xC020 = 3.7; (* default of parameter deltaT2xCO2,
IPCC 1990, Tabh.3.2, p.87 *)
alpha0 = 2.13; (* default of parameter alpha *)
ffB0 = 5.0; (* default of initial fossil fuel burning *)
begffBO = 2000.0; (* default first year of fossil fuel burning *)
endffB0 = 2240.0; (* default last year of fossil fuel burning *)

VAR

cAtmoO: Parameter; (* Initial C content of atmosphere *)

ffBGrR: Parameter; (* Growth rate of fossil fuel burning *)

begffB: Parameter; (* First year of fossil fuel burning *)

endffB: Parameter; (* Last year of fossil fuel burning *)

deltaT2xCO2: Parameter; (* equilibrium temperature change for
CO2-doubling (2 x CO2).*)

alpha: Parameter; (* Factor by which global warming is increased
if not only CO2 but all other green house
gases are considered to have also an
effect (hereby assuming a constant ratio
between all greenhouse gases) *)

sensT: Parameter; (* sensitivity of temperature to CO2-doubling *)

A 215

ModelWorks 2.2 - Appendix (Sample Models)

PROCEDURE Initialize;
BEGIN
IF MDeclared(atmosM) THEN
GetSV(atmosM,cAtmo,cAtma0);
END(*IF*);
sensT := deltaT2xC0O2/Ln(2.0);
END Initialize;

PROCEDURE Input;

BEGIN
releaseBySoil := TEffect(Q10SA,deltaT)*decSOM;
uptakeByBiota := prodBio*TEffect(Q10AB,deltaT)*CO2Fertilization(CO2);
netGainBios := releaseBySoil - uptakeByBiota + deforestation;

END Input;

PROCEDURE EffectOfFossilFuelBurning(t: REAL; x: AuxVar): Derivative;
BEGIN

IF (t>=begffB) AND (t<endffB) THEN RETURN x ELSE RETURN 0.0 END;
END EffectOfFossilFuelBurning;

PROCEDURE Dynamic;

BEGIN
ffBDot := EffectOfFossilFuelBurning(CurrentTime(), ffBGrR * ffB);
cAtmoDot := (cInAnthros + netGainBios) * fRemInA;

END Dynamic;

PROCEDURE Output;
BEGIN
cInAnthros := EffectOfFossilFuelBurning(CurrentTime(), ffB);
cDeltalnAtmos := cAtmo-cAtma0;
CO2 := cAtmo * CO20/cAtmo0;
deltaT:= sensT*Ln(1.0+ (alpha*(C0O2-C020)/C020));
END Output;

PROCEDURE ModelObjects;
BEGIN
(* state variables *)
DeclSV(cAtmo, cAtmoDot, cAtmo0, 100.0, MAX(REAL),
'C content of atmospere', ‘cAtmo', 'Gt C');
DeclISV(ffB, ffBDot, ffBO, 0.0, 20.0,
'Fossil fuel burning', 'ffB', ‘Gt C/a");

DecIMV(cAtmo,650.0,20000.0,
'C content of atmospere', 'cAtmo’, 'Gt C/,
notOnFile, writeInTable, notinGraph);
DecIMV(cAtmoDot,-100.0,100.0,
‘Change in C content of the atmospere', '‘cAtmoDot', 'Gt C/a’,
notOnFile, notinTable, notinGraph);

(* input variables *)

DecIMV(releaseBySoil, 250.0, 1000.0,
'C-flux from soils to atmosphere', 'releaseBySoil', ‘Gt C/a’,
notOnFile, notinTable, notinGraph);

DecIMV(uptakeByBiota, 250.0, 1000.0,
'C-flux from atmosphere to biosphere', 'uptakeByBiota', 'Gt C/a’,
notOnFile, notinTable, notinGraph);

(* internal auxiliary variables *)

DeclMV(netGainBios, 250.0, 1000.0,
‘Net gain of C from biosphere’, 'netGainBios', ‘Gt C/a’,
notOnFile, notinTable, notinGraph);

(* output variables *)

DeclMV(CO2, 250.0, 10000.0,
'‘CO2-concentration in atmosphere', 'CO2', 'ppm’,
notOnFile, writeInTable, isY);

DecIMV(cDeltalnAtmos,0.0,15.0,

A 216

ModelWorks 2.2 - Appendix (Sample Models)

'‘Change of carbon stored in atmosphere', ' AC, 'GtC,
notOnFile, notinTable, notinGraph);

DecIMV(deltaT,-1.0,15.0,
"Temperature change (global warming)', ' AT, "°C,
notOnFile, writelnTable, isY);

(* parameters also exported *)
DeclP(C0O20, CO200, 200.0, 400.0, rtc,
'Initial CO2 conc. in atmosphere', 'CO20', 'ppm’);

(* internal parameters *)
DeclP(begffB, begffB0, 1800.0, 2500.0, rtc,
'First year of fossil fuel burning', 'begffB', 'a");
DeclP(endffB, endffB0, 1800.0, 2500.0, rtc,
'Last year of fossil fuel burning’, 'endffB’, 'a’);
DeclP(ffBGrR, 0.01, -0.5, 0.5, rtc,
‘Relative growth rate of fossil fuel burning’, 'ffBGrR’, '/a");
DeclP(deltaT2xCO2, deltaT2xC020, 0.0, 5.0, rtc,
'‘Change in temperature by 2xC0O2', ' AT2xCO2', "°CY;
DeclP(fRemInA, fRemInAQ, 0.0, 1.0, rtc,
'Fraction of CO2-input-flux remaining in atmosphere’, 'fRemInA’, '%);
DeclP(alpha, alpha0, 0.0, 3.0, rtc,
'Ratio from other GHG to CO2 on warming', 'alpha’, '-);
END ModelObjects;

PROCEDURE AssignDefaultOutputs;
BEGIN
(* overwrite any eventual changes with defaults to parametrize
submodel Atmosphere *)
CAtmo0 := cAtmo00;
CAtmo := cAtmo0;
C020 := CO200;
ffB := ffBO;
begffB := begffBO;
endffB := endffBO;
deltaT := deltaTO;
fRemInA := fRemInAO;
deltaT2xCO2 := deltaT2xCO20;
alpha := alphao;

Initialize;
Output;
END AssignDefaultOutputs;

PROCEDURE ActivateAtmosModel;
BEGIN
IF NOT MDeclared(atmosM) THEN
DecIM(atmosM, Heun, Initialize,Input, Output, Dynamic, NoTerminate, ModelObjects,
"Atmosphere submodel",
"atmosM", NoAbout);
END(*IF*);
END ActivateAtmosModel;

PROCEDURE DeactivateAtmosModel;
BEGIN

IF MDeclared(atmosM) THEN RemoveM(atmosM); AssignDefaultOutputs END(*IF*);
END DeactivateAtmosModel;

PROCEDURE AtmosModellsActive(): BOOLEAN;
BEGIN

RETURN MDeclared(atmosM)
END AtmosModellsActive;

BEGIN
atmosM := notDeclaredModel;
AssignDefaultOutputs

END GHAtmosphere.

A217

ModelWorks 2.2 - Appendix (Sample Models)

IMPLEMENTATION MODULE GHBiosphere;

(*

Implementation and Revisions:

Author Date Description

AF 21/12/93 First implementation
")

FROM DMMathLib IMPORT Ln;

FROM SimBase IMPORT
Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
StashFiling, Tabulation, Graphing, DecIMV, SetSimTime,
Nolnitialize, Nolnput, NoOutput, NoTerminate, NoAbout,
StateVar, Derivative, Parameter, AuxVar, InVar,
MDeclared, RemoveM, GetSV, notDeclaredModel;

FROM GHAtmosphere IMPORT CO2, CO20, deltaT;

VAR
biosM: Model;
cBio: StateVar; (* C in biomass *)
cBioDot: Derivative;
cSOM: StateVar; (* C in Soil Organic Matter (SOM) *)
cSOMDot: Derivative;

CO2Amb: InVar; (* Ambient CO2-concentration in biosphere *)
changeTAmb: InVar; (* Change of ambient temperature in biosphere *)

litter: AuxVar; (* C-flux Biomass -> Soil *)

soilResp: AuxVar; (* C-flux Soil -> Atmosphere *)

NPP: AuxVar; (* C-flux Atmosphere -> Biosphere, i.e. net
primary production *)

CONST
cBio00 = 700.0; (* Default initial C in biomass *)
cSOMO00 =1320.0; (* Default initial C in soils (SOM) *)
NPP00 = 117.5; (* Default initial net primary production *)
Q10SA0 =1.0; (* Default Q10-value for soil respiration,
C-flux Soils -> Atmosphere *)
Q10AB0 =10.3; (* Default Q10-value for photosynthesis,
C-flux Atmosphere -> Biosphere *)
defR00 = 2.0; (* Default initial deforestation rate *)
VAR
cBio0: Parameter; (* Initial C in biomass *)
cSOMO: Parameter; (* Initial C in soils (SOM) *)
NPPO: Parameter; (* initial net primary production (NPP) of world
biota *)
beta: Parameter; (* CO2 fertilization-parameter *)
defR: Parameter; (* relative deforestationation rate *)
defRO: Parameter; (* Initial deforestationation rate *)

PROCEDURE Initialize;
BEGIN
IF MDeclared(biosM) THEN
GetSV(biosM,cBio,cBio0);

A 218

ModelWorks 2.2 - Appendix (Sample Models)

GetSV(biosM,cSOM,cSOMO);
END(*IF*);
defR := defR0O / cBio0;
END Initialize;

PROCEDURE Input;
BEGIN
CO2Amb:= CO2;
changeTAmb := deltaT;
END Input;

PROCEDURE TEffect(Q10ij: Parameter; changeTAmb: AuxVar): AuxVar;
BEGIN
IF MDeclared(biosM) THEN
RETURN 1.0+(Q10ij/10.0)*changeTAmb
ELSE
RETURN 1.0
END(*IF*);
END TEffect;

PROCEDURE CO2Fertilization(CO2conc: AuxVar): AuxVar;
BEGIN
IF MDeclared(biosM) THEN
RETURN 1.0+beta*Ln(CO2conc/C0O20)
ELSE
RETURN 1.0
END(*IF¥);
END CO2Fertilization;

PROCEDURE Dynamic;
BEGIN
NPP:= prodBio*TEffect(Q10AB,changeTAmb)*CO2Fertilization(CO2Amb);
litter:= prodBio*(cBio/cBio0);
soilResp:= TEffect(Q10SA,changeTAmb)*decSOM;
cBioDot := NPP - litter - deforestation;
cSOMDot := litter - soilResp;
END Dynamic;

PROCEDURE Output;

BEGIN
prodBio := NPP0*(cBio/cBio0);
decSOM ;= NPP0*cSOM/cSOMO;
deforestation := defR * cBio;
cDeltalnBios := cBio-cBio0 + cSOM-cSOMO;
cBiof := cBio/(cBio+cSOM);

END Output;

PROCEDURE ModelObjects;
BEGIN
(* state variables *)
DeclSV(cBio, cBioDot, cBio0, 100.0, MAX(REAL),
'C content of biota’, 'cBio’, 'Gt C);
DeclSV(cSOM, cSOMDot, cSOMO, 200.0, MAX(REAL),
'C content of soils (SOM = Soil Organic Matter)', 'cSOM', 'Gt C");

DecIMV/(cBio, 500.0, 2000.0,
'C content of biota’, ‘'cBio’, 'Gt C',
notOnFile, writeInTable, notinGraph);

DecIMV(cBioDat, 0.0, 4.0,
‘Change in C content of biota', ‘cBioDot', 'Gt C/a’,
notOnFile, notinTable, notinGraph);

DecIMV(cSOM, 500.0, 2000.0,
'C content of soils (SOM = Soil Organic Matter)', 'cSOM', 'Gt C/,
notOnFile, writeInTable, notinGraph);

DecIMV(cSOMDat, -0.5, 0.5,
‘Change in C content of soils (SOM)', 'cSOMDot', 'Gt C/a/,
notOnFile, notinTable, notinGraph);

A 219

ModelWorks 2.2 - Appendix (Sample Models)

(* input variables *)
DecIMV(CO2Amb, 250.0, 1000.0,
'‘Ambient CO2-conc. in biosphere', 'CO2Amb', 'ppm’,
notOnFile, notinTable, notinGraph);
DecIMV(changeTAmb, 250.0, 1000.0,
'‘Change of ambient T in biosphere', ' ATAmb', *°C,
notOnFile, notinTable, notinGraph);

(* internal auxiliary variables *)
DeclMV(NPP, 110.0, 160.0,
'Net Primary Production (net photosynthesis)', ‘'NPP', ‘Gt C/a’,
notOnFile, notinTable, notinGraph);
DecIMV(soilResp, 110.0, 160.0,
'Soil respiration’, 'soilResp’, 'Gt C/a’,
notOnFile, notinTable, notinGraph);

(* output variables *)

DecIMV(decSOM, 110.0, 160.0,
‘Decaying Soil Organic Matter (SOM)', 'decSOM’, ‘Gt C',
notOnFile, notinTable, notinGraph);

(* parameters also exported *)
DeclP(NPPO, NPP0O, 0.0, 200.0, rtc,

'Initial Net Primary Production', 'NPPQ', 'Gt C/a’);
DeclP(Q10AB, Q10ABO, 0.0, 0.5, rtc,

'Q10-value for photosynthesis', 'Q10AB', /°C";
DeclP(Q10SA, Q10SA0, 0.0, 5.0, rtc,

'Q10-value for soil respiration’, 'Q10SA', '/°C");

(* internal parameters *)
DeclP(beta, 0.3, 0.0, 2.0, rtc,
'CO2-fertilization parameter', 'beta’, -");
DeclP(defR0, defR00, 0.0, 100.0, rtc,
‘Initial deforestationation rate’, 'defR0', ‘Gt C/a");
END ModelObjects;

PROCEDURE AssignDefaultOutputs;
BEGIN
(* overwrite any eventual changes with defaults to parametrize
submodel Biosphere *)
¢Bio0 := ¢Bio00;
¢SOMO := ¢cSOMOO0;
NPPO := NPPOO;
cBio := cBio0;
cSOM := cSOMO;
Q10SA := Q10SAQ;
Q10AB := Q10ABO;
defRO := defR00;
Initialize;
Output;
END AssignDefaultOutputs;

PROCEDURE ActivateBiosModel;
BEGIN

IF NOT MDeclared(biosM) THEN

DecIM(biosM, Heun, Initialize, Input, Output, Dynamic, NoTerminate, ModelObjects,
"Biosphere submodel", "biosM", NoAbout);

END(*IF¥);
END ActivateBiosModel;
PROCEDURE DeactivateBiosModel;
BEGIN

IF MDeclared(biosM) THEN RemoveM(biosM); AssignDefaultOutputs END(*IF*);
END DeactivateBiosModel;

PROCEDURE BiosModellsActive(): BOOLEAN,;

A 220

ModelWorks 2.2 - Appendix (Sample Models)

BEGIN
RETURN MDeclared(biosM)
END BiosModellsActive;

BEGIN
biosM := notDeclaredModel;
AssignDefaultOutputs

END GHBiosphere.

The interface of the submodeHObserveresemblethat of any other submodel except that it
does not export any outputs; it oriigs to export the procedures which all@@HMasterto
announce the submodel to the auxiliary moditteictModAux

DEFINITION MODULE GHObserver;

(* K*kkkkkk Kkk *kk

Module GHObserver (Version 1.0)

Copyright (c) 1993 by Andreas Fischlin and Swiss
Federal Institute of Technology Zirich ETHZ

Purpose Observes overall system behavior of the structured
model Green-House

Remark This module is a submodel of the structured
model Green-House (GH)

Programming

o0 Design and Implementation
A. Fischlin 3/1/94

Systems Ecology

Institute of Terrestrial Ecology

Department of Environmental Sciences

Swiss Federal Institute of Technology Zurich ETHZ
Grabenstr. 3

CH-8952 Schlieren/Zurich

Switzerland

Last revision of definition: 3/1/94 AF

e e e e)

(* exported for GHMaster only: *)

CONST
obsModelDescr = "Observer";

PROCEDURE ActivateObsModel;
PROCEDURE DeactivateObsModel;
PROCEDURE ObsModellsActive(): BOOLEAN;

END GHObserver.

The implementation oGHObservers again similar to that of any other model definition
program, since it does not only collect data from the other submbdeldoes also integrate
some of these inputs to compute the total fossil fuels burnt.

A221

ModelWorks 2.2 - Appendix (Sample Models)

IMPLEMENTATION MODULE GHObserver;

(*
Implementation and Revisions:
Author Date Description
AF 3/1/94 First implementation
")

FROM DMConversions IMPORT RealToString, RealFormat;
FROM DMStrings IMPORT Concatenate, Append;

FROM SimBase IMPORT
Model, IntegrationMethod, DeclM, DeclSV, DeclP, RTCType,
StashFiling, Tabulation, Graphing, DeclMV, SetSimTime,
Nolnitialize, Nolnput, NoOutput, NoTerminate, NoAbout, NoDynamic,
StateVar, Derivative, Parameter, AuxVar,
MDeclared, RemoveM, GetSV, Message, notDeclaredModel;

FROM SimMaster IMPORT RunSimEnvironment;

FROM GHAtmosphere IMPORT deltaT, CO2, cinAnthros, cDeltalnAtmos, fRemInA;

FROM GHBiosphere IMPORT cDeltalnBios, cBiof;

VAR
obsM: Model;
cffBTot: StateVar; (* Total fossil fuel burnt *)
cffBTotDot: Derivative;

PROCEDURE Dynamic;
BEGIN

cffBTotDot := cInAnthros;
END Dynamic;

PROCEDURE Terminate;
PROCEDURE MakeMsgForX(descr: ARRAY OF CHAR; x: REAL; unit: ARRAY OF CHAR);
VAR msg: ARRAY [0..127] OF CHAR,;
BEGIN (*MakeMsgForX*)
RealToString(x,msg,0,3,FixedFormat);
Concatenate(descr,msg,msg); Append(msg,unit);
Message(msg);
END MakeMsgForX;
BEGIN (*Terminate*)
MakeMsgForX("Global warming = ",deltaT," [°C]");
MakeMsgForX("CO2-concentration = ",CO2," [ppm]");
MakeMsgForX(" Y fossil fuel burnt = ",cffBTot," [Gt]");
MakeMsgForX(" AC in atmosphere =",cDeltalnAtmos," [Gt]");
MakeMsgForX(" AC in oceans = ",cDeltalnAtmos/fRemInA*(1.0-fRemInA)," [Gt]");
MakeMsgForX(" AC in biosphere = ",cDeltalnBios," [G{]");
MakeMsgForX(" - hereof in biota = ",cDeltalnBios*cBiof," [Gt]");
MakeMsgForX(" - hereof in soils = ",cDeltalnBios*(1.0-cBiof)," [Gt]");
END Terminate;

PROCEDURE ModelObjects;
BEGIN
DeclSV(cffBTot, cffBTotDot, 0.0, 0.0, 0.0,
"Total fossil fuel burnt', ‘cffBTot', 'Gt C");
DeclMV(cffBTot,1000.0,2000.0,
‘Total fossil fuel burnt', 'cffBTot', 'Gt C',
notOnFile, writelnTable, notinGraph);

A 222

ModelWorks 2.2 - Appendix (Sample Models)

END ModelObjects;

PROCEDURE ActivateObsModel;
BEGIN
IF NOT MDeclared(obsM) THEN
DecIM(obsM, Heun, Nolnitialize,Nolnput, NoOutput, Dynamic, Terminate, ModelObjects,
"Observer submodel", "obsM", NoAbout);
END(*IF*);
END ActivateObsModel;

PROCEDURE DeactivateObsModel;
BEGIN

IF MDeclared(obsM) THEN RemoveM(obsM) END(*IF*);
END DeactivateObsModel;

PROCEDURE ObsModellsActive(): BOOLEAN;
BEGIN

RETURN MDeclared(obsM)
END ObsModellsActive;

BEGIN
obsM := notDeclaredModel;
END GHObserver.

This technique of module modeling offensiny advantages, such as discarding or reactivation
of modules depending on the current needs, e.g. with or without the obsever subrasdet||
as to expand the submodels, e.g. by another sphere like the oceans.

In particular note that it ialso possible even to deactivate a submodel which produces outputs
nealed as input by another submodel. The removed submodeheiil loose its dynamic cha
rader, but still provide an output, since asutput variable does not cease to exist only because
the submodel has been removed from ModelWorks's model basaandbe freely used by

any other submodel still active. In order to aveidefact outputs, submodels should bepiea
mened such, that they produce a constant output if the corresponding subiseaelonger
active. This behaviocan then be physically interpreted as a parametrization of the submodels
dynamics. The sample model GreenHouse has exaetly implemented that way: The peo
duresAssignDefaultOutputs both submodel&HAtmsopherend GHBiosphereserve exact

ly this purpose and define the parametrized submodel when it is not dynamically active.

A 223

ModelWorks 2.2 - Appendix (Sample Models)

A.5 MIXED TYPE STRUCTURED MODELS

A.5.1 Mixing Continuous (DESS) and Discrete Time Models (SQM)

The following listing defines a model demonstrating higing of acontinuous timesubmodel
with a discrete timesubmodel Both models form together structured modebf mixed type
(see also in the manual parfTeoryin the sectioModelformalismsespecially the subsection
Structured models (Coupling of submodels)

MODULE Combined;

(e S

Structured model built from a continuous and discrete time submodel
The continuous time submodel consists of a simple linear differential
equation whereby its paramater depends on an input which has been
coupled with the output from the discrete time submodel. The discrete
time submodel contains a simple step function. Every submodel is
modelled as a local module.

af 29/Mai/1988

%)
(. : e :)
IMPORT SimMaster;
FROM SimBase IMPORT SetSimTime, SetMoninterval;
IMPORT SimBase;

FROM SimMaster IMPORT RunSimEnvironment;

MODULE SubModDisc; (* ok)

FROM SimBase IMPORT DeclM, IntegrationMethod, DeclSV, StashFiling,
Tabulation, Graphing, DeclMV, DeclP, RTCType,
Model, SetSimTime, SetMonlInterval,
Nolnitialize, Nolnput, NoTerminate, NoAbout,
StateVar, NewState, Parameter, AuxVar;

EXPORT DeclSubModDisc, y;

VAR

discM: Model;
step: StateVar;
newStep: NewState;
a, flip: Parameter;

y: AuxVar;

PROCEDURE Dd;
BEGIN

newStep:= flip*step;
END Dd;

PROCEDURE Od;
BEGIN

y:= a*step;
END Od;

PROCEDURE ModelObjectsDisc;

A 224

ModelWorks 2.2 - Appendix (Sample Models)

BEGIN
DeclSV(step, newStep,1.0, -1.0E3, 1.0E3,
"Step of discrete time submodel", "Step", "-");

DecIMV(step, -5.0, 2.0,
"Step of discrete time submodel”,
"Step", "-", notOnFile, writeInTable, isY);

DeclP(a, 1.0, -100.0, 100.0, rtc,
"Amplitude of step function", "a", "---");

DeclP(flip, -1.0, -1.0, 1.0, rtc,
"Factor to reverse sign of step function”, "f*, "---");
END ModelObjectsDisc;

PROCEDURE DeclSubModDisc;
BEGIN
DeclM(discM, discreteTime, Nolnitialize, Nolnput, Od, Dd,
NoTerminate, ModelObjectsDisc,
"Discrete time submodel",
"DiscSubMod", NoAbout);
END DeclSubModDisc;

END SubModDisc; (Frkkekkikkkokkokokok Hkkk)

MODULE SubModCont; (**x*#*sxikikikakikikiaiokis *)

FROM SimBase IMPORT DeclM, IntegrationMethod,DeclSV, StashFiling,
Tabulation, Graphing, DecIMV, DeclP, RTCType,
Model, SetSimTime, SetMonlinterval,
Nolnitialize, NoOutput, NoTerminate, NoAbout,
StateVar, Derivative, Parameter, AuxVar;
IMPORT y;
EXPORT DeclSubModCont;

VAR

contM: Model;

X: StateVar;

xDot: Derivative;
r. Parameter;
u: AuxVar,

PROCEDURE Ic;
BEGIN

u=y;
END Ic;

PROCEDURE Dc;
BEGIN

xDot:= r*u*x;
END Dc;

PROCEDURE ModelObjectsCont;
BEGIN
DeclSV(x, xDot,1.0, -1.0E3, 1.0E3,
"State variable of continuous time submodel”, "x", "-");

1 ’ ’

DecIMV(x, 0.0, 5.0,
"State variable of continuous time submodel", "x", "-",
notOnFile, writeInTable, isY);

DeclP(r, 1.0, -100.0, 100.0, rtc,
"Intrinsic rate of change for continous time submodel",

A 225

ModelWorks 2.2 - Appendix (Sample Models)

"I’", utime/_ln);
END ModelObjectsCont;

PROCEDURE DeclSubModCont;
BEGIN
DeclM(contM, Euler, Nolnitialize, Ic, NoOutput, Dc,
NoTerminate, ModelObjectsCont,
"Continuous time submodel”,
"ContSubMod", NoAbout);
END DeclSubModCont;

END SubModCont; (i Hkkkekk

PROCEDURE StructuredModelDef;
BEGIN
DeclSubModCont; DeclSubModDisc;
SetSimTime(0.0,10.0); SetMoninterval(0.25);
END StructuredModelDef;

BEGIN
RunSimEnvironment(StructuredModelDef);
END Combined

A 226

ModelWorks 2.2 - Appendix (Sample Models)

A.5.2 Mixing a Discrete Event System (DEVS) With a Continudume Model (DESS) -
CarPollution

A.5.2.1 The Fiscrete Event Systeml+affic(DEVS)

DEFINITION MODULE CPTraffic;

(xxxxx kkkkk *kkkkkkkkkkkkkkkrkkk

Module CPTraffic (Version 1.0)

Copyright (c) 1993 by Andreas Fischlin and Swiss
Federal Institute of Technology Zirich ETHZ

Purpose Submodel modeling the dynamics of cars

Remarks This module is used by the ModelWorks research
sample model CarPollution (CP).

Programming

o0 Design and Implementation
A. Fischlin 15/12/93

Systems Ecology

Institute of Terrestrial Ecology

Department of Environmental Sciences

Swiss Federal Institute of Technology Zurich ETHZ
Grabenstr. 3

CH-8952 Schlieren/Zurich

Switzerland

Last revision of definition: 15/12/93 AF

* * Fokkkk *)

PROCEDURE ActivateTrafficModel;
PROCEDURE DeactivateTrafficModel;
PROCEDURE TrafficModellsActive(): BOOLEAN;

END CPTraffic.

IMPLEMENTATION MODULE CPTraffic;

(*

Implementation and Revisions:

Author Date Description

AF 15/12/93 First implementation (MacMETH_V3.2.1)
dg 25/04/96 Cleaned up for PC compatibility

FROM DMConversions IMPORT IntToString;

A 227

ModelWorks 2.2 - Appendix (Sample Models)

FROM DMStrings IMPORT AssignString, Append;
FROM DMMessages IMPORT Warn;

FROM SimBase IMPORT
Model, DeclP, RTCType, MDeclared, RemoveM, notDeclaredModel,
StashFiling, Tabulation, Graphing, DeclMV, SetSimTime, Nolnput,
NoOutput, NoTerminate, NoAbout, Parameter, Message,
DoNothing,ClearTable, InstallClientMonitoring;

FROM SimEvents IMPORT
nilTransaction, Transaction, StateTransition, ScheduleEvent,
DecIDEVM;

FROM SimMaster IMPORT
CurrentTime;

FROM RandGen IMPORT U, ResetSeeds, Randomize;

FROM RandGen0 IMPORT InstallU0, NegExpP;

FROM Queues IMPORT
EmptyFIFOQueue, FilelntoFIFOQueue, FIFOQueueLength,
TakelstFromFIFOQueue, FirstinFIFOQueue, IsFIFOQueueFull;

FROM CPObjects IMPORT TrafficLight, crossRoad, VehicleKind,
Vehicle, RecognizeVehicle, ForgetVehicle, traffic;

FROM CPCrossRoad IMPORT EnableAnimation, DisableAnimation,
ShowCrossRoad, ClearCrossRoad, AnimateTrafficLight,
AnimateArrivingVehicle, AnimatePassingVehicle,
AnimateLeavingVehicle, AnimateQueueAdvancement;

CONST
(* EventClasses: *)
arrival = 1;
leaving = 2;
switchLight = 3;

VAR
trafficM: Model;
randomize,
animate,
stepWise: Parameter;

PROCEDURE ReportEvent(txt1: ARRAY OF CHAR; v: Vehicle; txt2: ARRAY OF CHAR;
writeOnFile: BOOLEAN);
VAR mssg: ARRAY [0..63] OF CHAR,; istr: ARRAY [0..7] OF CHAR;
BEGIN
AssignString(txt1,mssg);
IF v<>NIL THEN
CASE v~.kind OF
| truck : Append(mssg,“Truck ");
| car : Append(mssg,"Car");
END(*CASE?);
IntToString(v”.licensePlate,istr,0); Append(mssg,istr);
END(*IF*);
Append(mssg,txt2);
Message(mssg);
IF stepWise>0.0 THEN Warn("ReportEvent:",mssg,") END(*IF*);
END ReportEvent;

PROCEDURE VehicleArrival(ta: Transaction);
BEGIN
ta := RecognizeVehicle();
IF (crossRoad.trafficLight=red) THEN
IF NOT IsFIFOQueueFull(crossRoad.fifoQ) THEN

A 228

ModelWorks 2.2 - Appendix (Sample Models)

FileIntoFIFOQueue(crossRoad.fifoQ,ta);
AnimateArrivingVehicle(ta);
ReportEvent("Red: ",ta," stops to join queue”, TRUE);
ELSE
ReportEvent("Red: "ta," arrives, Queue overflow! cross road blocked", FALSE);
END(*IF¥);
crossRoad.glLe := FLOAT(FIFOQueueLength(crossRoad.fifoQ));
ELSIF (FIFOQueueLength(crossRoad.fifoQ)>0) THEN
IF NOT IsFIFOQueueFull(crossRoad.fifoQ) THEN
FileIntoFIFOQueue(crossRoad.fifoQ,ta);
AnimateArrivingVehicle(ta);
ReportEvent("Green: "ta," arrives, but cross road blocked", TRUE);

ELSE
ReportEvent("Green: "ta," arrives, Queue overflow! cross road blocked", FALSE);
END(*IF*);
crossRoad.glLe := FLOAT(FIFOQueueLength(crossRoad.fifoQ));
ELSE

AnimatePassingVehicle(ta);
ReportEvent("Green: "ta," passes cross road", FALSE);
ForgetVehicle(ta);
END(*IF*);
ScheduleEvent(arrival,NegExpP(traffic. muNrVeh),nilTransaction);
END VehicleArrival;

PROCEDURE VehicleLeave(ta: Transaction);
VAR v: Vehicle;
BEGIN
IF (FIFOQueueLength(crossRoad.fifoQ)>0) AND (crossRoad.trafficLight=green) THEN
(* there is at least a vehicle waiting *)
ta := TakelstFromFIFOQueue(crossRoad.fifoQ);
ReportEvent("™ ta," starts engine and leaves", TRUE);
AnimateLeavingVehicle(ta);
ForgetVehicle(ta);
AnimateQueueAdvancement;
IF FIFOQueueLength(crossRoad.fifoQ)>0 THEN
(* there are some more vehicles waiting *)
v := FirstinFIFOQueue(crossRoad.fifoQ);
ScheduleEvent(leaving,NegExpP(1.0/traffic. TmuSE[v”.kind]),nilTransaction);
END(*IF*);
crossRoad.gLe := FLOAT(FIFOQueueLength(crossRoad.fifoQ));
END(*IF*);
END VehicleLeave;

PROCEDURE SwitchTrafficLight(ta: Transaction);
VAR v: Vehicle;
BEGIN
IF crossRoad.trafficLight=red THEN
ReportEvent("Switching from red to green”,nilTransaction,™, FALSE);
AnimateTrafficLight(green);
crossRoad.trafficLight := green;
IF crossRoad.qLe>0.0 THEN
IF FIFOQueuelLength(crossRoad.fifoQ)<=0 THEN
Warn("SwitchTrafficLight: Attempt to schedule nonexisting transaction”,","");
END(*IF*);
ReportEvent("Post: ",nilTransaction," Scheduling VehicleLeave", FALSE);
v := FirstinFIFOQueue(crossRoad.fifoQ);
ScheduleEvent(leaving,NegExpP(1.0/traffic. TmuSE[v.kind]),nilTransaction);
crossRoad.gLe := FLOAT(FIFOQueueLength(crossRoad.fifoQ));
END(*IF*);
ELSIF crossRoad.trafficLight=green THEN
ReportEvent("Switching from green to red",nilTransaction,™, FALSE);
AnimateTrafficLight(red);
crossRoad.trafficLight := red;
END(*IF*);
ScheduleEvent(switchLight,crossRoad. Tls,nilTransaction);
END SwitchTrafficLight;

A 229

ModelWorks 2.2 - Appendix (Sample Models)

PROCEDURE Initialize;

BEGIN
IF randomize<=0.0 THEN ResetSeeds END(*IF*);
EmptyFIFOQueue(crossRoad.fifoQ);
crossRoad.gLe :=0.0;
traffic.vehicleNr := 0;
crossRoad.trafficLight := red;
ScheduleEvent(arrival,CurrentTime(),nilTransaction);
ScheduleEvent(switchLight,CurrentTime(),nilTransaction);
ClearTable;
IF animate=0.0 THEN DisableAnimation ELSE EnableAnimation END;
ClearCrossRoad;

END Initialize;

PROCEDURE Terminate;
BEGIN

IF randomize>0.0 THEN Randomize END(*IF*);
END Terminate;

PROCEDURE TrafficModelObjects;
VAR v: VehicleKind;
BEGIN
DeclMV(crossRoad.qLe, 0.0,10.0,
"Cars waiting in queue before red light", "gLe", "#",
notOnFile, writeInTable, isY);

DeclP(traffic.truckFrac, 0.2, 0.0, 1.0, rtc,
"Fraction of trucks among all vehicles", "truckFrac", "%");

DeclP(crossRoad.Tls, 0.5, 0.0, 10.0, rtc,
"Traffic control light switch time", "TIs", "hour");
FOR v:=fstVK TO IstVK DO
IF v=truck THEN
DeclP(traffic. TmuSE[v], 0.4, 0.0, 100.0/60.00, rtc,
"Mean time needed to start truck engine”, "TmuSEtruck”, "hour");
ELSE
DeclP(traffic. TmuSE[v], 0.2, 0.0, 100.0/60.00, rtc,
"Mean time needed to start non-truck engine", "TmuSE", "hour");
END(*IF*);
END(*FOR?);
DeclP(traffic.muNrVeh, 2.0, 0.0, 10.0, rtc,
"Mean # vehicles arriving per At", "muNrVeh", "hour-1");
DeclP(traffic.rhPeak, 0.0, 0.0, 10.0, rtc,
"Rush hour peak amplitude”, "rhPeak", ";

DeclP(randomize, 1.0, 0.0, 1.0, noRtc,

"Randomize (TRUE=1.0/FALSE=0.0)", "randomize", "");
DeclP(animate, 1.0, 0.0, 1.0, noRtc,

"Animate (TRUE=1.0/FALSE=0.0)", "animate", ™);
DeclP(stepWise, 0.0, 0.0, 1.0, rtc,

"Step through simulation (TRUE=1.0/FALSE=0.0)", "stepWise", "");

END TrafficModelObjects;

PROCEDURE ActivateTrafficModel;
VAR stf: ARRAY [arrival..switchLight] OF StateTransition;
BEGIN
IF NOT MDeclared(trafficM) THEN
stf[arrival].ec := arrival; stf[arrival].fct := VehicleArrival;
stf[leaving].ec := leaving; stffleaving].fct := VehicleLeave;
stf[switchLight].ec := switchLight; stf[switchLight].fct := SwitchTrafficLight;
DeclDEVM(trafficM, Initialize, Nolnput, NoOutput, stf, Terminate,

A 230

ModelWorks 2.2 - Appendix (Sample Models)

TrafficModelObjects, "Traffic at a crossroad", "trafficM", NoAbout);
SetSimTime(0.0,30.0);
InstallClientMonitoring(ShowCrossRoad, DoNothing, DoNothing);
END(*IF¥);
END ActivateTrafficModel;

PROCEDURE DeactivateTrafficModel;
BEGIN

IF MDeclared(trafficM) THEN Initialize; RemoveM(trafficM) END(*IF*);
END DeactivateTrafficModel;

PROCEDURE TrafficModellsActive(): BOOLEAN;
BEGIN

RETURN MDeclared(trafficM)
END TrafficModellsActive;

BEGIN
trafficM := notDeclaredModel;
InstallUo(U);

END CPTraffic.

A.5.2.2 The Crossroad and the Traffic

DEFINITION MODULE CPCrossRoad;

(Kvw(nnnnn
Module CPCrossRoad (Version 1.0)

Copyright (c) 1992 by Andreas Fischlin and Swiss
Federal Institute of Technology Zirich ETHZ

Purpose Algorithms used to simulate
and animate traffic jams at a cross road.

Remarks This module is used by the ModelWorks research
sample model CarPollution (CP).
Programming

o0 Design
A. Fischlin 17/Mar/93

o Implementation

A. Fischlin 17/Mar/93

Swiss Federal Institute of Technology Zurich ETHZ
CH-8092 Zurich
Switzerland

Last revision of definition: 16/Sep/93 AF

FROM CPObjects IMPORT TrafficLight, Vehicle;

PROCEDURE EnableAnimation; (* default *)

PROCEDURE DisableAnimation; (* after calling DisableAnimation, any call
to one of the subsequent procedures will
have no effect and it closes also the animation
window *)

A 231

ModelWorks 2.2 - Appendix (Sample Models)

PROCEDURE ShowCrossRoad;
PROCEDURE ClearCrossRoad;

PROCEDURE AnimateTrafficLight(newTL: TrafficLight);
PROCEDURE AnimateArrivingVehicle(v: Vehicle);
PROCEDURE AnimatePassingVehicle(v: Vehicle);
PROCEDURE AnimateLeavingVehicle(v: Vehicle);
PROCEDURE AnimateQueueAdvancement;

END CPCrossRoad.

DEFINITION MODULE CPObjects;

(

Module CPObijects (Version 1.0)

Copyright (c) 1992 by Andreas Fischlin and Swiss
Federal Institute of Technology Zirich ETHZ

Version written for:
MacMETH_V3.2 (1-Pass Modula-2 implementation)

Purpose Data structures used to simulate the air pollution
caused by traffic jams at a cross road.

Remarks This module is used by the ModelWorks research
sample model CarPollution (CP).

Programming

o Design
A. Fischlin 17/Mar/93

o Implementation

A. Fischlin 17/Mar/93

Swiss Federal Institute of Technology Zurich ETHZ
CH-8092 Zurich
Switzerland

Last revision of definition: 13/Dec/93 AF

FROM SimBase IMPORT Parameter, AuxVar;
FROM Queues IMPORT FIFOQueue;

TYPE

TrafficLight = (green, red);

CrossRoad = RECORD
trafficLight: TrafficLight;
Tls: Parameter; (* Switching time of traffic light *)
fifoQ: FIFOQueue; (* FIFO queue of waiting vehicles *)
gLe: AuxVar; (* Current length of queue of waiting

vehicles. *)
END;

VAR
crossRoad: CrossRoad;

A 232

TYPE
VehicleKind = (car, truck);

CONST
fstVK = MIN(VehicleKind); IstVK = MAX(VehicleKind);

TYPE
Vehicle = POINTER TO VehicleDescr;
VehicleDescr = RECORD
licensePlate: INTEGER;
kind: VehicleKind;
END;

PROCEDURE RecognizeVehicle(): Vehicle;
PROCEDURE ForgetVehicle(v: Vehicle);

TYPE
Traffic = RECORD
vehicleNr: INTEGER;
truckFrac: Parameter; (* fraction of trucks among vehicles *)
muNrVeh: Parameter; (* Mean number of vehicles arriving at
cross road per unit of time *)
rhPeak: Parameter; (* Amplitude of diurnal fluctuation of
muNrVeh relative to annual mean. If this
parameter is
0, vehicles arrives at the cross road evenly
distributed, i.e. without any rush hours. *)
TmuSE: ARRAY [fstVK..IstVK] OF Parameter;
(* Mean time required by a vehicle
to starts its engine and to leave
the cross road. *)
END;

VAR
traffic: Traffic;

END CPObjects.

IMPLEMENTATION MODULE CPCrossRoad;

(*

Implementation and Revisions:

Author Date

Description

AF 17/03/93 First implementation (MacMETH_V3.2)
af 15/12/93 pictiDexhaust added
dg 25/04/96 Cleaned up for PC compatibility

%)

FROM DMSystem IMPORT
SuperScreen, MainScreen;

FROM DMWindIO IMPORT
DisplayPredefinedPicture, GetPredefinedPictureFrame,
BackgroundWidth, LineTo, BackgroundHeight, EraseContent,
SelectForOutput, Area, pat, GreyContent, SetPen, WriteString,
Writelnt, CellHeight, CellWidth, SetWindowFont, WindowFont,
FontStyle, Color, SetColor, DrawAndFillPoly;

ModelWorks 2.2 - Appendix (Sample Models)

A 233

ModelWorks 2.2 - Appendix (Sample Models)

IMPORT DMWindIO;

FROM DMWindows IMPORT
RectArea, notExistingWindow, Window, WindowKind, ScrollBars,
CloseAttr, ZoomAttr, WFFixPoint, WindowFrame, CreateWindow,
GetWindowFrame, PutOnTop, WindowExists, RemoveWindow,
AddWindowHandler, WindowHandlers;

FROM DMMaster IMPORT PlayPredefinedMusic;

FROM SimEvents IMPORT Transaction;
FROM SimBase IMPORT MWWindowArrangement, SetDefltWindowArrangement;

FROM Queues IMPORT FIFOQueuelength,
DoForAllinFIFOQueue;

FROM CPObjects IMPORT
TrafficLight, VehicleKind, Vehicle, crossRoad;

TYPE

CrossRoadW = RECORD
w: Window;
wf: WindowFrame;
pictTrLght: INTEGER;
pictiD: ARRAY [fstVK..IstVK] OF INTEGER;
pictiDexhaust: INTEGER;
tlr,bmr, groundr: RectArea;
vr: ARRAY [fstVK..IstVK] OF RectArea;
exhcr: RectArea;
stopLn, vehicleW, vehicleH: INTEGER,;

END;

VAR
crW: CrossRoadW:;
doAnimate: BOOLEAN;
supScr,spcw,spch: INTEGER,;

PROCEDURE EnableAnimation;
BEGIN

doAnimate := TRUE;
END EnableAnimation;

PROCEDURE DisableAnimation;

BEGIN
IF doAnimate THEN RemoveWindow(crW.w) END;
doAnimate := FALSE;

END DisableAnimation;

PROCEDURE NoAnimation(): BOOLEAN;

BEGIN
IF NOT WindowEXxists(crW.w) THEN RETURN TRUE END;
IF doAnimate THEN SelectForOutput(crW.w) (*important side effect!*) END;
RETURN NOT doAnimate

END NoAnimation;

PROCEDURE RedrawCrossRoad(u: Window);
VAR yy: INTEGER;

BEGIN
SelectForOutput(crW.w); (* needed to handle also DM-event redefined *)
GetWindowFrame(crW.w,crw.wf);
crW.tlr.x := crwW.wf.w-crW.tlr.w; crw.tlr.y := (9*crW.wf.h DIV 10) -crW.tlr.h;
yy = crW.tlr.y+crW.tlr.h; SetPen(0,yy); LineTo(crW.wf.w,yy);
crW.bmr.x := 0; crW.bmr.y := crW.wf.h DIV 2;
crW.bmr.w := crW.tlr.x+112; crW.bmr.h := crW.tlr.y+crW.tlr.h-28-crw.bmr.y;
DisplayPredefinedPicture(",crW.pictTrLght,crWw.tlr);
crW.stopLn := crW.bmr.x + crW.bmr.w - crW.wf.w DIV 10;
crW.groundr := crW.wf; crwW.groundr.x := 0; crW.groundr.y := 0;
crW.groundr.h := crW.groundr.h DIV 10;

A 234

ModelWorks 2.2 - Appendix (Sample Models)

Area(crW.groundr,pat[grey]);
AnimateTrafficLight(crossRoad.trafficLight);
END RedrawCrossRoad;

PROCEDURE ClearCrossRoad:;

BEGIN
IF NoAnimation() THEN RETURN END;
EraseContent;
RedrawCrossRoad(crwW.w);

END ClearCrossRoad;

PROCEDURE ShowCrossRoad;
BEGIN
IF doAnimate THEN (* force window creation or front positioning *)
IF WindowExists(crw.w) THEN
PutOnTop(crw.w);
ELSE
CreateWindow(crW.w, GrowOrShrinkOrDrag, WithoutScrollBars,
WithCloseBox,WithZoomBox, bottomLeft, crW.wf,
‘Cross road', RedrawCrossRoad);
SetWindowFont(Geneva,9,FontStyle);
AddWindowHandler(crwW.w,redefined,RedrawCrossRoad,0);
END(*IF¥);
END(*IF*);
END ShowCrossRoad;

PROCEDURE AnimateTrafficLight(newTL: TrafficLight);
PROCEDURE DisplayBeam(x0,y0,w,h,n: INTEGER,; r: REAL; c: Color; cl: ARRAY OF CHAR);
VAR i,k: INTEGER; x,y: ARRAY [0..3] OF INTEGER,;
we: ARRAY [0..3] OF BOOLEAN; ec: ARRAY [0..3] OF Color;
BEGIN (*DisplayBeam®*)
FOR k:=0 TO 3 DO we[k]:= FALSE; ec[k]:= ¢ END;
i=n;
REPEAT
x[0] := x0; y[0] := yO;
X[1] := x0-w; y[1] := y0;
x[2] := x[1]; y[2] := yO-TRUNC(FLOAT(h)*r);
X[3] :=x0; y[3] :=y0-h;
DEC(c.saturation,10);
DrawAndFillPoly(4,x,y,we,ec, TRUE(*isFilled*),c,pat[(*VAL*)GreyContent(i)]);
h := y0-y[2]; DEC(x0,w); DEC(i);
UNTIL i=0;
SetColor(c); SetPen(x0+(w DIV 4),y0-13); WriteString(cl); SetColor(DMWindIO.black);
END DisplayBeam;
PROCEDURE EraseBeams;
BEGIN
Area(crW.bmr,pat[light]);
END EraseBeams;
BEGIN
IF NoAnimation() THEN RETURN END;
IF newTL<>crossRoad.trafficLight THEN
EraseBeams
END(*IF*);
IF newTL=red THEN
DisplayBeam(crW.bmr.x+crW.bmr.w,crW.bmr.y+crW.bmr.h,
64, 5,4, 1.5, DMWindIO.red, "red");
ELSIF newTL=green THEN
DisplayBeam(crW.bmr.x+crW.bmr.w,crW.bmr.y+crW.bmr.h-16,
64, 5,4, 1.5, DMWindIO.green, "green");
END(*IF*);
END AnimateTrafficLight;

PROCEDURE DrawVehicle(v: Vehicle; inRect: RectArea);
BEGIN
IF ODD(v”.licensePlate) THEN
DisplayPredefinedPicture(",crW.pictID[v*.kind],inRect);

A 235

ModelWorks 2.2 - Appendix (Sample Models)

ELSE
DisplayPredefinedPicture(",crW.pictID[v*.kind]+1,inRect);
END(*IF*);
END DrawVehicle;

PROCEDURE CalcVehiclePlace(v: Vehicle; nrinQ: INTEGER; VAR plc: RectArea);
BEGIN
plc := crW.vr[v".kind];
plc.x := crW.stopLn - nrinQ*crW.vehicleW
+ (crW.vehicleW-plc.w) DIV 2;
plc.y := crW.groundr.y+crW.groundr.h;
END CalcVehiclePlace;

PROCEDURE CalcExhaustionPlace(plc: RectArea; VAR exh: RectArea);
BEGIN

exh := crW.exhcr;

exh.x := plc.x-crW.exhcr.w; exh.y := plc.y+3;
END CalcExhaustionPlace;

PROCEDURE DrawHaltingVehicle(v: Vehicle; atPos: INTEGER);
VAR plc, exh: RectArea;
BEGIN
CalcVehiclePlace(v,atPos,plc);
DrawVehicle(v,plc);
CalcExhaustionPlace(plc,exh);
DisplayPredefinedPicture(",crW.pictiIDexhaust,exh);
SetPen(plc.x+plc.w DIV 2-CellWidth(),crW.groundr.y+crW.groundr.h-CellHeight());
Writelnt(v/.licensePlate, 2);
END DrawHaltingVehicle;

PROCEDURE EraseVehicle(plc: RectArea);
BEGIN
plc.h := crW.vehicleH;
DEC(plc.x,crW.exhcr.w); INC(plc.w,crW.exhcr.w);
Area(plc,patlight]);
(*

SétMode(invert);
DisplayPredefinedPicture(",crW.pictID[v".kind],plc);
SetMode(replace);

*

)

bEC(pIc.y,S*CeIIHeight() DIV 2); plc.h := crW.groundr.h-plc.y;
Area(plc,pat[grey]);
END EraseVehicle;

VAR
carPlace: INTEGER;

PROCEDURE ShiftlPlaceForward(ta: Transaction);
VAR plcNew, plcOld: RectArea;

BEGIN
CalcVehiclePlace(ta,carPlace,plcNew);
EraseVehicle(plcNew);
INC(carPlace);
CalcVehiclePlace(ta,carPlace,plcOld);
EraseVehicle(plcOld);
DrawHaltingVehicle(ta,carPlace-1);

END ShiftlPlaceForward;

PROCEDURE AnimateLeavingVehicle(v: Vehicle);
VAR plc,plcOld: RectArea; b: INTEGER;
BEGIN
IF NoAnimation() THEN RETURN END;
CalcVehiclePlace(v,1,plc);
b:=1;
plcOld := plc;
WHILE plc.x<crW.wf.w DO
INC(plc.x,20+b);
DrawVehicle(v,plc);

A 236

IF plc.x>=(plcOld.x+plcOld.w) THEN
EraseVehicle(plcOld);
INC(plcOld.x,plcOld.w);

END(*IF*);

b = b*2;

END(*WHILE*);
IF plcOld.x<crW.wf.w THEN

EraseVehicle(plcOld);

END(*IF*);
END AnimateLeavingVehicle;

PROCEDURE AnimateQueueAdvancement;
BEGIN
IF NoAnimation() THEN RETURN END;
carPlace :=1;
DoForAllinFIFOQueue(crossRoad.fifoQ,ShiftlPlaceForward);
END AnimateQueueAdvancement;

PROCEDURE AnimateArrivingVehicle(v: Vehicle);
BEGIN
IF NoAnimation() THEN RETURN END;
DrawHaltingVehicle(v,FIFOQueueLength(crossRoad.fifoQ));
END AnimateArrivingVehicle;

PROCEDURE AnimatePassingVehicle(v: Vehicle);
VAR plc: RectArea;
BEGIN
IF NoAnimation() THEN RETURN END;
CalcVehiclePlace(v,1,plc);
plc.x :=0;
WHILE plc.x<crW.wf.w DO
DrawVehicle(v,plc);
EraseVehicle(plc);
INC(plc.x,20);
END(*WHILE?);
END AnimatePassingVehicle;

BEGIN
crW.w := notExistingWindow;
crW.pictTrLght := 3132;
crW.pictID[truck] := 3130; crW.pictID[car] := 3128;
crW.pictiDexhaust := 3133;
GetPredefinedPictureFrame(",crW.pictTrLght,crWw.tlr);
GetPredefinedPictureFrame(",crW.pictID[truck],crW.vr[truck]);
GetPredefinedPictureFrame(",crW.pictID[car],crW.vr[car]);
crW.vr[car].x := 0; crW.vr[car].y :=0;
crW.vr[car].w := 70; crW.vr[car].h := 19;
IF crW.vr[truck].w>crW.vr[car].w THEN

crW.vehicleW := crW.vr[truck].w

ELSE

crW.vehicleW := crW.vr[car].w
END;
INC(crW.vehicleW,15);

IF crW.vr[truck].h>crW.vr[car].h THEN
crW.vehicleH := crW.vr[truck].h
ELSE
crW.vehicleH := crW.vr[car].h
END;
INC(crW.vehicleH,10);
GetPredefinedPictureFrame(",crW.pictIDexhaust,crW.exhcr);
SetDefltWindowArrangement(tiled);
SuperScreen(supScr,crW.wf.x,crW.wf.y,spcw,spch,
crW.wf.h(*dummy*), TRUE(*color priority*));
crw.wf.h := 200;
IF supScr=MainScreen() THEN
crW.wf.w := BackgroundWidth()-8;
crW.wf.x := (BackgroundWidth()-crw.wf.w) DIV 2;

ModelWorks 2.2 - Appendix (Sample Models)

A 237

ModelWorks 2.2 - Appendix (Sample Models)

crW.wf.y := (BackgroundHeight()-crw.wf.h) DIV 2;
ELSE
crW.wf.w := 4*spcw DIV 5;
crWw.wf.x := crW.wf.x + (spcw-crW.wf.w) DIV 2;
crw.wf.y := crW.wl.y + (spch-crw.wf.h) DIV 2;
END(*IF¥);
END CPCrossRoad.

IMPLEMENTATION MODULE CPObjects;

(*

Implementation and Revisions:

Author Date Description

AF 3/17/93 Firstimplementation (MacMETH_V3.2)
")

FROM DMStorage IMPORT Allocate, Deallocate;
FROM DMSystem IMPORT CurrentDMLevel, InstallTermProc;
FROM DMMessages IMPORT Warn, Abort;

FROM Queues IMPORT CreateFIFOQueue;
FROM RandGen IMPORT U;

TYPE
VehiclePtr = POINTER TO Vehicleltem;
Vehicleltem = RECORD v: Vehicle; next,prev: VehiclePtr END;

VAR
vroot: VehiclePtr;
installed: BOOLEAN; loadLev: CARDINAL;

PROCEDURE RecognizeVehicle(): Vehicle;
VAR vi: VehiclePtr; ok: BOOLEAN;
BEGIN
ok := FALSE;
Allocate(vi, SIZE(Vehicleltem));
IF vi<>NIL THEN
vit.v = NIL;
Allocate(vit.v, SIZE(Vehicle));
IF vi*.v<>NIL THEN
ok := TRUE;
INC(traffic.vehicleNr);
vi*.vA.licensePlate := traffic.vehicleNr;
IF U() <= traffic.truckFrac THEN
vir.vAkind ;= truck;
ELSE
vit.vAkind = car;
END(*IF*);
END(*IF¥);
(* insert at begin *)
vi*.next := vroot;
vi*.prev := NIL;
IF vroot<>NIL THEN vroot®.prev := vi END;
vroot ;= vi;
END(*IF¥);
IF ok THEN
RETURN vit.v
ELSE
Abort("Can't instantiate more vehicles - insufficient memory","™,")

A 238

ModelWorks 2.2 - Appendix (Sample Models)

END(*IF¥);
END RecognizeVehicle;

PROCEDURE Find(v: Vehicle): VehiclePtr;

VAR p: VehiclePtr;
BEGIN

p := vroot;

WHILE (p<>NIL) AND (p".v<>v) DO

p = p~.next

END(*WHILE*);

IF (p<>NIL) AND (p".v=v) THEN RETURN p ELSE RETURN NIL END;
END Find;

PROCEDURE Discard(vi: VehiclePtr); (* assumes vi exists *)
BEGIN
IF vi=vroot THEN
vroot := vi*.next;
vit.prev := NIL;
ELSE
IF vi*.prev<>NIL THEN vi*.prev®.next := vi*.next END;
IF vi*.next<>NIL THEN vi*.next*.prev := vi*.prev END;
END(*IF*);
Deallocate(vi*.v);
Deallocate(vi);
END Discard;

PROCEDURE ForgetVehicle(v: Vehicle);

VAR vi: VehiclePtr;
BEGIN

vi = Find(v);

IF vi<>NIL THEN Discard(vi) ELSE Warn("Can't forget unknown vehicle",™,") END;
END ForgetVehicle;

PROCEDURE ForgetAllVehicles;
BEGIN
IF CurrentDMLevel()=loadLev THEN
WHILE vroot<>NIL DO Discard(vroot) END(*WHILE?*);
END(*IF¥);
END ForgetAllVehicles;

BEGIN
crossRoad.trafficLight := red;
CreateFIFOQueue(crossRoad.fifoQ,10 (*maxLength*));
traffic.vehicleNr := 0;
vroot := NIL; loadLev := CurrentDMLevel();
InstallTermProc(ForgetAllVehicles,installed);

END CPObjects.

A.5.2.3 Adding Traffic’s Air Pollution - Pollutants (DESS)

DEFINITION MODULE CPPollutants;

(Kkkkk K*kkkkkk Kkkkk *kk

Module CPPollutants (Version 1.0)

Copyright (c) 1993 by Andreas Fischlin and Swiss
Federal Institute of Technology Zirich ETHZ

Purpose Submodel for the dynamics of air pollutants

Remarks This module is used by the ModelWorks research

A 239

ModelWorks 2.2 - Appendix (Sample Models)

sample model CarPollution (CP).
Programming

o Design and Implementation
A. Fischlin 15/12/93

Systems Ecology

Institute of Terrestrial Ecology

Department of Environmental Sciences

Swiss Federal Institute of Technology Zurich ETHZ
Grabenstr. 3

CH-8952 Schlieren/Zurich

Switzerland

Last revision of definition: 15/12/93 AF

Kk kkk Kk kkkkk Kkk Kkkkkkk)

PROCEDURE ActivatePollutantsModel;
PROCEDURE DeactivatePollutantsModel;
PROCEDURE PollutantsModellsActive(): BOOLEAN,;

END CPPollutants.

IMPLEMENTATION MODULE CPPollutants;

(*

Implementation and Revisions:

Author Date Description

AF 15/12/93 First implementation (MacMETH_V3.2.1)
")

FROM SimBase IMPORT
Model, DeclM, MDeclared, RemoveM, notDeclaredModel,
IntegrationMethod, DeclSV, StashFiling, Tabulation, Graphing,
DeclMV, DeclP, RTCType, Nolnitialize, Nolnput, NoOutput,
NoTerminate, NoAbout, SetSimTime, StateVar, Derivative,
Parameter;

FROM CPObjects IMPORT crossRoad,;

VAR
pollM: Model;
pollutants: StateVar; pollutantsDot: Derivative;
emissionRate, decayRate: Parameter;

PROCEDURE DiffEquations;
BEGIN

pollutantsDot := emissionRate*crossRoad.qLe - decayRate*pollutants;
END DiffEquations;

PROCEDURE PollutionModelObjects;

A 240

ModelWorks 2.2 - Appendix (Sample Models)

BEGIN
DeclSV(pollutants, pollutantsDot,0.0, 0.0, 10000.0,
"Air pollutants (aggregated)", "pollutants”, "mg/m~3");

DecIMV/(pollutants, 0.0,10.0,
"Air pollutants (aggregated)", "pollutants”, "mg/m~3",
notOnFile, writelnTable, isY);

DeclP(emissionRate, 0.1, 0.0, 10.0, rtc,
"Relative emission rate of air pollutants", "emissionRate", “/vehicle/hour");
DeclP(decayRate, 0.2, 0.0, 10.0, rtc,

"Decay rate of air pollutants", "decayRate", "/hour");

END PollutionModelObjects;

PROCEDURE ActivatePollutantsModel;
BEGIN
IF NOT MDeclared(pollIM) THEN
DeclM(pollM, Euler, Nolnitialize, Nolnput, NoOutput, DiffEquations,
NoTerminate, PollutionModelObjects, "Air pollution at a crossroad",
"pollM", NoAbout);
SetSimTime(0.0,30.0);
END(*IF¥);
END ActivatePollutantsModel;

PROCEDURE DeactivatePollutantsModel;
BEGIN

IF MDeclared(pollM) THEN RemoveM(pollM) END(*IF¥);
END DeactivatePollutantsModel;

PROCEDURE PollutantsModellsActive(): BOOLEAN;
BEGIN

RETURN MDeclared(pollM)
END PollutantsModellsActive;

BEGIN
pollM := notDeclaredModel;
END CPPollutants.

A.5.2.4 Putting All Together

MODULE CPMaster;

(*
Module CPMaster

Purpose: Demonstration of the combination of a DEVS (discrete event
system) for traffic with a DESS (Differential equation system
specification) for air pollutants.

The model simulates the arrival, queue formation in case of

a red traffic light, and leaving of vehicles at a crossroad (a
DEVS). Moreover the model simulates also the accumulation
resp. decay of hereby exhausted air pollutants (DESS). Traffic
parameters determine the frequencies of trucks and cars, the
time needed to restart an engine, the switching time of the
traffic light etc. This allows to study the effect of crossroad
policies and behavior recommendations for drivers. Pollutant
parameters determine the production and fate of aggregated air
pollutants in order to simulate scenarios of different
regulations for vehicle emissions.

A 241

ModelWorks 2.2 - Appendix (Sample Models)

Revision history:

Author Date Description
AF 03/11/93 First implementation
")

(* Imports from 'Dialog Machine' (DM) *)

FROM DMMenus IMPORT Menu, Command, AccessStatus, Marking,
InstallMenu, InstallCommand, InstallAliasChar;

FROM DMEntryForms IMPORT FormFrame, WriteLabel,
CheckBox, UseEntryForm;

(* Imports from ModelWorks (Sim) *)
FROM SimMaster IMPORT RunSimEnvironment;

(* Imports from CPMaster modular model definition (CP) *)

FROM CPTraffic IMPORT ActivateTrafficModel, Deactivate TrafficModel,
TrafficModellsActive;

FROM CPPollutants IMPORT ActivatePollutantsModel, DeactivatePollutantsModel,
PollutantsModellsActive;

VAR
modM: Menu; modActCmd: Command;

PROCEDURE Choose;
CONST Im = 6; VAR bf: FormFrame; ok, carCB, pollCB: BOOLEAN; cl: INTEGER;
BEGIN
cl := 2; WriteLabel(cl,Im-1,"Check models to be activated:"); INC(cl);
carCB := TrafficModellsActive();
polICB := PollutantsModellsActive();
CheckBox(cl,Im,"Traffic sub model (DEVS)",carCB); INC(cl);
CheckBox(cl,Im,"Pollutants sub model (DESS)",polICB); INC(cl);
bf.x:= 0; bf.y:= -1 (*display dialog window in middle of screen*);
bf.lines:= cl+1; bf.columns:= 50;
UseEntryForm(bf,ok);
IF ok THEN
IF carCB THEN ActivateTrafficModel ELSE DeactivateTrafficModel END;
IF polICB THEN ActivatePollutantsModel ELSE DeactivatePollutantsModel END;
END(*IF¥);
END Choose;

PROCEDURE InstallMenus;
BEGIN
ActivateTrafficModel; (* by default active *)
ActivatePollutantsModel; (* by default active *)
InstallMenu(modM,"Models", enabled);
InstallCommand(modM, modActCmd,"Activation...", Choose, enabled, unchecked);
InstallAliasChar(modM, modActCmd,"L");
END InstallMenus;

BEGIN
RunSimEnvironment(InstallMenus);
END CPMaster.

A 242

ModelWorks 2.2 - Appendix (Sample Models)

A.6 RESEARCH SAMPLE MODELS

The following research sample models demonstrate the typicabfusarious aspects of
ModelWorks in research applications. However, these model definition programs |itenot
full original source code, but a slightly streamlined one. This should makertterlying
principles more visible, tharthis would be the case for the original source code, somewhat
cluttering the essence. Yet all these programs are fully functional.

All these model definition programs use ModelWorks' standard user interface, some extend it
by installing additional menusentry forms, and windows. Most demonstrate the use of
structured simulations or experiments and make useeitber the "Dialog Machine",
ModelWorks' optional client interface, and auxiliary library modules.

A.6.1 Population Dynamics of Larch Bud MotH. BM

The following program code contains a sample model demonstrating¢hef ModelWorks in

a research project. This model definition program demonstrates also modular modaeling,
particular the use of a so-calledrallel modelin order to allow the simulationist to compare
simulation resultsvith measured data, dynamic setting of curve attributes during simulation
runs, and dynamic activation resgaely deactivation of models during a simulation session.

The model system is a structured system consisting of two submodels (Fig. A9).

T“T 1

LBMMod LBMObs
LBMObSUE.DAT
3 ‘

AuxLib | ModelWorks Dialog Machine
- DMFiles

Fig. A9: Module structure of the research sample model.

The firstsubmodel, moduldeBMMod, describes the ecological interaction of the host plant
larchLarix deciduaMILLER with the herbivorous insect larch budoth Zeiraphera dinian@n.

(Lep., Tortricidag (FISCHLIN, 1982; BALTENSWEILER & FISCHLIN, 1988). The second
submodel, module.BMObs is a parallel model formulated like any other ModelWarksiel,

except thaitt dynamic part has only some output equations but no state variables nor dynamic
equations.It mimicks the real system by reading and outputting field data in function of time

A 243

ModelWorks 2.2 - Appendix (Sample Models)

(CELLIER & FISCHLIN, 1980; HSCHLIN, 1991) A master modulethe program moduleBM,
combines all modules to a model definition program (Fig. A9).

The next two listings show the definition and the implementation jpértise module.BMMod
containing the discrete time submodel describing the relationship betwedeosthelant and the
insect:

DEFINITION MODULE LBMMod;
(*
Purpose Simulates Larch Bud Moth population dynamics for the

Upper Engadine valley from 1949 till 1977. Model b:
local dynamics: larch - larch bud moth interaction

Reference Fischlin 1982, "Analyse eines Wald-Insekten Systemes:
Der subalpine Larchen-Arvenwald und der Graue
Larchenwickler Zeiraphera diniana Gn. (Lep.,

Tortricidae)", Diss ETHZ No. 6977.

Remark This program module contains the model which runs
under the simulation environment ModelWorks V0.5

Programming A.Fischlin, Systems Ecology, ETHZ, Dez. 1986
")
FROM SimBase IMPORT AuxVar;
VAR
yt: AuxVar; (* output: simulated larval density for whole valley *)
ytLn: AuxVar; (* output: In of simulated larval density for whole valley *)
PROCEDURE ActivateLarchLBMModel;
PROCEDURE DeactivateLarchLBMModel;
PROCEDURE LarchLBMModellsActive(): BOOLEAN;

END LBMMod.

IMPLEMENTATION MODULE LBMMod;

(*
Revision history:
Author Date Description
af Dez.86 Firstimplementation
af 12/05/90 ModelWorks 2.0 adaptation, now
dynamic model activation and de-
activation supported
dg 05/12/91 Now imports from DMMathLib instead MathLib
%)

FROM DMMathLib IMPORT Exp, Ln;
FROM SimMaster IMPORT RunSimEnvironment;

FROM SimBase IMPORT Model, DeclM, MDeclared, RemoveM, notDeclaredModel,
IntegrationMethod, DeclSV, StashFiling, Tabulation, Graphing,

A 244

ModelWorks 2.2 - Appendix (Sample Models)

DeclMV, DeclP, RTCType, Nolnput, NoTerminate, NoAbout,
SetSimTime, SetMonlnterval, SetDefltCurveAttrForMV, Stain,
LineStyle, StateVar, NewState, Parameter, AuxVar;

FROM LBMObs IMPORT negLogDelta, yLL, yUL, kmin, kmax (* time domain *);

VAR
m: Model;
cl,c2,c3,c4,c5,c6,c7,¢8,c9,c10,c11,c12,c13,c14,¢15,c16,c17,nrt: Parameter;
p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14: REAL;
rt,et: StateVar;
rtl,etl: NewState;
def, springEggs: AuxVar;

PROCEDURE Initialize;

PROCEDURE Parameters;
BEGIN
pl:=c4,
p2:=c5;
p3:=-c2*c6*(1.0-cl);
p4:=c6*(1.0-c1)*(1.0 -c3);
p5:=c2*c7*c9*c10*(1.0-cl);
p6:=c9*(1.0-c1)*(c2*c7*c11-c10*(c2*(1.0-c8)+c7*(1.0-c3)));
p7:=c9*(1.0-c1)*(c10*(1.0-c3)*(1.0-c8)-c11*(c2*(1.0-c8)+c7*(1.0-c3)));
p8:=c9*c11*(1.0-c1)*(1.0-c3)*(1.0-c8);
p9:=c12;
p10:=c13;
pll:=cl4,
p12:=c15;
p13:=c16;
pl4:=c6*cl7*nrt;
END Parameters;

BEGIN (*Initialize*)
Parameters;
END Initialize;

PROCEDURE Output;
BEGIN
yt:= (p3*rt+pd)*et/pls;
ytLn:= Ln(negLogDelta+yt);
springEggs:= (1.0 - c1) * et;
END Output;

PROCEDURE Dynamic;

PROCEDURE gmstarv(x1,x2: REAL): REAL;
BEGIN

IF x2=0.0 THEN RETURN 0.0 END;

IF x2>0.0 THEN RETURN Exp(-x1/x2) END;
END gmstarv;

PROCEDURE grecr(def,rt: REAL): REAL;
CONST eps = 0.00001;
VAR
zrt: REAL;
BEGIN (*grecr*)
IF (def < p12) THEN
IF (rt >= p9-eps) AND (rt <= p9) (* rt = p9 *) THEN
RETURN 1.0
ELSIF rt > p9 THEN
zrt:= p10+ABS((p11-rt)/(rt-p9));

A 245

ModelWorks 2.2 - Appendix (Sample Models)

IF zrt > rt-p9 THEN
RETURN p9/rt
ELSE (*zrt <= rt-p9*)
RETURN 1.0-zrt/rt
END(*IF*);
ELSE
(* " --- warning: rt < p9" *)
HALT
END(*IF*);
ELSE (*def >= p12*)
IF def < p13 THEN
RETURN 1.0+(def-p12)*(p11-rt)/(p13-p12)/rt
ELSIF (def > p12) (*AND (def >= p13)*) THEN
RETURN p11/rt
ELSE (*(def = p12) AND (def >= p13)¥)
HALT
END(*IF*);
END(*IF¥);
END grecr,;

BEGIN (*Dynamic*)
def:= (1.0-gmstarv(pl*rt+p2,p3*rt*et+pd*et))*(p3*rtet+pd*et)/(pl*rt+p2);
rtl:=grecr(def,rt)*rt;
etl:=(1.0-gmstarv(pl*rt+p2,p3*rt*et+pd*et))*
(p5*rt*rt*rt+p6*rt*rt+p 7*rt+p8)*et;
END Dynamic;

PROCEDURE ModelObjects;
BEGIN
DeclSV(rt, rt1, 15.0, 11.99, 18.5,
"Raw fiber content (% fresh weight)", "rf", "%");
DeclSV(et, etl, 4765975.0, 0.0, 1.0E12,

“Larch bud moth eggs (individuals)", "eggs", "

numbers");
DecIMV(rt, 10.0, 20.0, "Raw fiber content (% fresh weight)", "rf",

"%", notOnFile, writelnTable,notinGraph);
SetDefltCurveAttrForMV (m, rt,sapphire,dashSpotted,"");
DeclMV(springEggs, 0.0, 1.0E12,"Larch bud moth eggs in spring (individuals)",

"eggs", "Iom", notOnFile, notinTable, notinGraph);

DecIMV(yt, yLL, yUL,"Larval density (larvae/kg branches)",

"Y", "lbm/kg", notOnFile, writeInTable, notinGraph);
SetDefltCurveAttrForMV (m, yt,ruby,unbroken,"*");
DecIMV(ytLn, Ln(negLogDelta), Ln(negLogDelta+yUL),

"Ln of larval density (larvae/kg branches)",

"Ln(Y)", "lbm/kg", notOnFile, notinTable, isY);
SetDefltCurveAttrForMV (m, ytLn,ruby,unbroken,"*");
DecIMV(def, 0.0, 1.0,"Defoliation",

"def", ", notOnFile, notinTable, notinGraph);
SetDefltCurveAttrForMV (m, def,emerald,broken,0C);

DeclP(nrt, 511147.0, 511147.0, 511147.0, noRtc,

"nrt (number of trees)", "trees", "trees");
DeclP(c1, 0.5728, 0.4841, 0.6538, noRtc,

"c1 (egg winter mortality)", "c1", "lbm");
DeclP(c2, 0.05112, 0.016, 0.087, noRtc,

"c2 (slope of small larvae mortality vs. rf)", "c2", "/%");
DeclP(c3, -0.17932, -0.565, 0.206, noRtc,

"c3 (y-intercept of small larvae mortality vs. rf)", "c3", ™;
DeclP(c4, -2.25933*nrt, -2.4129*nrt, -2.1057*nrt, noRtc,

"c4 (slope of needle biomass vs. rf)", "c4", "/%");
DeclP(c5, 67.38939*nrt, 62.8076*nrt, 71.9712*nrt, noRtc,

"c5 (y-intercept of needle biomass vs. rf)", "¢5", ");
DeclP(c6, 0.005472, 0.0027, 0.0106, noRtc,

"c6 (food demand of a large larvae)”, "c6", "kg/lbm");
DeclP(c7, 0.124017, 0.1070, 0.1410, noRtc,

"c7 (slope of large larvae mortality vs. rf)", "c7", "/%");
DeclP(c8, -1.435284, -1.685, -1.1855, noRitc,

A 246

ModelWorks 2.2 - Appendix (Sample Models)

"c8 (y-intercept of large larvae mortality vs. rf)", “c8", ");
DeclP(c9, 0.44, 0.363, 0.517, noRtc,

"c9 (sex ratio)", "c9", ");
DeclP(c10, -18.475457, -24.7217, -12.2294, noRtc,

"c10 (slope of fecundity vs. rf)", "c10", "lbm/%");
DeclP(c11, 356.72636, 264.9847, 448.4680, noRfc,

"c11 (y-intercept of fecundity vs. rf)", "c11", "lbm");
DeclP(c12, 11.99, 11.79, 12.19, noRtc,

"c12 (minimum rf)", "c12", "%");
DeclP(c13, 0.425, 0.4, 0.5, noRtc,

"c13 (minimum decrement of rf)", "c13", "%");
DeclP(c14, 18.0, 17.5, 18.5, noRifc,

"c14 (maximum rf)", "c14", "%");
DeclP(c15, 0.4, 0.35, 0.6, noRtc,

"c15 (defoliation threshold)", "¢15", ™);
DeclP(c16, 0.8, 0.7, 1.0, noRtc,

"c16 (defoliation threshold of maximum stress)", "c16", ");
DeclP(c17, 91.3, 91.3, 91.3, noRifc,

"c17 (branches per tree)", "c17", "kg");

END ModelObjects;

PROCEDURE ActivateLarchLBMModel;
BEGIN
IF NOT MDeclared(m) THEN
DeclM(m, discreteTime, Initialize, Nolnput, Output, Dynamic, NoTerminate,
ModelObjects,
“Larch Bud Moth model b1 V3.0 (Larch-Larch bud moth relationship)",
"LWMod3 b1", NoAbout);
END(*IF¥);
END ActivateLarchLBMModel;

PROCEDURE DeactivateLarchLBMModel;
BEGIN

IF MDeclared(m) THEN RemoveM(m) END(*IF*);
END DeactivateLarchLBMModel;

PROCEDURE LarchLBMModellsActive(): BOOLEAN;
BEGIN

RETURN MDeclared(m)
END LarchLBMModellsActive;

BEGIN
m := notDeclaredModel;
END LBMMod.

The moduld.BMObsprovides a parallel submodel of the measuagdal densities of the larch
bud moth (observations) madie the field while studying the larch bud moth ®m in the
Upper Engadinevalley in Switzerland from 1949 till the presencBALTENSWEILER &
FISCHLIN, 1988). This allowsto compare the observations with sitaed values. At the be
gin of the simulation session this parallel model simply reads the observationsistiiredida
file into an array and will assign the measured values during any simulaticeasnonioring
variable, which the simulationist can display from within the simulation environment.

In case the simulationist should set the gla@alulation time such that it lies outside the range
1949 and 1988, the values produced by this module atenger valid. The module has been
programmed such that visualizes missing values in the graph by letting portions of the
curve(s) disappear. This is accomplished by setting the curve attribute to invisbt®asas
values have become undefined, yet the legend is drawn witlatindutes normally used if val
ues are available.

A 247

ModelWorks 2.2 - Appendix (Sample Models)

The next three listings show the definition and the implementation parts widtieleLBMObs
which reads the data from the text flBMObsSUE.DAT

DEFINITION MODULE LBMObs;
(*

Module LBMObs

Purpose Simulates the real larch bud moth system in the
Upper Engadine Valley as a parallel model.

Method Observed larval densities in larvae/kg larch
branches as sampled from the Upper Engadine Valley
are simulated by means of a ModelWorks submodel.
Data from Fischlin, A. 1982. Analyse
eines Wald-Insekten-Systems: Der subalpine
Larchen-Arvenwald und der graue Larchenwickler
Zeiraphera diniana Gn. (Lep., Tortricidae).

Diss. ETH Nr. 6977. Swiss Federal Institute of
Technology Zurich, Switzerland, 294pp, page 90,
Table 10 and from Baltensweiler, W. and Fischlin, A.
1987, The larch bud moth in the European Alps, In
Berryman, A.A. (ed.), Population Dynamics of Forest-
Insect Systems, Plenum Press, in print.

Remark The data are read from a file only once at model
declaration and are loaded into memory for subsequent
usage.

This program module contains the model which runs
under the simulation environment ModelWorks V0.5

Programming A.Fischlin, Systems Ecology, ETHZ, 01/05/87
")

CONST
kmin = 1949; (*irst year sampled*)
kmax = 1986; (*last year sampled*)
limkmax = 1977; (* beyond limkmax yminDash, ymaxDash no longer available *)
yLL = 0.0; (*minimum used on graph scale for larval densities *)
yUL = 600.0; (*maximum used on graph scale for larval densities *)
negLogDelta = 0.01; (*offset used to plot log scale if values <= 0%)

(* The following variables may be freely used in another submodel,
typically to compare simulation results of a simulation model
with the observed values *)

VAR
yminDash: REAL; (* minimum annual value found in anyone site *)
ymeanDash: REAL; (* average annual value for whole valley *)
ymaxDash: REAL; (* maximum annual value found in anyone site *)
yminDashLn: REAL; (* In of minimum annual value found in anyone site *)
ymeanDashLn: REAL; (* In of average annual value for whole valley *)
ymaxDashLn: REAL; (* In of maximum annual value found in anyone site *)

PROCEDURE ActivateLBMObsModel;
PROCEDURE DeactivateLBMObsModel;
PROCEDURE LBMObsModellsActive(): BOOLEAN;

END LBMObs.

A 248

ModelWorks 2.2 - Appendix (Sample Models)

IMPLEMENTATION MODULE LBMObs;
(*

Revision history:

Author Date Description

af 01/05/87 First implementation
af 12/05/90 - ModelWorks 2.0 adaptation, now
dynamic model activation and de-
activation supported
- Curve attributes set, in particular
if no observations available
lineStyle is set to invisible
dg 05/12/91 Now imports from DMMathLib instead MathLib
dg 06/03/93 Import lists cleaned up
af 06/04/93 Prepared for ModelWorks 2.2 release
*
)

FROM DMFiles IMPORT
Response, TextFile, Lookup, Reset, Close, EOF, EOL, ReadChars,
SkipGap, ReadChar, GetCardinal, legalNum, GetExistingFile;

FROM DMMessages IMPORT Inform, Warn;

FROM DMStrings IMPORT Concatenate;

FROM DMConversions IMPORT CardToString, StringToReal, UndefREAL,
IsUndefREAL;

FROM DMMathLib IMPORT Ln;

FROM SimBase IMPORT
Model, DeclIM, IntegrationMethod, DeclSV, DeclMV, MDeclared,
notDeclaredModel, RemoveM, StashFiling, Tabulation, Graphing,
SetSimTime, SetMonlnterval, Nolnitialize,
Nolnput, NoOutput, NoDynamic, NoTerminate, NoAbout,
SetDefltCurveAttrForMV, Stain, LineStyle;

FROM SimMaster IMPORT CurrentTime, InstallDefSimEnv;

VAR
(*storage for observations*)
yminD, ymeanD, ymaxD: ARRAY [kmin..kmax] OF REAL;

obsMod: Model;

PROCEDURE InitData;
VAR f: TextFile; r: Response; year,k: CARDINAL; ch: CHAR;
PROCEDURE TestEOF;
BEGIN
IF EOF(f) THEN Warn("Not enough data in observation file",",") END;
END TestEOF;
PROCEDURE ReadReal(VAR f: TextFile; VAR r: REAL);
VAR numStr: ARRAY [0..31] OF CHAR;
BEGIN (*ReadReal*)
SkipGap(f); ReadChars(f,numStr);
IF (CAP(numStr[0])='N") AND (numStr[1]=0C) THEN
r := UndefREAL(); legalNum := TRUE;
ELSE
StringToReal(numStr,r,legalNum);
END(*IF*);

A 249

ModelWorks 2.2 - Appendix (Sample Models)

END ReadReal;
PROCEDURE CheckNum(k: CARDINAL; curVar: ARRAY OF CHAR);
VAR msgl,msg2: ARRAY [0..127] OF CHAR; numStr: ARRAY [0..3] OF CHAR,;
BEGIN (*CheckNum*)
IF NOT legalNum OR (k<>year) THEN
CardToString(k,numStr,0);
Concatenate("lllegal number encountered: year = ",numStr,msg1);
Concatenate("while attempting to read ",curVar,msg2);
Warn(msg1,msg2,"™);
END(*IF¥);
END CheckNum;
BEGIN (*InitData*)
f.flename := "LBMObsUE.DAT";
Lookup(f,f.filename,FALSE);
IF f.res<>done THEN
Inform("Couldn't open file 'LBMObsUE.DAT' containing observations", "™,"");
GetExistingFile(f,"Please locate 'LBMObsUE.DAT' with observations");
END(*IF*);
IF f.res=done THEN
ReadChar(f,ch);
WHILE ch<>EOL DO ReadChar(f,ch) END;
FOR k:= kmin TO kmax DO
TestEOF; GetCardinal(f,year); CheckNum(k,"year");
TestEOF; ReadReal(f,ymeanD[K]); CheckNum(k,"Ymean™);
TestEOF; ReadReal(f,yminD[k]); CheckNum(k,"Ymin™);
TestEOF; ReadReal(f,ymaxD[k]); CheckNum(k,"Ymax™);
END(*FOR?);
Close(f);
ELSE
FOR k:= kmin TO kmax DO
ymeanD[K] := UndefREAL();
yminD[K] := UndefREALY();
ymaxD[k] := UndefREAL();
END(*FOR?);
END(*IF*);
END InitData;

PROCEDURE Output;
VAR k: INTEGER,;
BEGIN
k:= TRUNC(CurrentTime()+0.1)(*ensures correct rounding*);
IF (k>=kmin) AND (k<=kmax) THEN
ymeanDash := ymeanDIk];
IF NOT IsUndefREAL(ymeanDash) THEN ymeanDashLn := Ln(negLogDelta+ymeanDash) END;
ELSE
ymeanDash:= UndefREAL();
ymeanDashLn:= UndefREAL();
END(*IF*);
IF (k>=kmin) AND (k<=limkmax) THEN
yminDash := yminD[K];
ymaxDash := ymaxD[k];
IF NOT IsUndefREAL(yminDash) THEN yminDashLn := Ln(negLogDelta+yminDash) END;
IF NOT IsUndefREAL(ymaxDash) THEN ymaxDashLn := Ln(negLogDelta+ymaxDash) END;
ELSE
yminDash:= UndefREAL();
ymaxDash:= UndefREAL();
yminDashLn:= UndefREAL();
ymaxDashLn:= UndefREAL();
END(*IF*);
END Output;

PROCEDURE ModelObjects;
BEGIN
DeclMV(yminDash, yLL, yUL,
"Minimum larval density per site", "Ymin",
"larvae/kg branches",

A 250

ModelWorks 2.2 - Appendix (Sample Models)

notOnFile, notinTable, notinGraph);
SetDefltCurveAttrForMV (obsMod, yminDash,turquoise,spotted,0C);
DecIMV(ymeanDash, yLL, yUL,

"Average larval density in valley", "Y",

"larvae/kg branches",

notOnFile, writelnTable, notinGraph);
SetDefltCurveAttrForMV (obsMod, ymeanDash,turquoise,unbroken,0C);
DecIMV(ymaxDash, yLL, yUL,

"Maximum larval density per site", "Ymax",

"larvae/kg branches",

notOnFile, notinTable, notinGraph);
SetDefltCurveAttrForMV (obsMod, ymaxDash,turquoise,spotted,0C);
DecIMV(yminDashLn, Ln(negLogDelta), Ln(yUL),

"Ln of minimum larval density per site", "Ln(Ymin')",

"larvae/kg branches",

notOnFile, notinTable, notinGraph);
SetDefltCurveAttrForMV (obsMod, yminDashLn,turquoise,spotted,0C);
DecIMV(ymeanDashLn, Ln(negLogDelta), Ln(yUL),

"Ln of average larval density in valley", "Ln(Y")",

"larvae/kg branches",

notOnFile, notinTable, isY);
SetDefltCurveAttrForMV (obsMod, ymeanDashLn,turquoise,unbroken,0C);
DecIMV(ymaxDashLn, Ln(negLogDelta), Ln(yUL),

"Ln of maximum larval density per site", "Ln(Ymax')",

"larvae/kg branches",

notOnFile, notinTable, notinGraph);
SetDefltCurveAttrForMV (obsMod, ymaxDashLn,turquoise,spotted,0C);

END ModelObjects;

PROCEDURE ActivateLBMObsModel;
BEGIN
IF NOT MDeclared(obsMod) THEN
DeclM(obsMod, discreteTime,
Nolnitialize, Nolnput, Output, NoDynamic, NoTerminate, ModelObjects,
"Observations from the Upper Engadine Valley", "Obs UE",
NoAbout);
InstallDefSimEnv(InitData);
END(*IF*);
END ActivateLBMObsModel;

PROCEDURE DeactivateLBMObsModel;
BEGIN

IF MDeclared(obsMod) THEN RemoveM(obsMod) END(*IF*);
END DeactivateLBMObsModel;

PROCEDURE LBMObsModellsActive (): BOOLEAN;
BEGIN

RETURN MDeclared(obsMod)
END LBMObsModellsActive;

BEGIN
obsMod := notDeclaredModel;
END LBMObs.

Excerpt (middle portion missing) from data fillBMObsUE.DAT accessed by module
LBMObs

Year y' y'MIN y'MAX
1949 0.018 0.006 0.041

A 251

ModelWorks 2.2 - Appendix (Sample Models)

1950 0.082 0.006 0.232
1951 0.444 0.001 1.266
1952 4.174 0.191 10.464
1953 68.797 16.667 128.490
1954 331.760 163.340 933.524
1955 126.541 25.048 317.868
1956 21.280 9.888 41.974
1957 2.246 1.330 4.538
1958 0.085 0.000 0.359
1985 0.120 N N
1986 0.690 N N
1987 2.279 0.445 4.866
1988 39.029 4.149 88.146
Legend

' mean observed larval density
y'MIN minimum observed larval density
y'MAX maximum observed larval density

The following module is the main program modulBM. Its sole purpose is to start the simu
lation environment (proceduré&kunSimEnvironment and to install a menu (procedure
InstallMenuy which gives access to the actual models. The latter ncentains a command
which asks the simulationist which submodel(s) she wishes to(kyate) or to remove (de
activate) (procedureChoos¢. The master module imports from the moduldBMMod
(population model) and.BMObs (exports the parallebbservation model) the proderes
ActivateLarchLBMModeland DeactivateLarchLBMModekesp. ActivateLBMObsModeland
DeactivateLBMObsModelThese procedures will declare omreve the desired modelshus
allowing the simulationist to drop or load a model anytime during the simulation session.

MODULE LBM; (* af 1/5/87; 12/5/90 *)

*

Module LBM (Larch Bud Moth)

Purpose master module modelling the larch bud moth system
by means of ModelWorks V0.3 simulating the system
behavior for the Upper Engadine Valley

References Fischlin, A. 1982. Analyse eines Wald-Insekten-
Systems: Der subalpine Laerchen-Arvenwald und der
graue Laerchenwickler Zeiraphera diniana Gn. (Lep.,
Tortricidae). Diss. ETH Nr 6977. Swiss Federal
Institute of Technology Zuerich, Switzerland, 294pp.

%)

(* Imports from ModelWorks (Sim) *)

FROM SimBase IMPORT SetDefltGlobSimPars, MWWindowArrangement;

FROM SimMaster IMPORT RunSimEnvironment;

FROM SimGraphUtils IMPORT PlaceGraphOnSuperScreen;

FROM StructModAux IMPORT InstallCustomMenu, SetSimEnv, AssignSubModel,
InstallMyGlobPreferences;

(* Imports from Larch Bud Moth modular model definition (LBM) *)

FROM LBMObs IMPORT ActivateLBMObsModel, DeactivateLBMObsModel,
LBMObsModellsActive, kmin, kmax;

FROM LBMMod IMPORT ActivateLarchLBMModel, DeactivateLarchLBMModel,
LarchLBMModellsActive;

VAR
obs, larchLBM: INTEGER,;

A 252

ModelWorks 2.2 - Appendix (Sample Models)

PROCEDURE InitSimEnv;

BEGIN
InstallCustomMenu("Models","Activation...","L");
SetSimEnv(obs);

END InitSimEnv;

PROCEDURE SetMyGlobPreferences;
CONST dummy =0.1;

BEGIN
SetDefltGlobSimPars(FLOAT(kmin), FLOAT(kmax), dummy, dummy, 1.0, 1.0);
PlaceGraphOnSuperScreen(tiled);

END SetMyGlobPreferences;

BEGIN
InstallMyGlobPreferences(SetMyGlobPreferences);
AssignSubModel(obs,"Observations - Parallel Model Upper Engadine”,
ActivateLBMObsModel, DeactivateLBMObsModel, LBMObsModellsActive);
AssignSubModel(larchLBM,"Larch - Larch Bud Moth Model (b1)",
ActivateLarchLBMModel, DeactivateLarchLBMModel, LarchLBMModellsActive);
RunSimEnvironment(InitSimEnv);
END LBM.

A 253

ModelWorks 2.2 - Appendix (Sample Models)

A.6.2 Discrete Event Harvesting In a Continuously Growing ForeBbrestYield

Forests can fix or release previously fixed carbon, herfigcting the C@-concentration of

the atmosphere. Forest growth, e.g. in form of aforestations, issential process, which is
potentially able to fix additional carbon. it more or less proportional to the carbon fixing
capability of a forest. Growth affee biomass Q can be roughly modeled by the pattern of
logistic growth PEARL, 1927), i.e. growth is the slower the less biomass is alrepdysent,
reaches then a maximum while biomass accumulaied,slows down again in a mature forest
(FISCHLIN & BUGMANN, 1993; 1994). In order to account for various growpatterns
(FISCHLIN & BUGMANN, 1993; 1994), the model parameters r and K can be adjastearding

to thestudied type of forest j. Given these assumptions the following continuous time model
equations result:

dQ -
W=t 53 qu @

where

] Type of forest, e.g. "Beech forest", "Montane spruce”, or "Subalpine spruce”

Q Dry Weight [DW] of above ground biomass (includes wood) [t DW/ha]
I Maximum relative growth rate [/a]
Kj Carrying capacity [t DW/ha]

In addition to growth, the model has tsimulate harvesting and the fate of the carbon
transported out of the forest in form of wood and transferred into long-lived forest products.

A simple model of conventional harvesting as currently practiced in Switzerland is indiorm
discrete events: In reality forests are cut in steps, hence harvesting can be masleledw of

3 cutswith e.g. 8 years in between, initiated as soon gsa@ounts to 90% of K For each
type of forest the harvestjldan be modeleds a sequence of three state events occuring at the
cutting timest= th, th+g, and th+16, where iy = 30, 50 respectively 70% of the current iQ

cut, i.e. removed out of the forest:

hi - Q(t) tt=th +i-8 i=0,1,2
Hi(t) = (2)
0 else
th=t |Qj(t) =0.9-K hp=0.3 h1=0.5 ho =0.7 €)
Q) = Q(t) - Hj(H) ©)
where
Hj Harvested biomass [t DW/ha-a]

hj Fraction of harvested wood in percentages of currently present biomass Q
th Harvesting time or time of first cut in a sequence of 3 cuts

t Continuous left-hand side of time before and up to the discrete event harvest

Alternatively a maximum sustainable yie(ISY) can be obtained if forest biomass i
around @, i.e. a biomass which maximizes g/dt. This is thecase if ¢ = Kj/2 and if
havesting occurs continuously. Howevein practice a truly continuous harvesting is not
feasible, hence, a MSYharvesting scheme can be modeled approximately as follows:
Whenever Qexceeds K2 +¢j a biomass of 2; is harvested:

A 254

ModelWorks 2.2 - Appendix (Sample Models)

- 2-£j t"=th '
Hi(t) = ()
0 t £

th=1 |Qjt)=0.5K * & (@)

Both types of harvesting transfer a certain fractioeg. 40% HARMON et al, 1990), of the
harvested biomassjtb endurable wood productg: P

Pi(t) = B(t) + p-H(t) (4)
where

Pj Biomass in endurable wood products [t DW/ha]
ol Fraction of harvested biomass ending up in endurable wood products

Finally, the decay othe endurable wood products and the associated release ofoCbe
atmosphere may be modeled as follows:

d

BO- gm0 ©)
where

g Relative decay rate [/a]

The following table lists all needed model parameserd the model can be solved by using
small initial values for the biomass, e.g;@Q) = 5 t/ha.

Parameter Unit j = Beech forest j = Montane spruce = Subalpine
forest spruce forest
y al 0.04 0.05 0.05
Kj t DW/ha 550 600 170
d al 0.025 0.037 0.037
g t DW/ha 40 80 25

Eq. (1) and (5) are differential equations and form a DES8ed biomass which describes
growth and decay of biomass pools. Eg. (2) respectively (2", (3), and (4) correspmnd
instantaneous state transition functions and definedyinamics of a discrete event system
(DEVS), calledharvest since it describes the discrete harvest. What results represents a
structured, continuous time system coupling a DESS with a DEVS.

Thereare two state variables, jnd R, both belonging to the DESS submode];isljust an
auxiliary variable of the DEVS. Howeéver, the state variablgsa@d R are also affected by the
dynamics of the DEVS (see Eq. 3 and 4). One solution to model the system is the following:

As a consequence of the state evaduring at condition (a) respectively (a') and at tirgett

the event output functionygf the DES®iomassproduces an event outpfit on behalf of the
DEVSharvesisee chapterheoryEg. 4.2b). Such an event output is of clags= hg, its T =

0, and it will pass as théransactiona the DESS' state vector [@j]. The corresponding
event input of the DEV3iarvestwill cause the calculation of the auxiliary variatit§ and
accordingto Eqg. (3) and (4) also a change in the state of the DESS, i.e. the first cut of a
harvesting sequence. Furthermone,the case of a conventional harvesting scheme, the event

A 255

ModelWorks 2.2 - Appendix (Sample Models)

of class | schedulegnmediately the subsequent second cut (event of elas$y). Finally,

the event of class = hy schedules the third cut (event of class hy). In order to allow for
the proper state changes, all events of clastohy pass the received transaction, i.e. the state
vector [Q,Pj]', on to the subsequent event, i.evhile scheduling harvesting events they use
this vector as the transaction

The following model definition program ForestYield implements the described el
allows to experiment with all three forest types (beech, montane and subalpine sprdceith

various management or silvycultural practices such as (no harvesting atealt, cutting, and
plenter management).

MODULE ForestYield;

MODEL: ForestYield

Purpose: Simulation of silvicultural management
strategies for Swiss forestry under the perspective
of C-sequestration in order to contribute to
curbing climatic change. The model definition
program allows to explore strategies of maximum
sustainable yield vs. conventional management in
relation with the management of the carbon fluxes
and pools, in particular the storing of carbon in
form of endurable wood products. For more details
see the listed references.

References

Fischlin, A. & Bugmann, H., 1993. Think globally, act
locally! A small country case study in reducing
net CO2 emissions by carbon fixation policies. In:
Kanninen, M. (ed.), Carbon balance of the world's
forested ecosystems: Towards a global assessment.
Publications of the Academy of Finland, VAPK
Publishing, Helsinki: in print.

Fischlin, A. & Bugmann, H.K., 1994. Kénnen forstliche
Massnahmen einen Beitrag zur Verminderung der
schweizerischen CO2-Emissionen leisten? Okologische
Grundlagen und erste Abschéatzungen. Schweiz. Z.
Forstw., 145(4): 275-292.

Authors: A, Fischlin & H. Bugmann, 21.Nov.93,
Systems Ecology, ETHZ

)

FROM DMStrings IMPORT Concatenate, Append, AppendCh, AssignString;

FROM DMStorage IMPORT Allocate, Deallocate;

FROM DMConversions IMPORT IntToString, UndefREAL, IsUndefREAL,
RealToString, RealFormat;

FROM DMMessages IMPORT Ask;

FROM DMMenus IMPORT InstallMenu, InstallCommand, Menu, Command,
CheckCommand, UncheckCommand, IsCommandChecked, AccessStatus, Marking,
InstallSeparator, Separator;

FROM DMMaster IMPORT DialogMachineTask;

FROM SimBase IMPORT
Model, IntegrationMethod, DecIM, DeclSV, DeclP, RTCType,
StashFiling, Tabulation, Graphing, DeclMV, SelectM,
SetP, GetP, SetProjDescrs, RemoveM, MDeclared, RemoveP, PDeclared,
SetSimTime, SetlntegrationStep, SetMonlnterval,
GetDefltGlobSimPars, Message, MWWindowArrangement,
Nolnitialize, Nolnput, NoOutput, NoTerminate, NoAbout, DoNothing,

A 256

ModelWorks 2.2 - Appendix (Sample Models)

StateVar, Derivative, Parameter, AuxVar,
MWWindow, GetWindowPlace, SetWindowPlace, ClearTable;

FROM SimEvents IMPORT
EventClass, nilTransaction, Transaction, StateTransition,
AsTransaction, noStateTransition, InitEventScheduler,
SchedulingOnlyAfter, ScheduleEvent, PendingEvents, NextEventAt,
DiscardEventsBefore, DiscardEventsAfter, never, DeclIDEVM,;

FROM SimMaster IMPORT
RunSimEnvironment, CurrentTime, InstallExperiment, SimRun,
PauseRun, MWSubState, GetMWSubState;

FROM SimGraphUtils IMPORT PlaceGraphOnSuperScreen;
FROM StateEvents IMPORT

ExpectStateEvt, StateEvt, IsStateEvt, unexpectedStateEwvt,
StateEvtExpected, IgnoreStateEvt;

)
(* Data - parameters and structures of submodels: *)

TYPE
Alfa = ARRAY [0..31] OF CHAR;

(* Forest *)

TYPE
ForestType = (Beech, MontaneSpruce, SubalpineSpruce);

Forest = RECORD
m: Model; (* forest model *)
j: ForestType; (* type of forest *)
name,ident: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Alfa;
Qj: StateVar; (* dry weight of above-ground biomass in forest *)
QjDot: Derivative;
rj: Parameter; (* maximum relative growth rate *)
r: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Parameter;
Kj: Parameter; (* carrying capacity of forest *)
K: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Parameter;
END(*RECORD?);

(* Woodsector *)

* ——m——m————— *)
TYPE
WoodSector = RECORD
m: Model; (* wood sector model *)
Pj: StateVar; (* dry weight of endurable forest products *)
PjDot: Derivative;
mu: Parameter; (* fraction of wood harvest ending in endurable forest

products *)
dj: Parameter; (* relative decay rate of endurable forest products *)
d: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Parameter;
END(*RECORD*);

(* Harvest *)

A 257

ModelWorks 2.2 - Appendix (Sample Models)

clearCutting=1; (* EventClasses have to be globally unique *)
plenterHarvesting = 2;

fstSubCut = 0;

lastSubCut = 2;

TYPE

HarvestType = (unused, clearCut, plenter);

Harvest = RECORD
m: Model; (* harvesting model *)
hT: HarvestType; (* type of harvesting *)
name,ident: ARRAY [MIN(HarvestType)..MAX(HarvestType)] OF Alfa;
thetaClrCut: Parameter; (* Clear cut threshold (fraction of Qj) at which

harvest takes place *)

thetaPlent: Parameter; (* Plenter threshold (fraction of Qj) at which harvest
takes place *)
epsj: Parameter; (* fraction of harvested wood as well as

tolerance for exceeding thetaPlent before plenter
harvesting *)
eps: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Parameter;
i [fstSubCut..lastSubCut]; (* index of sub cut while clear cutting *)
h: ARRAY [fstSubCut..lastSubCut] OF Parameter;
(* fraction of harvested wood in % of Qj *)

interval: Parameter; (* years between subsequent sub cuts while clear
cutting *)
hEvt: StateEwt; (* state event harvesting *)
Hj: AuxVar; (* harvested biomass *)
END(*RECORD¥);

(* Observer *)

(* —======= *)
TYPE
Observer = RECORD
m: Model;

accCPool: StateVar; (* total carbon fixed pooled over time, needed to compute
avgTotCFixed *)
accCPoolDot: Derivative;
totCFixed: AuxVar; (* total carbon fixed in forest and endurable forest products
*
)
avgTotCFixed: AuxVar; (* average over time of total carbon fixed (totCFixed) *)
cDWRatio: Parameter; (* ratio of C to dry weight *)
thetaDash: Parameter; (* fraction of Kj, as soon as reached by Qj, causing to
start assessing the average total carbon pool (see
procedure StartCPoolAssessment), or in other words
to ignore the transient behavior of the system
before that moment *)
begAccCEwt: StateEvt; (* state event start of C-pool assessment *)
startCPoolAssessTime: REAL; (* time when the C-pool assessment started *)
END(*RECORD?);

(* Forestry *)
*

(—======= *)

TYPE
Forestry = RECORD
forest: Forest;
harvest: Harvest;
woodSector: WoodSector;
observer: Observer;
END;
VAR
f: Forestry;

A 258

'k****'k*)

(* Submodels *)

(*************)

(* Forest *)

______ *)
PROCEDURE Forestlnitialize;
BEGIN
WITH f.forest DO
GetP (m, r[j], rj);
GetP (m, K[j], Kj);
END(*WITH?*);
END Forestlnitialize;

PROCEDURE ForestDynamic;
BEGIN
WITH f.forest DO
QjDot := ri*(Kj - Q))/Kj*Qj;
END(*WITH®);
END ForestDynamic;

(*Eqa. (1))

PROCEDURE ForestOutput;
BEGIN
WITH f.forest DO WITH f.harvest DO
IF (hT=clearCut) AND IsStateEvt(hEvt,Qj) THEN
i ;= fstSubCut;
ScheduleEvent(clearCutting,0.0,AsTransaction(f));
ELSIF (hT=plenter) AND IsStateEvt(hEvt,Qj) THEN
ScheduleEvent(plenterHarvesting,0.0,AsTransaction(f));
END(*IF*);
END(*WITH*) END(*WITH*);
END ForestOutput;

(* Harvest *)
*

PROCEDURE Harvestinitialize;
BEGIN
WITH f.forest DO WITH f.harvest DO
IF (hT=clearCut) THEN
ExpectStateEvt(hEvt,Qj,thetaClrCut*Kj,MAX(REAL));
ELSIF (hT=plenter) THEN
ExpectStateEvt(hEvt,Qj thetaPlent*Kj+epsj,MAX(REAL));
END(*IF*);
IF (hT=plenter) THEN GetP (f.harvest.m, eps[j], epsj) END;
END(*WITH*) END(*WITH®*);
END Harvestlnitialize;

PROCEDURE ClearCutEvent(alfa: Transaction);
TYPE ForestryAsTransaction = POINTER TO Forestry;
VAR msg: ARRAY [0..127] OF CHAR,; f: ForestryAsTransaction;
BEGIN
f:= alfa;
WITH f» DO
msg :="Clear cut: sub cut "; AppendCh(msg,CHR(ORD('0")+harvest.i));
Message(msg);
harvest.Hj := harvest.h[harvest.i]*forest.Qj; (*Eq. (2) %)
IF harvest.i<lastSubCut THEN
INC(harvest.i);
ScheduleEvent(clearCutting,harvest.interval,alfa);
END(*IF*);
forest.Qj := forest.Qj - harvest.Hj; (*Eq. (3) %)

ModelWorks 2.2 - Appendix (Sample Models)

A 259

ModelWorks 2.2 - Appendix (Sample Models)

woodSector.Pj := woodSector.Pj + woodSector.mu*harvest.Hj; (* Eq. (4) *)
END(*WITH*);
END ClearCutEvent;

PROCEDURE PlenterHarvestEvent(alfa: Transaction);

TYPE ForestryAsTransaction = POINTER TO Forestry;

VAR msg: ARRAY [0..127] OF CHAR; f: ForestryAsTransaction;
BEGIN

f:= alfa;
WITH fA DO
Message("Plenter harvest");
harvest.Hj := 2.0*harvest.epsj; (*Eq. (2) %
forest.Qj := forest.Qj - harvest.Hj; (*Eq. (3) %)
woodSector.Pj := woodSector.Pj + woodSector.mu*harvest.Hj; (* Eq. (4) *)
END(*WITH®*);

END PlenterHarvestEvent;

(* Woodsector *)

(* —========= *)
PROCEDURE WoodSectorlnitialize;
BEGIN

WITH f.forest DO WITH f.woodSector DO
GetP (f.woodSector.m, d[j], dj);
END(*WITH*) END(*WITH*);
END WoodSectorlnitialize;

PROCEDURE WoodSectorDynamic;
BEGIN
WITH f.woodSector DO
PjDot := - dj*Pj; (*Eq.(5) %)
END(*WITH*);
END WoodSectorDynamic;

(* Observer *)

PROCEDURE Observerlnitialize;
BEGIN
WITH f.observer DO
startCPoolAssessTime := UndefREAL();
ExpectStateEvt(begAccCEvt,f.forest.Qj,thetaDash*f.forest.Kj, MAX(REAL));
END(*WITH®*);
END Observerlnitialize;

PROCEDURE ObserverDynamic;
BEGIN
WITH f.observer DO
accCPoolDot := totCFixed;
END(*WITH?*);
END ObserverDynamic;

PROCEDURE StartCPoolAssessment;
VAR msg: ARRAY [0..127] OF CHAR,;
BEGIN
WITH f.observer DO
startCPoolAssessTime := CurrentTime();
accCPool :=0.0;
msg :="Start of assessing average total C-pool size";
Message(msg);
IgnoreStateEvt(begAccCEW); (* subsequently ignore any such event *)
END(*WITH?*);
END StartCPoolAssessment;

A 260

ModelWorks 2.2 - Appendix (Sample Models)

PROCEDURE ObserverOutput;
BEGIN
WITH f.observer DO
totCFixed := cDWRatio*(f.forest.Qj + f.woodSector.Pj);
IF IsUndefREAL (startCPoolAssessTime) THEN
avgTotCFixed := UndefREAL();
ELSE
avgTotCFixed := accCPool/(CurrentTime()-startCPoolAssessTime);
END(*IF*);
IF IsStateEvt(begAccCEvt,f.forest.Qj) AND StateEvtExpected(begAccCEvt) THEN
StartCPoolAssessment;
END(*IF*);
END(*WITH?*);
END ObserverOutput;

PROCEDURE ObserverTerminate;

PROCEDURE MakeMsgForX(descr: ARRAY OF CHAR; x: REAL; unit: ARRAY OF CHAR);
VAR msg: ARRAY [0..127] OF CHAR,;

BEGIN (*MakeMsgForX*)
RealToString(x,msg,0,3,FixedFormat);
Concatenate(descr,msg,msg); Append(msg,unit);
Message(msg);

END MakeMsgForX;

BEGIN (*ObserverTerminate*)

WITH f.observer DO
MakeMsgForX("Mean total C fixed =",avgTotCFixed," [t/ha]");

END(*WITH?*);

END ObserverTerminate;

(* ========1%)

PROCEDURE DeclForestryBase; (* Declare basis of all model variants *)
BEGIN
(* some objects of model will be declared dynamically by DeclForest *)
WITH f.forest DO
f.forest.j := Beech; (* must be initialized once *)
name[Beech] := "Beech forest";
name[MontaneSpruce] :="Montane spruce forest";
name[SubalpineSpruce] := "Subalpine spruce forest";
ident[Beech] :="Beech";
ident{MontaneSpruce] :="MtSprc";
ident[SubalpineSpruce] := "SaSprc";
r[Beech] := 0.04;
r[MontaneSpruce] := 0.05;
r[SubalpineSpruce] := 0.05;
K[Beech] := 550.0;
K[MontaneSpruce] := 600.0;
K[SubalpineSpruce] := 450.0;
DeclM(m, Heun, Forestlnitialize, Nolnput,
ForestOutput, ForestDynamic, NoTerminate, DoNothing,

"Forest submodel”, "forest.m", NoAbout);

DeclSV(Qj, QjDot, 5.0, 0.0, 800.0,
"Biomass (dry weight) of forest", "Qj", "t/ha");

DecIMV(Qj, 0.0, 600.0,
"Biomass (dry weight) of forest", "Qj", "t/ha",
notOnFile, writenTable, isY);
DecIMV(QjDot, 0.0, 40.0,
"Biomass derivative", "dQj/dt", "t/ha/a",
notOnFile, notinTable, notinGraph);
END(*WITH?*);

(* harvest model and model objects will be declared only dynamically by DeclHarvesting

A 261

ModelWorks 2.2 - Appendix (Sample Models)

*
)
WITH f.harvest DO
hT := unused; (* must be initialized once *)
namefunused] :="Unused forest";
name|[clearCut] := "Clear cutting";
name[plenter] :="Plenter management";
ident[Beech] :="unused";
identfMontaneSpruce] :="clrCut";
ident[SubalpineSpruce] := "plent";
hEvt := unexpectedStateEvt; (* must be initialized once *)
thetaClrCut := 0.9;
thetaPlent := 0.5;
eps[Beech] := 40.0;
eps[MontaneSpruce] := 80.0;
eps[SubalpineSpruce] := 25.0;
h[fstSubCut] := 0.3;
h[fstSubCut+1] := 0.5;
h[lastSubCut] := 0.7;
interval := 8.0;
END(*WITH?*);

WITH f.woodSector DO
DecIM(m, Heun, WoodSectorlnitialize, Nolnput,
NoOutput, WoodSectorDynamic, NoTerminate, DoNothing,
"Wood sector submodel”, "woodSect.m", NoAbout);

DeclSV(Pj, PjDot, 0.0, 0.0, 800.0,
"Endurable forest products”, "Pj", "t/ha");

DecIMV(Pj, 0.0, 600.0,
"Endurable forest products”, "Pj", "t/ha",
notOnFile, writelnTable, isY);

d[Beech] := 0.025;
d[MontaneSpruce] := 0.037;
d[SubalpineSpruce] := 0.037;
DeclP(mu, 0.4, 0.0, 1.0, rtc,
"Fraction transferred from harvest to wood sector”, "u", "%");
END(*WITH*);

WITH f.observer DO
begAccCEvt := unexpectedStateEvt;
DeclM(m, Heun, Observerlnitialize, Nolnput,
ObserverOutput, ObserverDynamic, ObserverTerminate, DoNothing,
"Observer submodel”, "observer.m", NoAbout);

DeclSV(accCPool, accCPoolDot, 0.0, 0.0, 0.0,
"Total carbon ever fixed (pooled over time)", "accCPool", "t/ha");

DecIMV(accCPool, 0.0, 600.0,
"Total carbon ever fixed (pooled over time)", "accCPool", "t/ha",
notOnFile, notinTable, notinGraph);
DecIMV/(totCFixed, 0.0, 600.0,
"Total carbon fixed", "totCFixed", "t/ha",
notOnFile, writelnTable, isY);
DecIMV(avgTotCFixed, 0.0, 600.0,
"Average total carbon fixed", "avgTotCFixed", "t/ha",
notOnFile, writelnTable, isY);

DeclP(cDWRatio, 0.45, 0.3, 0.6, rtc,
"C in wood (ratio C/dry weight)", "cDWRatio", "%");
DeclP(thetaDash, 0.3, 0.0, 1.0, rtc,
"Threshold (% of K) to start assessing C-pool size", "theta™, "%");
END(*WITH*);

END DeclForestryBase;

PROCEDURE DeclPlenterHarvest;

A 262

ModelWorks 2.2 - Appendix (Sample Models)

VAR descrl,descr2: ARRAY [0..63] OF CHAR; id1,id2: ARRAY [0..15] OF CHAR;
selected: BOOLEAN;
BEGIN
WITH f.harvest DO
SelectM(m,selected);
DeclP(thetaPlent, thetaPlent, 0.0, 1.0, rtc,
"Threshold (% of K) to intitiate plenter harvesting”, "theta[plent]", "%");
descrl :="Tolerance of theta[";
id1 :="eps[";
ncatenate(descrl, f.forest.ident[f.forest.j],descr2); Append(descr2,"] before harvesting');
Concatenate(id1,f.forest.ident[f.forest.j],id2); Append(id2,"");
DeclP(eps][f.forest.j], epslf.forest.j], 0.0, 300.0, rtc, descr2, id2, "%");
epsj := eps|[f.forest.j];
END(*WITH?*);
END DeclPlenterHarvest;

PROCEDURE DeclForest;
VAR descrl,descr2: ARRAY [0..63] OF CHAR; id1,id2: ARRAY [0..15] OF CHAR,;
selected: BOOLEAN;
BEGIN
WITH f.forest DO
SelectM(m,selected);

descrl :="Intrinsic growth rate of ";

idl ="r[";

Concatenate(descrl,name[j],descr2); Append(descr2," forest");
Concatenate(id1,ident[j],id2); Append(id2,"]");

DeclP(r[j], r[i], 0.0, 1.0, rtc, descr2, id2, "/a");

rj=lil;

descrl :="Carrying capacity of ";

id1 :="K[";

Concatenate(descrl,namelj],descr2); Append(descr2," forest");
Concatenate(id1,ident[j],id2); Append(id2,"]");

DeclP(K[j], K[j], 0.0, 1000.0, rtc, descr2, id2, "t/ha");

Kj == KII;

END(*WITH*);
IF MDeclared(f.harvest.m) AND (f.harvest.hT=plenter) THEN DeclPlenterHarvest END;
WITH f.woodSector DO

SelectM(m,selected);

descrl := "Decay rate of endurable ";
id1 :="d[";
Qncatenat e(descrl, f. forest. nang{f.forest.j], descr2); Append(descr2," forest products");
Concatenate(id1,f.forest.ident[f.forest.j],id2); Append(id2,"");
DeclP(d[f.forest.j], d[f.forest.j], 0.0, 1.0, rtc, descr2, id2, "t/ha");
dj := d[f.forest.jJ;

END(*WITH*);
END DeclForest;

PROCEDURE DeclHarvesting;
VAR stTransFct: ARRAY [0..0] OF StateTransition;
iStr: ARRAY [0..7] OF CHAR,; ii: [fstSubCut..lastSubCut];
descrl,descr2: ARRAY [0..63] OF CHAR; id1,id2: ARRAY [0..15] OF CHAR,;
BEGIN
WITH f.harvest DO

CASE hT OF
| clearCut:
stTransFct[0].ec := clearCutting;
stTransFct[0].fct := ClearCutEvent;
| plenter:
stTransFct[0].ec := plenterHarvesting;
stTransFct[0].fct := PlenterHarvestEvent;
END(*CASE®);

A 263

ModelWorks 2.2 - Appendix (Sample Models)

DecIDEVM(m, Harvestlnitialize, Nolnput, NoOutput, stTransFct, NoTerminate,

DoNothing, "Harvesting submodel”, "harvest.m", NoAbout);

DecISV(Hj, Hj, 0.0, 0.0, 0.0,
"Harvested wood", "Hj", "t/ha");

DeclMV(Hj, 0.0, 600.0,
"Harvested wood", "Hj", "t/ha",
notOnFile, writelnTable, notinGraph);

CASE hT OF
| clearCut:
DeclP(thetaClrCut, thetaClrCut, 0.0, 1.0, rtc,
"Threshold (% of K) to intitiate clear cutting”, "theta[clrCut]", "%");
FOR ii:= fstSubCut TO lastSubCut DO
IntToString(ii,iStr,0);
Concatenate("Fraction harvested in sub cut ",iStr,descrl);
Append(descrl,” while clear cutting");
Concatenate("h",iStr,id1);
DeclP(hlii], h[ii], 0.0, 1.0, rtc, descrl, id1, "%");
END(*FOR®);
i:= fstSubCut;
DeclP(interval, interval, 0.0, 20.0, rtc,
"Interval between sub cuts while clear cutting”, "interv", "a");
| plenter:
DeclPlenterHarvest;
END(*CASE®);

END(*WITH*);
END DeclHarvesting;

(* Interactive specification of model variants via menu commands *)
(nnnnn *)

VAR
forMenu : Menu;
cmdF: ARRAY [MIN(ForestType)..MAX(ForestType)] OF Command;
cmdH: ARRAY [MIN(HarvestType)..MAX(HarvestType)] OF Command;

PROCEDURE DiscardCurForest;
BEGIN
WITH f.forest DO
UncheckCommand(forMenu,cmdF(j]);
IF MDeclared(m) THEN

IF PDeclared(m,r[j]) THEN RemoveP(m,r[j]) END;

IF PDeclared(m,K[j]) THEN RemoveP(m,K]j]) END;

IF PDeclared(f.woodSector.m,f.woodSector.d[j]) THEN
RemoveP(f.woodSector.m,f.woodSector.d[j])

END(*IF*);

IF MDeclared(f.harvest.m) AND (f.harvest.hT=plenter) THEN
RemoveP(f.harvest.m,f.harvest.thetaPlent);
RemoveP(f.harvest.m,f.harvest.eps[j])

END(*IF*);

END(*IF¥);
END(*WITH?*);
END DiscardCurForest;

PROCEDURE ActivateAForest(ft: ForestType);
BEGIN
DiscardCurForest;
WITH f.forest DO
j=1t
CheckCommand(forMenu, cmdF[j]);
END(*WITH?*);
DeclForest;

A 264

ModelWorks 2.2 - Appendix (Sample Models)

SetProjDescrs("Swiss forests and C-sequestration”, f.forest.namelft], ", TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE);
END ActivateAForest;

PROCEDURE ActivateBeechForest;
BEGIN

ActivateAForest(Beech);
END ActivateBeechForest;

PROCEDURE ActivateMontaneSpruceForest;
BEGIN

ActivateAForest(MontaneSpruce);
END ActivateMontaneSpruceForest;

PROCEDURE ActivateSubalpineSpruceForest;
BEGIN

ActivateAForest(SubalpineSpruce);
END ActivateSubalpineSpruceForest;

PROCEDURE DiscardCurHarvesting;
BEGIN
UncheckCommand(forMenu,cmdH[f.harvest.hT]);
IF MDeclared(f.harvest.m) THEN
RemoveM(f.harvest.m);
IgnoreStateEvt(f.harvest.hEvt);
(* ignore all eventually pending events *)
IF f.harvest.hT=clearCut THEN
DiscardEventsAfter(clearCutting,CurrentTime(),AsTransaction(f));
ELSIF f.harvest.hT=plenter THEN
DiscardEventsAfter(plenterHarvesting,CurrentTime(),AsTransaction(f));
END(*IF¥);
END(*IF¥);
END DiscardCurHarvesting;

PROCEDURE ActivateAHarvesting(harv: HarvestType);
BEGIN (*ActivateAHarvesting*)
WITH f.harvest DO
DiscardCurHarvesting;
hT := harv;
CheckCommand(forMenu, cmdH[harv]);
IF hT<>unused THEN
DeclHarvesting
ELSIF PendingEvents()>0 THEN
DiscardEventsBefore(never)
END(*IF¥);
END(*WITH?);
END ActivateAHarvesting;

PROCEDURE ActivateUnused;
BEGIN

ActivateAHarvesting(unused)
END ActivateUnused;

PROCEDURE ActivateClearCutMgmt;
BEGIN

ActivateAHarvesting(clearCut)
END ActivateClearCutMgmt;

PROCEDURE ActivatePlenterMgmt;
BEGIN

ActivateAHarvesting(plenter)
END ActivatePlenterMgmt;

PROCEDURE InstallCustomMenu;
BEGIN
InstallMenu(forMenu, "Forestry", enabled);

A 265

ModelWorks 2.2 - Appendix (Sample Models)

InstallCommand(forMenu, cmdF[Beech], f.forest.name[Beech],
ActivateBeechForest, enabled, unchecked);

InstallCommand(forMenu, cmdF[MontaneSpruce], f.forest.name[MontaneSpruce],
ActivateMontaneSpruceForest, enabled, unchecked);

InstallCommand(forMenu, cmdF[SubalpineSpruce], f.forest.name[SubalpineSpruce],
ActivateSubalpineSpruceForest, enabled, unchecked);

InstallSeparator(forMenu,line);

InstallCommand(forMenu, cmdH[unused], "Unused forest",
ActivateUnused, enabled, unchecked);

InstallCommand(forMenu, cmdH|[clearCut], "Clear cutting",
ActivateClearCutMgmt, enabled, unchecked);

InstallCommand(forMenu, cmdH][plenter], "Plenter management",
ActivatePlenterMgmt, enabled, unchecked);

END InstallCustomMenu;

(**************)

(* Experiment *)

(**************)

PROCEDURE Experiment;
VAR jj: ForestType; ii: HarvestType;
z: ARRAY [MIN(ForestType)..MAX(ForestType)],
[MIN(HarvestType)..MAX(HarvestType)] OF REAL;
x,y,w,h: INTEGER; isOpen : BOOLEAN,;
PROCEDURE MakeMsgForX(descr: ARRAY OF CHAR,;
x: REAL; unit: ARRAY OF CHAR;
ji: ForestType; ii: HarvestType);
VAR rStr: ARRAY [0..15] OF CHAR; msg: ARRAY [0..127] OF CHAR,;
BEGIN (*MakeMsgForX*)
RealToString(x,rStr,0,3,FixedFormat);
AssignString(descr,msg); Append(msg,rStr); Append(msg,unit);
Append(msg,f.forest.nameljj]);
Append(msg," /");
Append(msg,f.harvest.namelii]);
Message(msg);
END MakeMsgForX;
BEGIN (*Experiment*)
FOR jj:= MIN(ForestType) TO MAX(ForestType) DO
ActivateAForest(j));
FOR ii:= MIN(HarvestType) TO MAX(HarvestType) DO
ActivateAHarvesting(ii);
SimRun;
z[jj,ii] := f.observer.avgTotCFixed,;
END(*FOR?);
END(*FOR?);

(* Display of results: *)

GetWindowPlace(TableW,x,y,w,h,isOpen);

IF isOpen THEN ClearTable ELSE SetWindowPlace(TableW,x,y,w,h) END;

FOR jj:= MIN(ForestType) TO MAX(ForestType) DO
FOR ii:= MIN(HarvestType) TO MAX(HarvestType) DO

MakeMsgForX("Mean total C fixed = ",z[jj,ii]," [t/ha] <-- Run: " jj,ii);

END(*FOR®);

END(*FOR?);

END Experiment;

(* Initialization of models and default variants *)
(e :)

PROCEDURE DefineModelAndEnvironment;
BEGIN

DeclForestryBase;

InstallCustomMenu;

ActivateBeechForest;

A 266

ModelWorks 2.2 - Appendix (Sample Models)

ActivateClearCutMgmt;
SetSimTime(0.0,500.0);
SetlntegrationStep(0.5);
SetMonlnterval(1.0);
InstallExperiment(Experiment);
PlaceGraphOnSuperScreen(tiled);
END DefineModelAndEnvironment;

BEGIN

RunSimEnvironment(DefineModelAndEnvironment);
END ForestYield.

A 267

ModelWorks 2.2 - Appendix (Sample Models)

A 268

ModelWorks 2.2 - Appendix (Literature)

B Literature

Thefollowing list contains references of cited literature as well as references to recommended
further reading on the subject of modelling and simulation:

ATKINSON, L.V. & HARLEY, P.J, 1983. An Introduction to numerical methoagth Pascal London:
Addison-Wesley, 300pp.

BALTENSWEILER, W. & FISCHLIN, A., 1988. The larch bud moth in the Alpsin: Berryman, A.A. (ed.),
Dynamics of forest insect populationgatterns, causes, implicatians New York a.o.: Plenum
Publishing Corporation: 331-351.

BERRYMAN, A.A. & MILLSTEIN,J.A.,1989. Are ecological systems chaotiand if not why not? TREE 4:
26-8.

CELLIER, F.E. & HSCHLIN, A., 1980 Computer-assisted modelling of ill-defined systdmsTrappl,R., Klir,
G.J. & Pichler, F.R. (eds.), Genefalstems Methodology, Mathematical Systems Theory, Fuzzy Sets,
Proc. of the Fifth European Meetiran Cybernetics and Systems Research, Vol. VIII, 417-429,
McGraw-Hill Intern. Book Comp., Washington, New York, 1982, 544pp.

Coby, W.J, 1981. Analysis of proposals for the floating-point standat&EEE Computer14 (3): 63-68.

ENGELN-MULLGES, G. & REUTTER, F., 1988. Formelsammlung zur Numerischedathematik mit
MODULA 2-Programmen Wissenschaftsverlag, Mannheim a.o., 510pp.

FISCHLIN, A., 1982 Analyse einedVald-Insekten-Systems: Der subalpine Larchen-Arvenwald und der graue
LarchenwickleiZeiraphera dinianaGn.({Lep, Tortricidae). Diss. Eidg. Tech. Hochsch. Ziirich, No. 6977,
294pp.

FISCHLIN, A., 198&. Simplifying the usage and programming of modern workstations with Moddlhe2:
Dialog Machine Internal report, Project-Centre IDA, Swiss Federal Institutd@thnology Zirich
(ETHZ), Switzerland, 15pp.

FISCHLIN, A., 1986b. The"Dialog Machine" for the Macintosh Internal report, Project-Centre IDA, Swiss
Federal Institute of Technology Zurich (ETHZ), Switzerland.

FISCHLIN, A., 1991. Interactive modeling and simulation of envimertal sysgems on worktaions. In:
Moller, D.P.F. (ed.), Analysis of dymic systemsn medicine, biology, and ecology. Proc. of the 4th
Ebermurger Working Conference, ApBt7, 1990, Eberburg, Bad Minster am Stein-Ebernburg, BRD,
Informatik-Fachberichte 275, Springer, Berlin a.o0.: 131-145.

FISCHLIN, A., 1992 Modellierung und Computersitationen in den Umeltnatuwisserschaten [Modelling
and computer simulation in the environmental sciencés] Schaufddeger, W. et al (eds.), Computer
im Unterricht an der ETH ZuriciBericht Uber das Pjekt IDA (Informatik Dient Allen) 1986-1991,
197pp., Zirich, Verlag der Fadgreine: 165-178.

FISCHLIN, A., MANSOUR, M.A., RIMVALL , M. & SCHAUFELBERGER W., 1987. Simulation and computer
aided control system design in engineering education Troch,l.,Kopacek,P. & Breitenecker, F. (eds.),
Simulation of Control Systems, Pergamon Press, 459pp., Oxford a.o., 51-60pp.

FISCHLIN, A. & SCHAUFELBERGER W. 1987. Arbeitsplatzrechner im technisch-natursgsschafiichen
Hochschulunterricht Bulletin SEV/VSE,78 (Januar): 15-21.

FISCHLIN, A. & ULRICH, M., 1987. Interaktive Simulation schlecht-definierter Systeme auf modernen
Arbeitsplatzrechnern: die Modula-2 Simulationssoftware ModelWorkBroceedings, Treffen des
GI/ASIM-Arbeitskreises 4.5.2.1 "Simulation in Biologie ukiédizin", February, 27-28, 1987, Vieweg,
Braunschweig: 1-9.

FISCHLIN, A. & BUGMANN, H., 1993. Think globally, act locally! A small country case study in reduniety
CO2 emissions by carbon fixation policiedn: Kanninen, M. (ed.), Carbon balance of the world's

A 269

ModelWorks 2.2 - Appendix (Literature)

forested ecosystems: Towards a global assessment. Publications Adfattemy of Finland, VAPK
Publishing, Helsinki: in print.

FISCHLIN, A. & BUGMANN, H., 1994. Kdnnen forstliche Massnahmen eine Beitrag zur Verminderung der
schweizerischen Cf2Emissionen leistenBchweiz. Z. Forstwesl45(4): 275-292.

FORRESTER J.R., 1970. Principles of systemsAddison Wesley, N.Y.

IEEE STD 754-1985 1985. IEEE standard for binary floating-point arithmetidcNew York: IEEE, Incor IEEE
TASK P754 1981. A proposed standard fanary floating-point arithmetic - Draft 8. IEEE Computer,
14 (3): 51-62.

KELLER, D., 1989. Introduction to the Dialog Machinelnterner BerichNr. 5 (Nov.), Projekt-Zentrum IDA,
Swiss Federal Institute of Technology Zurich (ETHZ), Switzerland, 37pp.

KORN G.A. & WAIT, J.V.,1978. Digital continuous-system simulatiorPrentice-Hall, Englewoogliffs,
N.J., 212pp.

KREUTZER W., 1986. System simulation: programming styles ¢&arjuages Sydney a.o.: Addison-Wesley,
366pp.

LOTKA, A.J., 1925.Elements of physical biologyBaltimore: Williams and Wilkins.

LUENBERGER D.G, 1979. Introduction to dynamic systems - Theory, models, and applicatifiey, New
York, 446pp.

MANSOUR, M. & SCHAUFELBERGER W., 1989. Softwareand laboratory experiments using computers in
control education IEEE Control Systems Magazirig7 2 (April): 19-24.

MAY, R.M. & OSTER G.F, 1976. Bifurcations and dynamic complexity in simple ecological modé{m.
Nat.,110 573-99.

MAY, R.M. (ed.), 1981 .Theoretical ecology. Principlesd applications. Blackwell Scientific Publications,
Osney Mead, Oxford, 2nd ed., 489pp.

MAY, R.M., 1974. Biological populations with nonoverlapping generations: stable points, stable cycles, and
chaos Science]1l86 645-7.

MAY, R.M., 1975.Biological populations obeying difference equations: stable points, stable @mdeshaos
J. Theor. Biol51: 511-24.

MAY, R.M., 1976. Simple mathematical models with very complicated dynanhegure261: 459-67.

NEMECEK, T.,1993. The role of aphid behavior in the epidemiology of potato virus Y: a simulation study.
Diss. ETH Zurich No. 10086, 232pp.

PEARL, R., 1927.The growth of populationsQ. Rev. Biol.2: 532-548.

ROBINSON, S.B, 1986.STELLA - Modelingnd simulation software for use with the MacintoBlgte: 277
278

THOENY, J., FSCHLIN, A. & GYALISTRAS, D., 1994. RAS$: Towards bridging thgap between interactive
and off-line simulation Halin, J. (ed.), 1995, Proc. CISS 94, Springer, in prep.

ULRICH, M., 1987. ModelWorks. An interactivilodula-2 simulation environment.Post-graduate thesis,
Project-Centre IDA, Swiss Federal Institute of Technology Zurich (ETHZ), Switzerland, 53pp.

VOLTERRA, V., 1926. Variazione e fluttuazini del numerindividui in specie animali conviventi.Mem.
Accad. Nazionale Lincei (ser. 8) 31-113.

WIRTH, N., 1985. Programming in Modula-2, Third, Corrected Editio&pringer-Verlag, Berlin a.o., 202pp.

1RASS is an acronym f®®AMSESSimulation Server.

A 270

ModelWorks 2.2 - Appendix (Literature)

WIRTH, N., 1988.Programming in Modula-2 Springer, Berlin a.0., 4th, corrected edition.

WIRTH, N., GQUTKNECHT, J., HElZ, W., SCHAR, H., SEILER, H. & VETTERLI, C., 1988.MacMETH. A fast
Modula-2 language system for the Apple Macintosh. User Man2iadl ed. Institut fur Informatik ETH
Zirich, Switzerland, 100pp.

WIRTH, N., QUTKNECHT, J., HEIZ, W., SCHAR, H., SEILER, H., VETTERLI, C. & RSCHLIN, A., 1992.
MacMETH. A fast Modula-2 language system forAbple Macintosh. User Manualdth. completely
revised ed., Departement Informatik ETH Zurich, Switzerland, 116pp.

WYMORE, A.W., 1984. Theory of Systemsln: VICK, C. R., RMAMOORTHY, C. V.EDS): Handbook of
Software Engineering, Van Nostrand Reinhold Company, New York, 1984

ZEIGLER, B. P., 1976l heory of Modelling and Simulatiodghn Wiley & Sons.
ZEIGLER, B. P., 1984System Theoretic Foundationshéddelling and Simulation.In: Oren, T. I., Zeigler,

B. P., Elzas, M. S.(edsBimulation and Model-Based Methodologids1 Integrative View, Springer
Verlag.

A271

ModelWorks V2.2 - Appendix (Versions)

C ModelWorks Versions and I mplementations

The ModelWorks version described in thistext isversion V2.2 finalized in spring 1994. There
exist in fact five, dightly differing implementations or versions of ModelWorks:

1) The standard Macintosh version V2.2. Runson al Macintosh computers with at least
1 MBytes of main memory and offers al functions as described in this text without
any restrictions.

2) TheReflex Macintosh version V2.0/Reflex. It is a reduced subset from the standard
version and runs on 512K Bytes machines like the Macintosh Reflex (Mac 512KE).
The following restrictions apply: no graph printing except screen dumps, no clip-
board support, and no dumping of graphs onto the stash file. Colors are available on
color screens and on printer systems which support color screen dumps. However
the smulation environment mode "restore graph with colors' is not available.

3) ThelBM PC GEM-VersionV1.1/PC. Itisaso areduced subset from the standard
Macintosh version. Besides the same restrictions which apply to the Reflex Macin-
tosh version, this version can not support colors. Thisis because of the MS DOS
memory limitation of 640 KBytes. Furthermore this version requires static linking.

4) ThelBM PC Windows-Version V2.2/PC. Itisfunctionally equivalent with the stan-
dard Macintosh version and runs on every machine capable of running MS Windows
3.1. Thisversion requires static linking.

5) The Macintosh Il version V2.2/1I. 1t is functionally identical with the standard
version but takes full advantage of the Motorola 68020, 68030 or 68040 32-Bit CPU
and the mathematical coprocessors Motorola 68881, 68882. It is faster, however, it
runs only on Macintosh 11, Quadra, or other similar models, given the machine is
equipped with afloating point unit (FPU).

For the Macintosh ModelWorks is distributed as part of the RAMSES! software package, for
the IBM PC only as ModelWorks alone. 1n both cases ModelWorks is rel eased together with
the "Dialog Machine". All mentioned software can be obtained via anonymous internet file
transfer ftp (at no charge) from the host ftp.ito.umnw.ethz.ch (current internet address
129.132.80.130) in ftp directory /pub/mac/RAMSES or /pub/pc/RAMSES. For details on the
installation and the software architecture see the separate booklet "Installation Guide and
Technical Reference of the RAMSES software" distributed together with the RAM SES software
package.

The usage of the software for noncommercia purposes is free and unrestricted as long as the
authorship of the used software is stated clearly on any redistributed model or other program,
i.e. any product descriptions or labels must state in writing that the "Interactive ModelWorks
Simulation Software by A. Fischlin et al. from the Swiss Federal Ingtitute of Technology Zirich
ETHZ" hasbeen used to develop the product. All copyrights are reserved and are held by the
authors and the Swiss Federal Institute of Technology Zirich ETHZ. ModelWorks may not be
sold, nor included in any sold product as an incentive, nor otherwise redistributed for a profit
without prior written consent by the authors and the Swiss Federa Institute of Technology
Zurich ETHZ. Please keep the software and the documentation together!

1RAMSES s an acronym for Research Aids for Modeling and Simulation of Environmental Systems. For more
information on the concepts of RAM SES see FISCHLIN (1991).

A 272

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D Use and Definitions of ModelWorksand Library Modules

D.1 M ODELWORKS MANDATORY CLIENT INTERFACE

The definition modules belonging to the mandatory client interface of ModelWorks, i.e. the
modules SmBase and SmMaster, are not listed here. Please consult chapter Client Interface
from the part 111 Reference instead, since all objects exported by SmBase and SmMaster are
already fully described there. Note, for the reader's convenience, the chapter Quick References
lists the modules SmBase and SmMaster once more fully; thus, in order to gain a good
overview over the whole client interface of ModelWorks, consult the ModelWorks quick
reference.

D.2 M ODELWORKS OPTIONAL CLIENT INTERFACE

D.2.1 SmEvents

The module SmEventsis needed to work with models of the type discrete event system (DEVS)
as described in the chapter Model Formalismsin part 11 Theory. This module extends the client
interface of ModelWorks, is optional, but has to be used whenever the modeler wishes to
implement DEVS. For atypica usage see the sample model Diversity, the submodel CPTraffic
of the structured model definition program CarPollution , or the research sample model
ForestYield

DEFI N TI ON MCDULE Si nEvent s;

(***

Mbdul e SinEvents (MV V2. 2)

Copyright (c) 1993 by Andreas Fischlin and Swiss
Federal Institute of Technol ogy Zirich ETHZ

Pur pose Support for discrete event similations (DEVS)
according to the event schedul i ng approach

This module is part of the optional client interface of
"Model Wrks", an interactive Mdul a-2 nodel | i ng
and simul ation environment.

Pr ogr ammi ng

0 Design
A Fischlin 7/ Mar/ 93

o I npl enentation
A Fischlin 7/ Mar/ 93

Syst ems Ecol ogy

Institute of Terrestrial Ecol ogy

Departnent of Environnental Sciences

Swi ss Federal Institute of Technol ogy Zurich ETHZ
QG abenstr. 3

CH 8952 Schlieren/ Zurich

Swi t zer |l and

Last revision of definition: 21/Mar/94 AF

A 273

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

***)

FROM SYSTEM | MPORT ADDRESS, BYTE;
FROM Si nBase | MPCRT Model ;

**************************)

(* D screte event classes *)

(**************************)

QONST
m nEventd ass = 0;
maxEvent d ass = 3000;

unknownEvent d ass = nmaxEvent d ass;

TYPE

Event d ass = [m nEvent d ass. . maxEvent A ass] ;

(*
Each state transition of a DEVS is characterized by a
particul ar discrete event class. ADEVS owns a finite set of
event classes. Each event class nmust be positive and uni que
within the simlation environment and nust be decl ared and
associated with a given state transition function via a data
structure of type StateTransition. The set of event classes
respectively state transition functions belonging to a DEVS
are decl ared when calling procedure Decl D scEvtM Event
classes are mainly useful if another model w shes to produce
an event output. Such a nodel, e.g. a continuous tine (DESS)
or discrete tine nodel (SQY), may do so by scheduling the
event output together with the appropriate event class (using
procedure Schedul eEvent). If the simulation time is advanced
to the tine the event is due, Mddel Wrks will then dispatch
the event to the appropriate state transition function.

*)

Transacti on = ADDRESS;

(*
Every discrete event may be associated with a particul ar set
of data, the transaction. E.g. arriving custoners nay be
described by several attributes such as sex, age, denand
etc. Wse nil Transaction to schedul e or handl e data-| ess
events.

*)

TYPE
Stat eTransi ti onFuncti on = PROCEDURE (Transacti on);
StateTransiti on = RECCRD
ec: Bventd ass;
fct: StateTransitionFunction;
END,
(*
Associates state transition function fct with the event class
cl. Typically a state transition function changes
i nstantaneously the state of a DEVS if a correspondi ng event
i s encount er ed.

*)

VAR
ni | Transaction: Transaction; (* read only! *)
noStateTransition: ARRAY [0..0] OF StateTransition; (* read only! *)

PROCEDURE AsTransacti on(VAR d: ARRAY CF BYTE): Transacti on;
(*

Converts any data structure into a Transaction.

Exanpl e:

Schedul eEvent (ec, t au, AsTransact i on(nyd obg bect));

A 274

*)

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

schedul es an event of class ec operating on the transaction
nyQ obg bect. nyd obg bect has been declared as a gl obal
variable and is of type (bjectDescriptor, the latter having
been declared simlar to this:

TYPE (bj ect Descri ptor = RECCRD
X,Yy: | NTECER
r: REAL

Fields of the transaction nay then be accessed fromwithin the
state transition function associated with the event class ec as

fol | ows:

PROCEDURE M/StatetransFct (al fa: Transaction);
VAR theQhj : bj ect Descriptor;
BEG N
theChj := alfa;
WTH t heCbj » DO
IFx=y THENr = ...

END(* W THF) ;
END M/St at et ransFct ;

Make sure that the transaction exists not only during scheduling,
but al so when it is becones due; otherwi se the state transition

function is likely to corrupt your program

PROCEDURE Event d assExi sts(ec: Eventd ass): BOOLEAN

*

*)

(*
(*
(*

Tests whet her any DEVS has been decl ared to Mdel Wrks whi ch does

provide state transitions for the event class ec.

**)

Decl aration of discrete event nodel s (DEVS) *)

**)

VAR

PROCEDURE Decl DEVM VAR m Model ; initialize, input, output: PRCC

(*

dummyDEVChg: REAL;

Use this dummy variabl e instead of the formal paraneter ds
(Derivative or NewState) tau declaring state variabl es

bel onging to a discrete event nodel (see procedure Decl SV
from nodul e SinBase.

*)

statetransfct: ARRAY CF StateTransition; term nate,

decl Model (bj ects: PROC, descriptor, identifier:

about: PROO);

Decl ares a discrete event nodel (DEVS). The array

statetransfct contains for every event class the correspondi ng
state transition function. For all other formal parameters see
Decl M from nodul e SinBase. The integration nethod wll appear

as di screteEvent (see IntegrationMethod from nodul e SinBase).
StateTransitions remai n known to Mbdel Works as | ong as owner
nodel remains decl ar ed.

ARRAY CF CHAR

| MPLEMENTATI ON RESTRICTI O\ During sinul ati ons event classes can't be

A 275

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

reused, e.g. by renoving a nodel (using S nBase. RenoveM and

imedi ately reusing the same event classes for another nodel by calling
Decl DEW This inplies that every event class has to be uniquely
associated with a single nodel during the entire course of a sinulation
run.

*)

PROCEDURE Get Def [t DEVM VAR m Moddel ; VAR initialize, input, output: PRCC
VAR statetransfct: ARRAY OF StateTransition; termnate: PRCC
VAR descriptor, identifier: ARRAY O CHAR VAR about: PROC);
PROCEDURE Set Def [t DEVM VAR m Model ; initialize, input, output: PRCC
statetransfct: ARRAY CF StateTransition; termnate: PRCC
descriptor, identifier: ARRAY OF CHAR about: PROC);

(********************)

(* Event scheduling *)

(********************)

QONST
always = M N(REAL) ;
never = NAX(REAL);

VAR
schedul i ngDone: BOOLEAN

PROCEDURE | ni t Event Schedul er;
*

d ears the event scheduling nechanism i.e. the event
schedul i ng queue, of the sinulation environnent. Any
eventual ly still pending events will be discarded. Then it
makes the schedul i ng mechani smready to accept events always by
cal l'i ng Schedul i ngOnl yAfter (al ways) .

*

)

PROCEDURE Schedul eEvent (ec: Eventd ass; tau: REAL; alfa: Transaction);
(*

Schedul es the event of class ec for transaction alfa. Use

ni | Transacti on to schedul e an event without a transaction, i.e.

without any data and attributes. The event will be due after

time tau has el apsed. The event can only be successfully

scheduled if the following condition is satisfied (t+tau) >=

tmn. If the scheduling was successful => schedul i ngDone = TRUE

*)

PROCEDURE Next Event At (): REAL;
(* Returns the tine (ts+tau) at which the next pending event is due. *)

PROCEDURE Pr obeNext Pendi ngEvent (VAR ec: Event d ass; VAR when: REAL;
VAR al fa: Transaction);
(*

Retrieves the characteristics of the next pending event. The
time when (ts+tau) is the due tine.

*)

PROCEDURE Get Next Pendi ngEvent (VAR ec: Eventd ass; VAR when: REAL;
VAR al fa: Transaction);
(*

Retrieves the characteristics and renoves the next pendi ng
event fromthe event schedul i ng queue.

*)

PROCEDURE Pendi ngEvent s(): | NTEGER
(* Returns the total nunber of currently pending events *)

A 276

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

PROCEDURE Schedul i ngOnl yAfter(tmn: REAL);
*

D sal l ows the scheduling of any events with a due tinme <=
tmn. Once this routine has been call ed, Schedul eEvent is only
succesful, if it schedules events with a due tine > tmn.
*)
PROCEDURE Di scardEventsAfter(ec: Eventd ass; aftert: REAL; alfa: Transaction);
(*
D scards fromthe event scheduling queue all events for event
class ec, due after the tine aftert, and which operate on the
transaction alfa. Note: events with a due tinme = aftert are
al so discarded. (event is only really discarded if alfais
the same as the schedul ed transaction!)
*)
PROCEDURE Di scar dEvent sBefore(beforet: REAL);
(*
di scards fromthe event scheduling queue all events for which

the due tinme < beforet. Note: events with a due tinme = beforet
are not discarded)

*)

END Si nEvents.

A 277

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.2.2 SmDdtaCalc

In the context of model validation, sengitivity analysis, or parameter identification arises often the
need to calculate a performance index, e.g. between measured time series and simulated model
behavior or between two trgectories produced by two different ssimulation runs. Module
SmDédtaCalc alows to calculate distances between two trgectories at any point in time,
regardless of the temporal resolution at which the trgjectories are defined; for instance, a
measured time series sampled at discrete time points, eventualy even irregularily spaced because
of missing values, can be compared with a continuous time model tragjectory monitored with a
small monitoring interval h,,,. For atypical usage of this optional client interface module seethe
sample model Gausel dentif, which demonstrates an interactive parameter identification.

DEFI N TI ON MCDULE Si el t aCal c;

(***

Modul e SinDeltaCal ¢ (MNV V2. 2)

Copyright 1991 by Aivier Roth and Sw ss
Federal Institute of Technol ogy Zuerich ETHZ

Pur pose: Conputing and handl i ng of deviations (d) of sinulations
conpared to e.g. observed data series. This nodul e
is typically used to conpute a perfornmance i ndex
for identification or validation.

This nodule is part of the optional client interface of
"Model Wor ks", an interactive Mdul a-2 nodel | i ng
and simul ation environment.

Renmarks: This nmodul e works together with nmodul e "S m@ aphWil s",
i.e. the procedures Decl D spData or Decl D spDat aM nust
be used to install the reference data to which the
delta's (d) should be conputed.

Pr ogr ammi ng

0 Design and I npl ementati on
QO Roth 15/ 10/ 91

Syst ens Ecol ogy

Institute of Terrestrial Ecol ogy

Departnent of Environnental Sciences

Swi ss Federal Institute of Technol ogy Zurich ETHZ
QG abenstr. 3

CH 8952 Schlieren/ Zurich

Switzerland

Last revision of definition: 15/10/91 R

***)

(* The probl em
Y | v

[XXXXXX

[X V. XXXXXXX

| v X XX

| XXXXXX X Y XX

[XX X XX
|
I

A 278

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

Validation statistics exanple (see fig. above):
Yis e.g. astate variable, x = simulated, v = observed or
nmeasured; t stands for an independent variable e.g. tine.

A series of n (v,t) points has to be decl ared by Decl D spDat a
fromnodul e S inaphWils. As a goodness of fit criterion we

I ook for the vertical distances (d) of simulated (linearly
interpolated) results (x) and the observed data (v).

There may ocurr 3 cases (see fig. above): A one observed
data point falls into the last similated time interval;

B) no observed data point was encountered during last tine
interval; C many observed data poi nts were encountered during
the last time interval. The procedures "AccuDelta" and
"GetDelta" keep track on the |ast independent variable

and | ook ahead to the next elenent in the data array if a new
D has to be conputed. This requires correct sorting of the
data array before decl aration!

*)

TYPE
Del t aVar ;

Del taProc = PROCEDURE ((*yS m*)REAL, (*yData*)REAL): REAL;

(* ySim- denotes simulated y interpolated at position xData,
yData denotes the y value fromthe installed data series at
position xData *)

VAR defaul tDelta: DeltaProc;

PROCEDURE | nstal | Del taProc(VAR nvDepVar: REAL; conpDelta: DeltaProc);

PROCEDURE I nitDeltaStat(VAR nvDepVar: REAL; xSim ySm REA
VAR dv: DeltaVar);
(* initializes the internal variables which hold the wanted statistics.
- call InitDeltaStat fromw thin your "Initial" procedure,
note: set xSimto its actual value at tO before!
nvDepVar shoul d be decl ared previously wth Decl D spDat a;
returns dv for later reference when calling AccuDelta *)

PROCEDURE AccuDelta(dv: DeltavVar; xSim ySim REAL);

(* This procedures accunul ates sinple statistics internedi ates such as:
a D; a Dr2; a |D; n;: where D is the difference between

the installed data series (Decl D spDat) and the interpol ated

simul ated variable (D is conmputed by neans of the installed DeltaProc)
and n holds the count of accumul ated Ds.

- Accublel ta shoul d be called once for each tine step, i.e. normally

in procedure "output" of your nodel;

assunes that dv is correct! *)

PROCEDURE Get Del taStat (VAR nvDepVar: REAL;

VAR sun¥, sunm¥2, sumfbsY: REAL;

VAR count: | NTEGER);
(* allows you to get the stored statistics which were accumul at ed
since the last InitDeltaStat (norrmally a simulation run, see Accubelta
for nore details). *)

A 279

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

PROCEDURE SetDeltaStat (VAR nvDepVar: REAL;

suny, sun¥2, sumPbsY: REAL; count: |NTEGER);
(* allows to set these statistics. This procedure can be usefull
if you have to resume an interrupted run or ev. for a conplete reset *)

PROCEDURE Wit eDel taSt at Msg(VAR nvDepVar: REAL);
(* wites the stored statistics for each variable to the table w ndow
and to the stashfile in formof a nessage. *)

END Si nDel taCal c.

A 280

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.2.3 SmGraphUtils

This module alowsfirst to make output in ModelWorks window Graph, e.g. to draw additional
curves or any other graphical elements. This may be useful to show measured time series
together with ssimulated results, to draw error bars or non-standard symbols etc. Thirdly does
this module allow to place the window Graph aways on that screen which has colors and the
highest resolution; this feature is particularly useful when running ModelWorks model
definition programs on different computer systems, among which some have more than one
screen, e.g. one black and white only and one with colors. Thirdly, this module supports
window input, i.e. alowsto detect mouse clicks in the window Graph. Thelatter can be used to
determine points such as an initial state vector in the state space of a 2nd order system, e.g. to
exploreinteractively a phase portrait. For atypical usage of this optional client interface module
see the sample models Lorenz! Gausel dentif, L\VVPhasePlot, SochLogGrow for graphica outpuit,
plus module VDPol for mouse input.

DEFI N TI ON MCDULE S nG aphW0i | s;

(*********'k***

Mdul e Sin@aphUils (MNV V2. 2)

Copyright 1989 by Aivier Roth and Swi ss
Federal Institute of Technol ogy Zuerich ETHZ

Pur pose: Provides some utilities to make 1/Oto the graph w ndow and the
graph of the nodelling and simul ation environment "Mdel Wrks".

This nodule is part of the optional client interface of
"Model Works", an interactive Mdul a-2 nodel | i ng
and sinmul ation environnent.

Remarks: Mdst procedures behave simlar to those of the modul e DMRDG aphs
and may now be conbi ned with many procedures from DMN ndl Q
The wi ndow and its associ ated graph are objects of the Mdel Wrks
environment and shoul d therefore not be renoved.

Pr ogrammi ng

0 Progranm ng and | npl enentati on
Q Roth 12.09. 89

o I npl enent ati on
QO Roth 12.09. 89

Syst ens Ecol ogy

Institute of Terrestrial Ecol ogy

Departnent of Environnental Sciences

Swi ss Federal Institute of Technol ogy Zurich ETHZ
QG abenstr. 3

CH 8952 Schlieren/ Zurich

Switzerl and

Last revision of definition: 22/04/96 af

***)

FROM Si nBase | MPCRT MAW ndowAr r angenent, Model ,
Stain, LineStyle, @G aphing;
FROM DMV ndl O | MPCRT Col or;

10nly distributed but not listed in this Appendix

A 281

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

FROM Matrices | MPCRT Matri x;

TYPE
Qurve;

VAR
nonexi stent: Qurve; (* read only! *)

*

PROCEDURE Pl ace@ aphSuper Screen(def | twa: MAW ndowAr r angenent) ;
(* Defines the default w ndow arrangenment according to 'defltwa'
and pl aces the Mdel Wrks graph w ndow on the | argest col or
screen in case the Mddel Definition Programis running on a
nul ti-screen nachine. *)

*

PROCEDURE Sel ect For Qut put G- aph;

(* This procedures brings the Mdel Wrks ' Gaph' w ndow to front
and makes it the current output wi ndow. This allows subsequently
calls to alnmost all of the I/O procedures of the 'Dial og

Machi ne' nodule 'DMNNndI O . *)

*

Procedures to access the GRAPH in the ' Gaph' window sinmlar to
the routines exported by nodul e DMPD& aphs (see ' Dial og Machine'):

PROCEDURE DefineQurve(VAR c: Qurve;

col: Stain; style: LineStyle; sym CHAR);
(* BEvery curve has it own plotting style and color.This all ows
for the sinmultaneous drawi ng of an arbitary nunber of curves
within the Mdel Wrks graph. symspecifies a character which is
drawn repeatedly at the data points, they help identifying a
curve (sym= 0C no nark is plotted).
Use this procedure also if you want to alter an allready existing
curve. *)

PROCEDURE RenoveQurve(VAR c: CQurve);
(* This procedure renoves a curve definition. This procedure sets c
to nonexistent. *)

PROCEDURE DrawLegend(c: Qurve; X, y: INTEGER comment: ARRAY CF CHAR);
(* Draws a portion of curve ¢ with the current attributes at position

x and y and wites the comment to the right of c. After this procedure
the pen location is just to the right of the string "comrent”, so it’s
possi be to add for exanpl e val ues of parameters by calling DMN ndl O
procedures WiteReal (etc.) just after this procedure. *)

PROCEDURE Plot(c: Qurve; newX, newY: REAL);

(* You can plot (draw a curve) fromthe |ast (saved) position to the point

speci fied by the new coordi nates newX and newy.

Not e: Model Wor ks resets the pen position when clearing the graph.

Errors: |If the point specified by newX and newy |ies outside the integer
(pi xel) range DVRDQ& aphsDone will be set to FALSE *)

A 282

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

PROCEDURE Move(c: CQurve; newX, newY: REAL);

(* noves the pen to postion (x,y). Typically used to draw several curves

with the sane attributes to reset the pen position after having drawn a

curve.

Errors: If the point specified by x and y |ies outside the integer (pixel)
range DMRDG aphsDone will be set to FALSE *)

PROCEDURE Pl ot Syn{ x, y: REAL; sym CHAR);

(* draws the synbol symat the position (x,y). My be used as an alternate

nethod to nake scatter grans.

Errors: If the point specified by x and y lies outside the integer (pixel)
range DMRDQ aphsDone will be set to FALSE *)

PROCEDURE Pl ot Qurve(c: CQurve; nr(fPoints: CARDINAL; x, y: ARRAY OF REAL);
(* Plots an entier sequence of nr(rPoints coordinate pairs contained within
the two vectors x and y. May al so be useful to inplenment an update mechani sm
Errors: - If the point specified by x and y lies outside the integer (pixel)

range DMPDQX aphsDone wi |l be set to FALSE

- If the maxi num nunber of elenents of x or y is less than nrCf Points,

then only the | ower nunber of elements of either x or y will be

plotted. WARNING The x and y arrays are val ue paraneters,

hence require sufficient stack size at run time. The design of

this routine is for curves of a rather small dinension. To

plot large data sets use instead of PlotCQurve the procedure

Decl D spDat aM (see below). *)

PROCEDURE @G aphToW ndowPoi nt (xReal , yReal : REAL;
VAR xInt, ylnt: INTEGER);
(* Calculates the pixel coordinates (xInt and ylnt) of the
graph's wi ndow (see Wndowl O fromthe specified graph
coordinates (xReal and yReal). Note that the vertical axis of the
Model Works graph is transforned to yMn = 0.0 and yMax = 1.0 (see
al so procedure MWal ToPoi nt).
Errors: |If the point specified by xReal and yReal |ies outside
the integer (pixel) range, DVMRDG aphsDone will be set to
FALSE and xInt and yInt is set to M NI NTEGER or
MAX(I NTEGER) respectively. *)

PROCEDURE W ndowTo@ aphPoi nt (xInt, ylnt: |NTEGER
VAR xReal , yReal: REAL);

(* Calcul ates graph coordinates (xReal and yReal) fromthe

speci fied pixel coordinates (xInt and ylnt) of the graph's w ndow

(see Wndow O . Note that the vertical axis of the Mdel Wrks

graph is transformed to yMn = 0.0 and yMax = 1.0 (see al so

procedur e Poi nt ToMAVal) .

Errors: |If the point specified by xReal and yReal |ies outside the
i nteger (pixel) range, DVRD& aphsDone will be set to FALSE
and xInt and yInt is set to MNINTEGER) or MAX(| NTEGER
respectively. *)

(* __________________________

Drawi ng procedures used in a Mdel Wrks aware context:

PROCEDURE | nstal | @ aphd i ckHandl er (gch: PRCO) ;

(* Installs the mouse click handl er procedure gch into the

Model Wor ks si nul ation environment. After successful
installation, each time the sinulationist clicks into the graph
wi ndow, gch will be called and a pair of xpixel coordinates [X,Y]
where the nmouse click occurred, are passed to the handler. Use

A 283

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

procedures such as Poi nt ToMAVal to interprete the meaning of the
point [x,y] in terns of monitorable variables. *)

VAR
tinel sl ndep: REAL;

PROCEDURE Poi nt ToMAVal (xInt,ylnt: INTEGER m Mbdel ; VAR nv: REAL;
VAR curG @G aphing): REAL;

(* Returns the correspondi ng val ue of the nonitorabl e variable nv

of the nodel mfromthe given pixel coordinates (xInt and ylnt)

of the Model Wrks graph window As a side effect the routine

returns also the current graphing of the nv. In case the nv

shoul d currently not be in display (curG=notlnGaph), the val ue

is returned as if curG woul d have been isY. To denote the

i ndependent variable time, use timelslndep as the actual

parameter for nv (see al so procedure W ndowloG aphPoint).

Errors: If mor nv should not be known to Mdel Wrks' nodel base,
the routine displays an appropriate error nessage and returns
0.0 and cur G=not | n@ aph.
If the point specified by xReal and yReal |ies outside the
i nteger (pixel) range, DVRDQ aphsDone will be set to FALSE
and xInt and ylnt is set to MNINTEGER) or MAX(|NTEGER)
respectively. *)

PROCEDURE MWVal ToPoi nt (val : REAL; m Mdel ; VAR nv: REAL;
VAR curG Q@ aphing): | NTEGER
(* Returns the pixel coordinate for the wi ndow G aph (see
Wndowl O fromthe specified coordinate val interpreted for the
nonitorabl e variable nv of the nodel m As a side effect the
routine returns also the current graphing of the nv. In case the
nv should currently not be in display (curG=notlnGaph), the
value is returned as if curG woul d have been isY. To denote the
i ndependent variable time, use timelslndep as the actual
parameter for nv (see al so procedure G aphToW ndowPoint).
Errors: If mor nv should not be known to Mdel Wrks' nodel base,
the routine displays an appropriate error nessage and returns
0 and cur G=not | nG aph.
If the point specified by val lies outside the integer
(pixel) range, DMVRD& aphsDone will be set to FALSE and the
routine returns either MNINTEGER) or MAX(| NTEGER
respectively. *)

PROCEDURE Ti el sX() : BOOLEAN
(* Above procedure returns whether time is the current abscissa (x axis). *)

TYPE
Absci ssa = RECCRD i sM/: PO NTER TO REAL; xM n, xMax: REAL END,

PROCEDURE CQurrent Absci ssa(VAR a: Absci ssa);

(* Returns a pointer (isM/) to the nonitorable variable currently used as
abscissa and its extrenes (xM n~cur Scal eM n, xMax~cur Scal eMax). In case that
time is inuse, isM wll point to timelslndep *)

*

PROCEDURE St ai nToCol or (stain: Stain; VAR color: Color);
PROCEDURE Col or ToStain(color: Color; VAR stain: Stain);
(* Translates Stain frommodul e SinBase to Col or from nmodul e
DMN ndl O and vi ce versa; exception for Stai nToCol or:
autoDef Col is translated to black. *)

A 284

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

*

D splay data series (e.g. for validation) all at once:

*

Fol l ow these steps to use the data display feature of that nodul e:

1. Declare an ordinary nonitorabl e variable with the procedure ' Decl W/
as a "master" nonitorable variable for data arrays to be
decl ared | ater (see next step). Several properties, i.e. descr,
ident, unit, (and curve attributes as color, linestyle, synbol)
will be inheritated by the | ater associated data arrays. So if the
noni torabl e variabl e' s graphing variable is set 'isY the data are
sel ected to be displayed. (This nv is called "naster"-nv in what
fol | ows)

2. Since the data arrays synmbol (CHAR), line style (LineStyle) and
color (Stain) will be taken fromthe "nmaster"” nonitorabl e variabl e
you can call 'SetQurveAttrForM/ and ev. 'SetDefltQurveAttrFor W .

3. Declare the associated data arrays with the "master" nonitorable
vari abl e, the independent nonitorable variable, and all the data
arrays with a call to 'Decl D spData'.

4. To enabl e the display nechani smthe nonitorabl e variabl e nvDepVar
nust be isY and nvl ndepVar nust be isX |f another nonitorable
vari abl e represents the current x axis then nothing can be
di spl ayed.

5. Model Works will display automatically all declared data in the
nornmal graph of the "G aph" w ndow at the specified nonent,

i.e. typically at InitMnitoring, or at TermiMbnitoring. To
allow for a general control of the noment of display the
procedure ' D spl ayDataNow and ' D spl ayA | Dat aNow are al so
export ed.

Cauti on:

- Be sure to follow the steps given above in the correct
order (1 before 3!) or no data can be decl ared and di spl ayed.

- Do not assign any values to the "naster"” nonitorabl e variable
to avoid conflicts with the data decl aration.

- Setting witelnTable or wite(nhFile of the "Master" nonitorable
variable is not prohibited but nakes no sence, since a
dummy val ue NAN(017) and not the data series will be displayed.

*)

TYPE
D spl ayTine = (showAtInit, showAt Term noAutoShow);
D spDat aProc = PROCEDURE(Model , VAR REAL);

PROCEDURE Decl Di spDat a(nDepVar . Model ; VAR nvDepVar : REAL;
m ndepVar : Model ; VAR nvl ndepVar: REAL;
X, V,
vLo, vlp © ARRAY CF REAL;
n . | NTECER
wi t hRangeBars: BOCOLEAN
di spTi me : DisplayTime);

(* In order to display a data series (e.g. validation data) f.ex. before a
simul ation run, the necessary data have to be decl ared beforehand, i.e.
normal ly just at the end of all other Mdel Wrks obj ects decl arati ons.

The variables are as foll ows:

nDepVar : nmodel to which bel ongs the nvDepVar

nvDepVar : nonitorabl e variabl e representing the dependent data array

m ndepVar : nodel to which bel ongs the nvlndepVar

nvl ndepVar : nonitorabl e variabl e representing the i ndependent data array,

if nvlndepVar is specified
"timelslndep" (or is not a declared nonitorable var), then
"tine" is assumed to be the independent vari abl e,

X : array of independent val ues,

Y, : array of dependent val ues,

A 285

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

vLo . array of lower e.g. confidence or range val ues,
vlp : array of upper e.g. confidence or range val ues,
n . nunber of given data,
wit hRangeBars: flag, if TRUE range bars will be drawn using vLo and vUp,
di spTi me : the time when the data shoul d be di spl ayed,
Not e:

The curve attributes of the data to display can be set through the
procedure ' Set QurvAttrFor M/ on the nonitorabl e variable 'nvDepVar' and
the default strategy for curve attributes assignnents are the sane as for
ordinary monitorable variables for color and synbol but not for the
lineStyl e:

the default line style is hidden which rmeans that the connections from
[x,v]-point to [x,v]-point are not drawn. In that case and if w thRangeBars
is set true then the error bars are displayd solidly. Al other line styles
are applied to the connections frompoint to point as well as to the error
bars thensel ves.

This procedure allows al so redecl are such data series, i.e. to associate
other data to the sane nvDepVar and nvl ndepVar.

WARNING The x, v, vLo, vlUp arrays are val ue paraneters,
hence require sufficient stack size at run time. The design of
this routine is for vectors of a rather small dinmension. To
plot large data sets use instead of this routine the procedure
Decl D spDat aM (see bel ow) .

*)

PROCEDURE Decl D spDat aM nDepVar : Model; VAR nvDepVar : REAL;
m ndepVar : Model; VAR nvlndepVar: REAL;
dat a o Matrix;
wi t hRangeBars: BOCOLEAN
di spTi me : DisplayTime);

(* alternate formof Decl D spData (described above) using type Matrix to pass
* the data (x = col 1, v =col 2, vLo =col 3, vlp = col 4) *)

PROCEDURE D spl ayDat aNow(nDepVar : Mdel ; VAR nvDepVar : REAL);
(* This procedure allows to display a series of e.g. validation data
before a simulation run. The previously declared data are di spl ayed
in the current graph wi ndow under the followi ng conditions:

+ the data have been decl ared properly and are valid;

+ the associated nonitorable variable is selected to be displayed (isY);

+ the declared indepVar is the currently active i ndependent
noni torabl e variabl e (isX);

+ the declared indepVar is either not a nonitorable variable (for
exanpl e 'tinelslndep’ what inplies that tine is neant) and tine is
the sel ected i ndependent var;

+ the data fall into the declared scaling range;

*)

PROCEDURE D spl ayAl | Dat aNow,
(* Displays all declared datasets at the specified noments. The sane conditions
apply as for 'D spl ayDat aNow .

*)

PROCEDURE DoFor Al | Di spData(p: D spDataProc);

(* Calls procedure p for all D spData currently decl ared. Be
careful when using this procedure, since it allows to access
al so D spData-definitions which nay not belong to the caller.

*)

PROCEDURE RenoveD spDat a(nDepVar : Mdel; VAR nvDepVar : REAL);
(* This procedure allows to free the menory fromthe decl ared data
to display.

A 286

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

*)

PROCEDURE Set D spDat aM nDepVar: Mdel ; VAR nvDepVar: REAL; data: Matrix);
PROCEDURE Get Di spDat aM nDepVar: Mdel ; VAR nvDepVar: REAL; VAR data: Matrix);
(* these procedures allowto set/retrieve the installed data through matrices *)

END S nx aphUil s.

A 287

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.2.4 Smintegrate

The optiond client interface module Simintegrate can be used to compute definite integrals, i.e.
to solve the equations of a particular model without advancing ModelWorks' global independent
variablet. Instead alower and upper boundary of the independent variable is used and such a
numerical integration can be called always, e.g. in the client procedure initialize. Note however,
that thisis only possible for autonomous models, since the integration is performed for asingle
model only.

DEFI N TI ON MODULE Simi nt egr at e;

(***

Mdule Simntegrate (MNV V2. 2)

Copyright 1989 by Andreas Fischlin and Sw ss
Federal Institute of Technol ogy Zuerich ETHZ

Pur pose Provi des neans to integrate an aut onormous
differential equation systemwi thout any
noni tori ng

This nmodule is part of the optional client interface of
"Model Works", an interactive Mdul a-2 nodel Ii ng
and si mul ati on environnent.

Pr ogr ammi ng

0 Design
A Fischlin 26/ 06/ 89

o I npl ementati on
A Fischlin 26/ 06/ 89

Systens Ecol ogy

Institute of Terrestrial Ecol ogy

Departnent of Environnental Sciences

Swi ss Federal Institute of Technol ogy Zurich ETHZ
G abenstr. 3

CH 8952 Schlieren/ Zurich

Swi t zerl and

Last revision of definition: 26/06/89 af

***)

FROM Si nBase | MPORT Model ;

PROCEDURE Integrate (m Mdel; from till: REAL);
(*
Conputes the definite integral of the autonomous nodel m
within the boundaries fromand till. It integrates the nodel

equations with the current integration nethod associated with
the nodel m The integration will be performed for every
state variable and as initial values Mdel Works will use the
current initial values associated with the declared state
vari abl es. E ther stopping the sinulation permanently (kill)
or encountering the termnation condition will stop the

i ntegration.

*)
END S mi ntegrat e.

A 288

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

A 289

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.2.5 SmObjects

The optional client interface module S mObjects supports advanced uses of ModelWorks in the
following ways. First it provides mechanisms to attach attributes to any model or model object
currently declared in ModelWorks' data base. Typica attributes are a model or state varibale
index or apointer to a data structure maintained by the client. Of course this module provides
also procedures to access such attributes. Moreover, SmObjects allows to access directly
ModelWorks' internal data structures of models and model objects. This may be important if
the modeler wishes to use ModelWorks' objects in algorithms which use dynamic lists or for
efficiency reasons. A typical example of such afunctionality supported by this module is the
procedure MinimizeAfter Dialog from the auxiliary library module IdentifyPars as used in the
sample model Gausel dentif.

DEFI N TI N MODULE Si n(bj ect s;
(***
Modul e Simbj ects (MNV V2. 2)

Copyright 1991 by Dmtrios Gyalistras and Swiss
Federal Institute of Technol ogy Zuerich ETHZ

Pur pose Provides an access to the Moddel - and Mbddel bject- base
of Model Works as well as procedures to attach reference
attributes to Mddel Vorks objects.

This modul e is part of the optional client interface of
"Model Works", an interactive Mdul a-2 nodel |i ng
and si mul ati on environnent.

Pr ogr ammi ng

0 Design
D. Qalistras 25/ 07/ 91
QO Roth 09/ 10/ 91
A Fischlin 27/11/91
o I npl ementation
D. Qalistras 25/7/91
QO Roth 09/ 10/ 91

Syst ens Ecol ogy

Institute of Terrestrial Ecol ogy

Departnent of Environnental Sciences

Swi ss Federal Institute of Technol ogy Zurich ETHZ
QG abenstr. 3

CH 8952 Schlieren/ Zurich

Switzerland

Last revision of definition: 02/03/93 dg

***)

FROM SYSTEM | MPORT ADDRESS;
FROM DVBt ri ngs | MPCRT String;
FROM Si nBase | MPCRT Model ;

TYPE
Ref Attr;

VAR
aDet achedRef Attr: RefAttr; (* read only variable *)

A 290

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

PROCEDURE AttachRef Attr ToModel (m Model; VAR a: Ref Attr; val: ADDRESS);
PROCEDURE Det achRef Attr Fromodel (m Mdel ; VAR a: Ref Attr);

PROCEDURE AttachRef AttrToChject (m Mdel; VAR o: REAL; VAR a: RefAttr; val: ADDRESS);
PROCEDURE Det achRef Attr Fronthj ect (m Mdel ; VAR o: REAL; VAR a: RefAttr);

PROCEDURE Fi ndModel Ref Attr (m Mdel; VAR a: Ref Attr);
PROCEDURE Fi nd(bj ect Ref Attr(m Mdel; VAR o: REAL; VAR a: RefAttr);

PROCEDURE Set Ref Attr(a: RefAttr; val: ADDRESS);

PROCEDURE Get Ref Attr(a: RefAttr): ADDRESS;

(*
You may associate with any nodel or nodel object an address
attribute by calling AttachRef Attr ToMbdel respectively
AttachRef AttrToChject. The attribute's value may then be
freely used via SetRef Attr for assignnents or GetRef Attr for
retrieval purposes. RefAttrs are particul arly useful when using
one of the SinBase.DoFor A | XYZ procedures. Note that in case
there is currently no attribute attached to a nodel or object,
the val ue aDetachedRef Attr is passed by Mdel Wrks. It is also
possible to access an attribute via nmodel respectively nodel
pl us object by the procedures FindMbdel Ref Attr respectively
FindCoj ect Ref Attr. Note however, that the latter nethod is
less efficient and is therefore not recomrended i n heavy
nunber - crunchi ng simul ati ons. Again aDet achedRef Attr is
returned in case there is currently no attribute attached.

*)

PROCEDURE Cur Cal cMRef At tr(): ADDRESS;

*
Returns first attribute associated to the nodel of which the
initialize, input, output, or dynamc etc. procedure is
currently calculated. The value NL is returned if
(Simvaster. MMBtate <> simul ating) or (S mvaster. MMBubState <>
running), or if no attribute has been attached to the nodel.

*)
PROCEDURE Qur About MRef At tr(): ADDRESS;

*

Returns first attribute associated to the nodel of which the
about procedure is currently executed. The value NL is returned
if this procedure is called outside 'about'.

*)

PROCEDURE Model Level (m Model) : CARD NAL;

*

Returns the programlevel at which model m has been
instanciated if the nodel exists, otherw se 0.

*)

PROCEDURE (hj ect Level (m Model ; VAR o: REAL): CARDI NAL;

(*
Returns the programlevel at which object o of nodel mhas been
instanciated if such an object exists, otherw se 0.

*)
(* __ *)
(* direct object nanipul ations: *)
(* the followi ng type and procedures allow for very efficient access

to the most inportant Mbdel Vorks objects. These information are
provided for the advanced client who wites additional, generally

A 291

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

usabl e tools for the Mdel Wrks environment. The direct access to
some of these data can be risky - the programrer ought to understand
wel | what he/ she does. *)

TYPE
MAbj = (Mb, SV, Pa, W, AV);
Export (oj ect Type = (stateVar, nodParam out AuxVar);
Real Ptr = PA NTER TO REAL;
PtrTod i ent Chj ect = ADDRESS;

Cbj Ptr = PA NTER TO bj ect Header ;
Chj ect Header = RECCRD

i dent : String;

descr : String;

uni t : String;

var Adr : RealPtr; (* read only; real itself may be altered *)
mn, max : REAL;

nrAttr o | NTECER,

refAttr : PtrTodientoject; (* read only *)
chAttr . CHAR

ki nd . MADbj; (* read only *)

parentM : Mdel; (* read only *)

next : QojPtr; (* read only *)

prev . ojPtr; (* read only *)

END(* Chj ect Header *) ;

PROCEDURE Fi rst Model (): Qoj Ptr;

PROCEDURE FirstSV(m Mdel): QojPtr;
PROCEDURE FirstP (m Model): QbjPtr;
PROCEDURE First M(m Model): bjPtr;

PROCEDURE Last Model (): Coj Ptr;

PROCEDURE LastS(m Model): QojPtr;
PROCEDURE LastP (m Mdel): QojPtr;
PROCEDURE Last M(m Model): QojPtr;

PROCEDURE Al | owFor RAMSESExport (owner: Model ;
VAR obj: REAL; ident: ARRAY COF CHAR
eot: Export oj ect Type);
(*
Once a nodel object has been passed to this routine, it becones
vi si bl e for RAMBES nodel systens, which corresponds to an
export fromthe Mbdel Wrks object base to the RAMBES obj ect
base. Wthin the RAVBES object base objects can be identified
via their identifiers.

*)

END Si nhj ect s.

A 292

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3 AUXILIARY LIBRARY

The here listed definitions represent only afew of the modules actually contained in the auxiliary
library of the RAM SES software packagel. They are likely to be of interest in a modeling and
simulation context. For the relationship between auxiliary library modules and the "Dialog
Machine" and ModelWorks see also part || Theory section Module structure of ModelWorks

D.3.1 IdentifyPars

The module IdentifyPars supports the interactive (or batch), nonlinear parameter identificationof
model parameters. No restrictions apply either to the type of model (any elementary or
structured model type may be involved), to the model parameters (linear or nonlinear in the
parameters), nor to the type of optimization criteria. The only requirements are that the model
definition program is complete in order to run afirst smulation and that the user provides some
data which specify the desired model behavior. Module IdentifyPars allows then to search for
other model parameter values, or other initial values which behave eventually closer to the desired
model behavior. Of course, neither convergence nor minimal identification time can be
warranted for such agenera procedure. For atypical usage of this auxiliary library module see
the sample model Gausel dentif.

DEFI N TI N MODULE | dent i f yPars;

(***

Modul e ldentifyPars (Version 1.1)

Copyright ©1989 by Aivier Roth and Swiss
Federal Institute of Technol ogy Zirich ETHZ

Purpose: ldentifies parameters of a "Mdel Wrks"
nodel inplemented as a nodel definition program

Remarks: UWses internally the "D al og Machine", the mandatory
client interface of Mdel Wrks, i.e. SinBase and
SinMaster, and fromthe optional client interface the
nmodul e S mtbj ects. Moreover the auxiliary library
nodul es Lists, I Rand, and Matrices (actual ly consisting
of many nodul es).

Note, this nodul e exists in several inplenentation

versions, since the nore conplex identification routines

such as Powel | have been inplenented in formof |arge
libraries. The sinple inplenentati on does not

inport fromthis package and has therefore the advantage

of being nuch smaller; however, as a consequence, the

nethod Powel | can't be used in this version (On the Maci nt osh
check the version text with the Get Info conmand to verify
whi ch version you are currently using).

| mpl enentation restriction:
A maxi mum of 1024 paraneters can be identified at once.

Pr ogrammi ng

o Design and | npl ementation
QO Roth 19. 05. 90

1For availability, installation, and complete list see the separate booklet “Installation Guide and Technical
Reference of the RAM SES software”.

A 293

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

A Fischlin 27.01.93

Swi ss Federal Institute of Technol ogy Zurich ETHZ
Departnent of Environnental Sciences

Systenms Ecol ogy G oup

ETH Zent rum

CH 8092 Zurich

Swi t zerl and

Last revision of definition: 27/Jan/93 af

***********************'k***)

TYPE
Real Fct = PROCEDURE (): REAL;
M nMet hod = (hal f Doubl e, amoeba, price, random brent, powell, sinplex);

(* Description of the different nethods can be found in:
+ Press, HW, Flannery, B P., Teukolsky, S A & Vetterling, WT., 1986,
“"Nunerical Recipes: the Art of Scientific Conputing", Canbridge University Press,
New York, 818pp.
+ Price, WL., 1976, "A control | ed random search procedure for gl obal
optimsation", The Conputer Journal 20(4): 367-370.
*
)

PROCEDURE Mar kPar For I denti fication(VAR p: REAL);

PROCEDURE Unnar kPar For | denti fication(VAR p: REAL);

PROCEDURE Unmar kAl | Par sFor I denti fi cati on;

(* maintains a list of parameters which are to be identified later
with the identification procedures of this nodule (see
bel ow). You nay mark or unmark any paraneter fromthat |ist
by neans of the 3 procedures above, given the paraneters have
been previously declared to Mdel Wrks by SinBase.Decl P. or
interactively by a call to procedure MnimzeAfterD al og (see

bel ow). *)
PROCEDURE Set Def | t M ni n{ nmet h: M nMet hod;
max|ter: | NTECER
convC REAL);

PROCEDURE Get Defl t M ni n{ VAR neth: M nMet hod;
VAR maxlter: | NTECER
VAR convC. REAL ;

(* Set/get the default mnimzation nmethod "neth", the default naximum
nunber of iterations "naxlter", and the default convergence
criterion value "convC'. These procedures are typically called
before "M ni m zeAfterD al og" to assure neaningful | default
settings. *)

PROCEDURE M ni m zeAfterD al og(func: Real Fct);

(* Qpens a scrollable selector box in which you may choose and sel ect
(mark) parameters interactively to be identified. "func" is
the procedure conputing the performance index (i.e. it calls
e.g. SinRun and then SinDeltaCal c. GetDeltaStat). *)

PROCEDURE M ni m ze(nethod: M nMethod; convC REAL;
maxlter: |INTEGER func: Real Fct);
(* Executes all necessary runs to performan identification. "nethod"
specifies one of the above |isted identification methods,
"convC' stands for a convergence criterion value, "naxlter"
denot es the maxi mum nunber of iterations, and "func" is a
function procedure returning the val ue of the perfornance
index by calling e.g. S nRun and then
SinDeltaCal c. GetDeltaStat. Note: "naxlter" is NOT the exact
nmaxi mal nunber of performed SinRun's, since an iteration

A 294

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

consi sts usually of several runs (depending on the sel ected
identification method). *)

END | denti fyPars.

A 295

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.2 JulianDays

Calendar timeis usually the preferred way to associate important characteristics with time, e.g.
the seasonal temperature cycleis usually related to months. However, computations such as
time intervals from calendar time are a nuisance; e.g. how many hours are between 21st
February, 8h23'00", and 2nd September, 14h17'00" in the year 1954? On the other hand if any
date is measured in Julian days, i.e. areal number t, which have an origin or reference point tq at
a known calendar time of yeary, monthg, dayo, hourg, ming, secq €etc., such computations are
reduced to smplerea arithmetics. To the end that such atime can still be read by humans, the
only thing needed are convenient functions which allow to convert between calendar timeand a
Julian time at any point in time. In addition we need also means to define the point of origin to.
This functionality is exactly the purpose of module JulianDays In the context of dynamic
models which have to operate on time, it provides the numerically delicate but easy to use
conversion agorithms which alow to use a Julian time scale conveniently.

DEFI N TI ON MODULE Jul i anDays;

(****"k**

Modul e Jul i anDays (Version 2.0)

Copyright 1989 by Andreas Fischlin and Sw ss
Federal Institute of Technol ogy Zuerich ETHZ

Pur pose Transl ates back and forth dates into a nunber of
days (Julian days) in order to allow the conputing
with dates.

Remark This inplenentation is based on the Gegorian
cal endar, which is valid after 15.Cct.1582. Note that
this date followed immedi ately after 4.Cct. 1582 to
correct for accumul ated errors in the Julian cal endar
introduced by Julius Caesar "ab urbe condiata", the
foundation of Rome, i.e. 753 BC (G egorian cal endar
correction by Pope Gegor X 1l). The Gegorian
cal endar will need no corrections for 3333
years.

Note there is al so the so-called Julian Period, which
is used in astronony as proposed by Joseph Justus
Scaliger (1581): First Julian Date (J.D.) is nmddle
noon, 1. Jan. 4713 BC. The Julian time is cal cul ated
in days, and is a real defining hours, mnutes plus
seconds. Note that in this method a day starts at
noon of standard world tine or Geenwi ch tine. There
isanodified Julian Date (MJ.D) in use today (much
used in space travel) which starts at 17. Nov. 1858
00h00' 00" ~24 00 000.5 J.D.

Pr ogrammi ng

- Design
A Fischlin 24/ 09/ 89

- Inpl ementation
A Fischlin 24/ 09/ 89

Swi ss Federal Institute of Technol ogy Zurich ETHZ
Departnent of Environnental Sciences

Syst ens Ecol ogy G oup

ETH Zent rum

CH 8092 Zurich

Swi t zer | and

A 296

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

Last revision of definition: 3/02/94 af

***)

CONST
Jan = 1; Feb = 2; Mar = 3; Apr = 4; Mai = 5; Jun = 6;
Jul =7, Aug = 8; Sep =9; Qt = 10; Nov = 11; Dec = 12;
Sun = 1; Mn = 2; Tue = 3; Wd =4; Thur =5; Fri =6, Sat = 7;
TYPE
Month = [Jan. . Dec];
WekDay = [Sun.. Sat];
Dat eAndTi ne = RECCORD
year: | NTECER (* e.g. 1582,...,1994,...,2040 etc.*)
mont h: Mont h;
day: | NTECER, (* [1..31] (depends on nonth) *)
hour, (* [0..23] *)
mn: | NTEGCER, (* [0..59] *)
sec: | NTECER (* [0..59] *)
daydf Veek: WekDay; (* e.g. Sun *)
secFrac: REAL; (* fraction of a second,

e.g. 0.13 for 13 hundredth of a second *)
END;

PROCEDURE Dat eTi neToJul Day(dt: DateAndTi ne): LONGREAL;
PROCEDURE Jul DayToDat eTi me(j d: LONGREAL; VAR dt: Dat eAndTine);
*

Above two routines allowto convert between a julian day given
as a real nunber and an ordinary cal endar date plus the tine of
the day.

*)

PROCEDURE Dat eToJul Day(day, nont h, year: | NTEGER): LONG NT;
PROCEDURE Jul DayToDat e(j d: LONG NT; VAR day: | NTECER,
VAR nont h: Mont h;
VAR year: | NTECER
VAR dayCr Veek: WekDay);
(*
Above two routines allowto convert between a julian day and an
ordinary cal endar date. Hereby ignoring the tine of the day.

*)
PROCEDURE | sLeapYear (yr: | NTEGER) : BOOLEAN

PROCEDURE Set Cal endar Range(fi rst Year, | ast Year, first Sunday: | NTEGER);
(*

This procedure allows to set the cal endar range for which the
algorithns of this nodul e shall work. They work correctly
fromthe date 15.Cct. 1582 onwards for the next 3333 years and
given the following restrictions are satisfied: The first
year nust be an year followi ng imrediately a |leap year. The
day of the first Sunday in January in the first year
(firstSunday) nust be specified, otherw se weekdays won't be
conputed correctly. If faulty values are specified
this routine will lead to an error condition.

The default range is firstYear = 1949, |astYear = 5282,
firstSunday = 2, since the 2nd January 1949 is a
Sunday. (Qher possibilities: Sunday, 6.Jan.1805).

Note that calling this procedure may be useful in order to
use Julian days of type | NTECGER i nstead of LONG NT. Then the
cal endar routines can cover fully 137 years without causing
an overfl ow when assigning the LONG NT result of procedure
Dat eToJul Day to an | NTEGER vari abl e.

*)

A 297

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

END Jul i anDays.

A 298

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.3 Queues

Queues of any objects such as persons or parcels are often needed in the context of simulations
withDEVS. Module Queues provides the instantiation and the management of FIFO-queues
(First In, First Out). For atypical usage of this auxiliary library module see the sample model
CarPallution, in particular the submodels CPTraffic andCPCrossRoad.

DEFI NI TI ON MCDULE Queues;

(***

Modul e Queues (Version 1.0)

Copyright (c) 1992 by Andreas Fischlin and Swiss
Federal Institute of Technol ogy Zurich ETHZ

Version witten for:
MacMETH V3. 2 (1-Pass Mbdul a-2 i npl enment at i on)

Purpose Wilities needed for discrete event simulations
i nvol vi ng queues

Pr ogr ammi ng

0 Design
A Fischlin 17/ Mar/ 93

o I nplenentation
A Fischlin 17/ Mar/ 93

Swi ss Federal Institute of Technol ogy Zurich ETHZ
CH 8092 Zurich
Swi t zer| and

Last revision of definition: 17/ Mar/93 AF

***)

FROM Si nEvents | MPCRT Transacti on;

TYPE
FI FOQueue;
ItenmAction = PROCEDURE (Transaction);

VAR
not Exi sti ngFl FOQueue: Fl FOQueue; (* read only *)

PROCEDURE O eat eFl FOQueue(VAR g: Fl FOQueue; maxLengt h: | NTEGER) ;

PROCEDURE Enpt yFI FOQueue(q: Fl FOQueue) ;

PROCEDURE Fi | el nt oFl FOQueue(q: FI FOQueue; ta: Transaction);
PROCEDURE Fi r st | nFl FOQueue(q: FI FOQueue): Transacti on;
PROCEDURE Takelst FronfFl FOQueue(q: FlI FOQueue): Transacti on;
PROCEDURE FI FOQQueuelLengt h(q: FlI FOQueue): | NTECER

PROCEDURE | sFI FOQueueFul | (fifoqg: FlI FOQueue): BOOLEAN
PROCEDURE | sFI FOQueueEnpt y(fifoq: FlI FOQueue): BOOLEAN
PROCEDURE DoFor Al | | nFl FOQueue(q: FI FOQueue; ia: ItemAction);

PROCEDURE FI FOQueueExi st s(q: Fl FOQueue) : BOOLEAN
PROCEDURE Di scar dFl FOQueue(VAR q: Fl FOQueue) ;

END Queues.

A 299

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

A 300

D.3.4 RandGen

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

Any stochastic simulation requires the generation of pseudo-random numbers. This module
provides the basic algorithms to produce a sequence of random numbers or variates, uniformly
distributed in the interval [0..1). The algorithm contained in this module has been carefully
selected for maximum period length, maximum randomness, maximum reliability and portability,
needed for scientific applications, in contrast to the random number generators often available
from the system software. For atypical usage of this auxiliary library module see the sample
model Markov or any of these sample models: Diversity, SochLogGrow, CarPollution (in
particular CPTraffic plus CPObjects), and SochLogGrow.

DEFI N TI ON MCDULE RandGen;

(***

Modul e

Pur pose

Remar ks

RandGen (Version 1.0)

Copyright 1988 by Andreas Fischlin and Systens
Ecol ogy Goup ETHZ, Swi ss Federal Institute of
Technol ogy Zuerich ETHZ

Basi ¢ pseudo- random nunber gener at or produci ng
uniformy distributed variates within interval (0,1).
The generator is based on a conbination of three

mul tiplicative linear congruential random nunber
gener at ors.

The generator is highly portable and produces
very-| ong-cycl e random nunber sequences. They
exceed the usual period | ength of NMAX(| NTEGER)
given by the nachi ne dependent word | ength. Thus
the generator produces satisfactory results even on
a personal conputer with a small word length (e.qg.
16-Bit nachines) and it is efficient, since it does
not require double precision arithnetics. n
32-Bit machines like IBMmain-frames or the Appl e®
Maci ntosh™PC this means that the slow 64-Bit

mul tiplication and division can be

avoi ded.

The cycle length of the generator is estinmated to
be > 2.78 E13 so that the sequence will not repeat
for over 220 years in case that 1000 variates were
cal cul ated per second (Wchmann & H I, 1987)

Ref er ences:

Wchmann, B.A & HIIl, 1.D, 1982. An efficient and
portabl e pseudo-random nunber generator. Al gorithm
AS 183. Applied Statistics, 31(2): 188-190.

Wchnann, B. & HIIl, D, 1987. Building a random nunber
generator. A Pascal routine for very-long-cycle
random nunber sequences. Byte 1987(March):

127-28

Pr ogr ammi ng

- Design

A Fischlin (21 Dez 88)

- Inplenentation

A Fischlin/Q Roth (21 Dez 88)

Swi ss Federal Institute of Technol ogy Zurich

A 301

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

Syst ens Ecol ogy

Departnent of Environnental Sciences
ETH Zent rum

CH 8092 Zurich

Swi t zerl and

Last revision: 31 Jan 89 (AF)

***)

PROCEDURE Set Seeds(z0, z1, z2: | NTEGER) ;
(*defaults: z0 =1, z1 = 10000, z2 = 3000 *)

PROCEDURE Get Seeds(VAR z0, z1, z2: | NTEGER);

PROCEDURE Randoni ze;
(*set seeds using seed val ues depending on a particul ar, unique
and non repeatable event in real tine, e.g. date and time of
the clock. Inplies a call to SetSeeds*)

PROCEDURE Reset Seeds;
(*reset seeds to val ues defined by last call to SetSeeds*)

PROCEDURE U(): REAL;
(*returns within (0,1) uniformy distributed vari ates*)

(*
Based on a conbination of three nultiplicative |inear
congruential random nunber generators of the form z(k+l) =
A*z(k) MDM wth a prine modulus and a primtive root
nultiplier (=> individual generator full length period). The
multipliers A are: 171, 172, and 170; the nodul us' Mare:
30269, 30307, and 30323.

*)

END RandGen.

D.3.5 RandGen0

This module provides some generators for often used variates such as uniformly distributed
integer or real variates, and negative exponentially distributed variates. Note that this module
together with similar modules has been designed for optimal flexibility by allowing to ingtall into
it any basic random number generator providing uniformly distributed variates in the interval
[0..1) or alternatively (0..1] resp. (0..1). For atypica usage of this auxiliary library module see
the research sample models Diversity and CarPollution (in particular CPTraffic). For the use of
this auxiliary library module see aso auxiliary library module RandGen.

DEFI N TI ON MODULE RandGenO;
(***
Modul e RandGenO (Version 1.0)

Copyright (c) 1992 by Andreas Fischlin and Swiss
Federal Institute of Technol ogy Zirich ETHZ

Version witten for:
MacMETH V3. 2 (1-Pass Mbdul a-2 i npl enent ati on)

Pur pose Sinpl e random nunber generators often used in
stochastic simlations.

A 302

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

Renmarks This nmodul e is best used in connection with
nodul e RandGen.

Pr ogr ammi ng

0 Design
A Fischlin 12/ Mar/ 93

o I npl enentati on
A Fischlin 12/ Mar/ 93

Swi ss Federal Institute of Technol ogy Zurich ETHZ
CH 8092 Zurich
Swi t zer | and

Last revision of definition: 12/ Mar/93 AF

***)

PROCEDURE J(): | NTEGER
PROCEDURE Jp(mi n, max: | NTEGER): | NTEGER

Return in the range [nmin..nax] uniformy distributed integer
variates. For J the range [mn..max] has to be defined by
procedure SetJPar. Default: [min..max] = [0..1].

*)

PROCEDURE Set JPar (mn, max: | NTEGER);
PROCEDURE Get JPar (VAR ni n, max: | NTECER);
*

Setting and retrieval of the range parameters [nin..nmax] used
by the integer random nunber generator J.

*)

PROCEDURE R(): REAL;
PROCEDURE Rp(m n, max: REAL): REAL;

(*
Return in the range [nmin..max] uniformy distributed real
variates. For Rthe range [mn..max] has to be defined by
procedure SetRPar. Default: [min..max] = [0.0..1.0].

)

PROCEDURE Set RPar (mn, max: REAL);
PROCEDURE Get RPar (VAR ni n, max: REAL);
*

Setting and retrieval of the range paraneters [mn..max] used
by the real random nunber generator R

*)

PROCEDURE NegExp(): REAL;

PROCEDURE NegExpP(l anbda: REAL): REAL;

(*
Sanpl ing of negative exponentially distributed variates. For
NegExp the nean | anbda has to be defined by procedure
Set NegExpPar. Default: lanbda = 1, i.e. a Poisson process where
on average occurs 1 event per time unit.

*)

PROCEDURE Set NegExpPar (| anbda: REAL);
PROCEDURE Get NegExpPar (VAR | anbda: REAL);

Setting and retrieval of the nean paraneter |anbda used by the

A 303

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

negative exponential random nunber generator NegExp.

*)

TYPE
URandGen = PROCEDURE(): REAL;

(* NOTEE A ways call one of the followi ng two procedures before
cal ling any other random nunber generator fromthis modul e: *)

PROCEDURE | nstal | WO(u0: URandGen) ;
*

Allows to install the basic random nunber generator needed by
all generators exported by this nodule. The random nunber
generator u0 nust sanple uniformy distributes variates within
interval [0..1), i.e. it may generate 0.0, but rmust not
generate exactly 1. For instance you may install procedure U
from nodul e RandGen contained in the auxiliary library of the
RAVBES software, which satisfies these specifications and
produces hi gh quality pseudo-random nunber sequences (See al so
procedure InstallUl).

*)

PROCEDURE I nstal | UL(ul: URandCen);

(*
Allows to install the basic random nunber generator needed by
all generators exported by this modul e. The random nunber
generator ul nust sanple uniformy distributes variates within
interval (0..1] or (0..1), i.e. it nay or nay not generate 1.0,
but rmust not generate exactly 0. The installation of a good
generator ul satisfying these specifications results in nore
efficient variates sanpling by the NegExp generator than when
installing a basic generator via procedure Installl0. However,
the efficiency may be in conflict with the quality of the
gener at ed pseudo-random nunber sequences (see al so procedure
Instal | UD).

*)

END RandGenO.

D.3.6 RandGenl

More generators. For the use of thisauxiliary library module see also auxiliary library modules
RandGen0 and RandGen.

DEFIN TI ON MODULE RandGenl;
(***
Modul e RandGenl (former RandGens) (Version 2.0)

Copyright ©1990 by Thomas Nemecek and Swi ss
Federal Institute of Technol ogy Zirich ETHZ

Version witten for:
'Dialog Machine' DM V2.02 (User interface)
MacMETH V2. 6. 2 (1- Pass Mbdul a-2 i npl ement at i on)
Pur pose provi des different random nunber generators

Pr ogrammi ng

A 304

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

0 Design
T. Nemecek 20.7.90

o0 I npl enentation
T. Nemecek 20.7.90

Swi ss Federal Institute of Technol ogy Zurich ETHZ
Departnent of Environnental Sciences

Systens Ecol ogy G oup

ETH Zent rum

CH 8092 Zurich

Swi t zer | and

Last revision of definition: 9/5/96 ft

***)

PROCEDURE Wi bul | (): REAL;
PROCEDURE Wi bul | P(al pha, beta: REAL): REAL;
*

Provi des Wi bul | distributed randomvari abl es. The 2-paranetric
Wi bull distribution is used. Prbability density function:
f(x) = alpha * beta®-al pha * x*(al pha-1) * Exp(-(x/beta)”al pha)

For Wi bull the parameters have to be defined by procedure
Set Wi bul | Pars (s.b.). Defaults are: al pha

bet a
*)

PROCEDURE Set Wi bul | Par s(al pha, beta: REAL);
PROCEDURE Get VWi bul | Par s(VAR al pha, beta: REAL);
*
Setting and retrieval of the paraneters al pha and beta
used by the random nunber generator \Wibull.

*)

1.0

PROCEDURE Triang(): REAL;
PROCEDURE Tri angP(m n, node, max: REAL): REAL;
*

Provi des random nunbers following a triangul ar distribution
with the parameters mn, node, max, where

mn = |owest val ue
max = hi ghest val ue
node = coordi nate of naxi num

For Triang the parameters have to be defined by procedure

SetTriangPars (s.b.). Defaults are: mn =-1.0
mx = 1.0
mode = 0.0

*)

PROCEDURE Set Tri angPar s(nmn, node, nmax: REAL);
PROCEDURE Get Tri angPar s(VAR min, node, nmax: REAL);
(*
Setting and retrieval of the parameters nin, nax and node
used by the random nunber generator Triang.

*)

PROCEDURE VM) : REAL;
PROCEDURE VWMP(mean, kappa: REAL): REAL;
(*
provi des random nunber fromthe von Mses distribution
(called also the circular normal distribution). The
values are in the interval [0, 2p]

For VW the paraneters have to be defined by procedure
SetVMPars (s.b.). Defaults are: mean = 0.0
kappa = 1.0

A 305

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

*)
PROCEDURE Set VMPar s(mean, kappa: REAL);
PROCEDURE Get VMPar s(VAR nean, kappa: REAL);
*

Setting and retrieval of the paraneters mean and kappa
used by the random nunber generator WM

*)

TYPE
URandGen = PROCEDURE(): REAL;

(* NOTEE ALWAYS call one of the follow ng two procedures before
calling any other random nunber generator fromthis nodul e: *)

PROCEDURE | nstal | WO(u0: URandCGen) ;

(* Allows to install the basic random nunber generator needed by
all generators exported by this nodul e. The random nunber
generator u0 nust sanple uniformy distributes variates within
interval [0..1), i.e. it nay generate 0.0, but nust not
generate exactly 1. For instance you nmay install procedure U
from nodul e RandGen contained in the auxiliary library of the
RAVBES sof tware, which satisfies these specifications and
produces high quality pseudo-random nunber sequences (See al so
procedure InstallUl). *)

PROCEDURE I nstal | UL(ul: URandCen);

(* Allows to install the basic random nunber generator needed by
all generators exported by this nodul e. The random nunber
generator ul nust sanple uniformy distributes variates within
interval (0..1] or (0..1), i.e. it may or may not generate 1.0,
but must not generate exactly 0. The installation of a good
generator ul satisfying these specifications results in nore
efficient variates sanpling by the NegExp generator than when
installing a basic generator via procedure InstalllW. However,
the efficiency may be in conflict with the quality of the
gener at ed pseudo-random nunber sequences (see al so procedure

Instal | UD). *)
END RandGenl.
D.3.7 RandNormal

This module provides a generator for normally distributed real variates. Note that this module
together with similar modules has been designed for optimal flexibility by allowing to install into
it any basic random number generator providing uniformly distributed variates in the interval
[0..1), (0..1] or (0..1). For atypical usage of this auxiliary library module see the research
sample model StochLogGrow. For the use of this auxiliary library module see aso auxiliary
library module RandGen.

DEFI N TI N MODULE RandNor nal ;

(**

Modul e RandNor nal (Version 1.0)
Copyright 1987 by Andreas Fischlin and CELTI A
Swi ss Federal Institute of Technol ogy Zuerich ETHZ

Pur pose Conputation of normally distributed variates

A 306

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

Ref er ences
Bell, J.R 1968. Normal randomdeviates. Al gorithm
334. Colected A gorithns from CACM (Comuni cati ons
of the Association for Conputing Machinery): 334-P 1-Rl

Box, G & Miller, M 1958. A note on the generation of
normal deviates. Ann. Math. Stat. 28: 610.

Von Neumann, J. 1959. Various techniques used in
connection with randomdigits. In: Nat. Bur.
Standards Appl. Math. Ser. 12, US Glovt. Printing Of.,
Washington, D.C, p. 36.

Remark This inplenmentation allows to be conpl etely i ndependent
fromany particul ar random nunber generator (see InstallUl).
NOTE: The nodule won't crash if InstallUis never called,
but it will not be able to produce correct results!

| mport ed nodul es: System MathLib
Pr ogr anmi ng

- Design
A Fischlin (17 Dec 87)

- Inplenentation
A Fischlin (17 Dec 87)

Swi ss Federal Institute of Technol ogy Zurich
Project Centre |IDA

Pilot Project CELTIA

[Comput er - ai ded Expl orative Learning and Teachi ng
with Interactive Animated Sinul ation]

ETH Zent rum

CH 8092 Zurich

Swi t zer | and

Last revision: 22/ Mar/93 (af)

**)

TYPE
URandGen = PROCEDURE(): REAL;

PROCEDURE I nstal |l U URandGen);
*

Installs procedure U which returns variates

froma randomvariable uniformally distributed within
interval [0..1). (NOTE A ways call

this procedure before calling N or Np).

*)

PROCEDURE N(): REAL;

PROCEDURE Np(mu, stdDev: REAL): REAL;

(*
Return a variate froma nornally distributed random vari abl e
with nmean nmu and the standard deviation stdDev. For N these
parameters have to be set by procedure SetPars, where the
default values for mu respectively stdDev are O resp. 1.0.
The variates are conputed by the method Box and Mull er
and the Von Neumann rejection technique.

I npl enentation note: Grashing of N() or Np in case where)
returns zero is prevented by calling U) again; however, if
zero is an absorbing state for W) this would lead to an
infinite loop within N() resp. No(); hence, the inplenmentation
counts the occurrences of W) returning zero and hal ts program
execution after 50000 occurrences.

A 307

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

*)

PROCEDURE Set Par s(mu, st dDev: REAL);
PROCEDURE Get Par s(VAR nu, st dDev: REAL);

*

*)

Set or get the current parameters mu (nean) and the
stdDev (standard deviation = SQRT(variance)) for
the normal Iy distributed randomvariabl e for which
procedure N returns vari ates.

PROCEDURE Reset N

(*

*)

END

The here adopted nethod (Box and Mull er and the Von Neunann

rej ection) conputes at each second call of Nresp. Np two

val ues. | nbetween the al ready conputed and not yet used val ue
is sinply returned without any further cal culations. |In order
to produce conpletely defined results, for instance after
setting a new seed val ue in the basic pseudo-random sequence
used by U call this procedure. Only this will fully reset the
internal nmode of this nodule and put it to a state where it

al ways produces the same pseudo random sequence of normally
distributed vari at es.

RandNor mal .

A 308

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.8 ReadData

This module facilitates the reading of data from files, for instance from files storing
measurements, at the begin or during simulations. ReadData is capable to scan a text file by
recognizing numbers, strings, and comments. Numbers are checked for syntax and range, and if
an error is detected, the user isinformed and asked via a dialog box to correct the error or to
abandon the reading process completely. The scanner recognizes strings delimited by blanks
(actualy any ASCII-ch <="") and comments bracketed by the symbols " (*" respectively ")*".
Thismoduleis most useful while implementing and debugging the reading of complex data sets
(note, an aternative to this module is to use directly the module DMFiles from the "Dialog
Machine" as demonstrated by the sample model Sensitivity and the research sample model
LBM). For atypical usage of module ReadData see the sample model SwissPop.

DEFI N TI ON MODULE ReadDat a;
(***
Mbdul e ReadDat a (Version 1.0)

Copyright 1989 by Andreas Fischlin and CELTI A
Swi ss Federal Institute of Technol ogy Zuerich ETHZ

Purpose Export of several utilities to read and test data
while reading froma file with data in columar form

Pr ogr ammi ng

- Design
A Fischlin (12 Feb 89)
- Inplenentation
A Fischlin (12 Feb 89)
T. Nemecek (9 Sep 89)
O Roth (23 Nov 89)
F. Thommen (03 Mar 91)

Swi ss Federal Institute of Technol ogy Zurich
Systenms Ecol ogy G oup

ETH Zentrum

CH 8092 Zurich

Swi t zer |l and

Last revision: 15 Mar 91 ft

***)

(* List of all idents exported by this nodul e:

FROM ReadDat a | MPCRT
negLoglel ta, Ski pGapQ Comrent, ReadChar sUnl essAConment ,
Set M ssi ngVal Code, Get M ssingVal Code, Set M ssi ngReal ,
Get M ssingReal , Set M ssinglnt, GetMssinglnt, dataF,
penADat aFi | e, (penDat aFi |l e, ReReadDat aFil e, d oseDataFil e,
Ski pHeader Li ne, ReadHeaderLi ne, ReadLn, GetChars, GetStr,
Getlnt, GetReal, Set ECSCode, Get ECBCode, Fi ndSegnent,
Ski pToNext Segnent, AtEQL, AtECS, AtECF, TestECF, Rel ation,
Conpar e2Strings, ErrorType, NunbType, ErrMgProc, SetErrMgP,
Get BErr MsgP, UseDef aul t Err Msg;

*)

FROM DBt rings | MPCRT String;

A 309

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

FROM DVFi | es | MPCRT Text Fil e;

QONST
negLoglelta = 0.01; (*offset to plot log scale if values <= 0%)

(* File handling: *)
VAR dataF: TextFile;

PROCEDURE (penADlat aFi l e(VAR fn: ARRAY OF CHAR, VAR ok: BOCOLEAN);
(* opens a file using the standard open file dial og *)

PROCEDURE (penDataFile (VAR fn: ARRAY OF CHAR, VAR ok: BOCOLEAN);
(* opens a file specified by fn automatically, and calls QpenADataFil e
* if fn couldn't be found *)

PROCEDURE ReReadDat aFi | e;

PROCEDURE O oseDat aFi | e;

(* Reading and nunber testing *)

VAR r eadi ngAbor t ed: BOCLEAN

(* Returns wether the file reading has been aborted by pressing the
* pushButton "Stop reading". It is highly reconmrended to use this
variable to test whether the reading of the data has been
successful. |f readi ngAborted = FALSE subsequently avoi d any
program | oop, for instance a simulation; instead make sure you
imedi ately return control to the' D alog Machine'. The latter
is very inportant if the user has pressed the button ' Abort
prgm, which has signaled to the 'Dialog Machine' to termnate
itself (i.e. it actually called QuitD al ogMachi ne from
DWaster). After executing QuitD al oghachi ne, the 'Dial og

Machi ne' accepts no nore user events and any | oop under client
control can no longer be termnated via ordinary user events
such as a nmenu command ' Stop'. Thus any loop with a ternination
condi tion depending on an user event wll no | onger function,
since the current (sub)programlevel accepts no nmore user
events. *)

EE I S S T L T I S I I N

PROCEDURE Ski pGapCr Comment ;

(* skips all characters <= and all text enclosed in comrent
* brackets as used in Mdula-2, i.e. "(* *)"

* This procedure is used in this nodule. *)

PROCEDURE ReadChar sUnl essAComment (VAR string: ARRAY CF CHAR);
(* reads a string beginning fromthe current position until
* a character <= " " or a comment is encountered. *)

(* Mssing val ues: *)

(* default mssingVal Code = "N' *)
PROCEDURE Set M ssi ngVal Code(m ssi ngVal Code : CHAR)
PROCEDURE Get M ssi ngVal Code(VAR mi ssi ngVal Code: CHAR) ;

(* default m ssingReal = DMJonversions. Undef REAL() *)
PROCEDURE Set M ssi ngReal (m ssi ngReal . REAL);
PROCEDURE Get M ssi ngReal (VAR mi ssingReal : REAL);

(* default mssinglnt =0 *)

PROCEDURE Set M ssi ngl nt (n ssi ngl nt
PROCEDURE Get M ssinglnt(VAR mssinglnt:

A 310

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

PROCEDURE Ski pHeader Li ne;
PROCEDURE ReadHeader Li ne(VAR | abel s: ARRAY CF String;
VAR nrVars: | NTEGER);
(* IMPCRTANT NOTE: | abels nust be initialized to NL before first use! *)
PROCEDURE ReadLn (VAR txt: ARRAY CF CHAR);
PROCEDURE Get Chars(VAR str: ARRAY CF CHAR);

PROCEDURE GetStr (VAR str: String);

(* Inthe follow ng procedures the two first paraneters desc and
* |oc are only needed for the display of error messages and hel p
* the user to identify an erronous |location within the data file:
* - desc a string describing the kind of data to be read, e.g.

* popul ation density or nunber of individuals

* - loc a location nunber indicating where the error has

* been found, e.g. a line nunber

*

)

PROCEDURE GetlInt (desc : ARRAY OF CHAR loc: | NTECER
VAR x: | NTECER, mn, max: | NTEGER);

PROCEDURE Get Real (desc : ARRAY COF CHAR loc: | NTECER
VAR x: REAL; nmn, max: REAL);
(* Working with data segnents (ECS means End Of Segrent): *)
PROCEDURE Set EC8Code(eosCode : CHAR);
PROCEDURE Get ECBCode(VAR eosCode: CHAR);
PROCEDURE Fi ndSegnent (segNr: CARDI NAL; VAR found: BOOLEAN);

PROCEDURE Ski pToNext Segrrent (VAR done: BOCOLEAN);

(* Testing: *)

PROCEDURE At EQL(): BOCLEAN
PROCEDURE At EOS(): BOOLEAN
PROCEDURE At ECF(): BOOLEAN

PROCEDURE Test ECF; (* use only where you don't yet expect ECF (shows alert) *)

TYPE Rel ation = (snaller, equal, greater);

PROCEDURE Conpare2Strings(a, b: ARRAY OF CHAR): Rel ation;

(* Alerts: *)

TYPE
Error Type = (Nolnt, NoReal, TooBig, TooSnall,
Not Equal , EndCf Fi | e, Fil eNot Found, Dat aFNot Gpen);
(* type of the error:

* -Nolnt . Integer expected but string or real encountered

* - NoReal : Real expected but string or |nteger encountered
* -TooBig : Nunber higher than nax

* -TooSnal | : Nunber smaller than nin

* - Not Equal : Special case if mn=nax and nunber #nin resp. nax
* -EndCFile : Attenpt to read the file over it's end

A 311

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

-FileNot Found : Data file not found
* -DataFNot Cpen : Data file coul d not be opened *)

NumbType = (Real, Integer);
(* tells weather a real or an integer had to be read *)

Error =

RECCRD
errorType : ErrorType;
strFound :ARRAY[O..63] CF CHAR
CASE nunbType : NunbType CF

Integer : mnl, naxl: | NTEGER
| Real : mnR maxR REAL

ELSE
END,
desc : ARRAY [0..255] CF CHAR
loc :INTEGER

END(* RECCRD*) ;

Err MsgProc = PROCEDURE(Error);

PROCEDURE Set Err MsgP(errP: ErrMsgProc);
(* sets the current alert procedure to alert. Useful if working in batch
* mode to avoid programhalt *)

PROCEDURE Get Err MsgP(VAR currErr P Err MsgProc);
(* gets the current alert procedure *)

PROCEDURE UseDef aul t Er r Msg;
(* re-installs the default alert procedure *)

END ReadDat a

A 312

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.9 SochSat

Stochastic simulations (see also section Stochastic Smulationsin this Appendix) often require a
statistical analysis of the smulation results. The purpose of module StochSat is to support the
sampling of a set of tragjectories and to calculate and display graphically some basic statistics
such as means and confidence intervals, assuming a normal distribution. Typically these
trgjectories are produced by running the same stochastic model several times (but with different
pseudo random numbers) from within an experiment procedure. For a typical usage of this
modul e see the sample model StochLogGrow.

DEFI NI TI ON MCDULE St ochSt at

(***

Modul e StochSt at (Version 1.1)

Copyright ©1990 by Thonmas Nemecek and Swi ss
Federal Institute of Technol ogy Zurich ETHZ

Version witten for:
"Dialog Machine' DMV2.2 (User interface)
Model Vor ks MV V2. 2 (Model l'ing & Simul ation)

Pur pose
Auxi liary nodul e for stochastic simulation. Calcul ates
neans, standard deviation and confidence intervals of n
arrays with mobseravations of a nonitorable variable and
allows to display the nmeans and the confidence intervals
in the graph wi ndow, using the nmodul e SinxaphWils.

Pr ogr anm ng

0 Design
T. Nemecek 19.4.90

o I npl enentati on
T. Nemecek 24.4.90

Swi ss Federal Institute of Technol ogy Zurich ETHZ
Departnent of Environnental Sciences

Systens Ecol ogy G oup

ETH Zent rum

CH 8092 Zurich

Swi t zer | and

Last revision of definition: 24.06.91 tn

***)

(*. FROM StochSt at | MPCRT
Stat Array, Stat ArrayExi sts, Prob2Tai |, Str31, not Exi stingStat Array, Decl Stat Array,
RenoveSt at Array, RenoveAl | Stat Arrays, A earStat Array, A ear Al | Stat Arrays,
Set St at Array, Set Undef Val ue, Get Undef Val ue, Set Tol er ance, Get Tol er ance,
Put Val ue, Get Val ue, Get Singl eStati stics, Get Stati stics, Decl D spW/, D spl ayArr ay,
D spl ayAl | Arrays, Real Fi | eFor mat, n, dec, Fi | eQut For mat , i ndepsFor nat ,
meansFor mat , sunsYFor mat , sunsYSquar eFor nat , st dDevsYFor mat , conf | nt sYFor mat ,
conf Prob, mneansOl y, neansSDA , al | Val s, DunpSt at Array, DunpSt at Arr ays;

FROM DWVFi | es | MPORT TextFil e;
FRCOM DMConver si ons | MPORT Real For nmat ;
FROM Si nBase | MPORT Mbdel ;

A 313

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

TYPE
Stat Array;
Prob2Tai | = (prob999, prob990, prob950, prob900, prob800);
(* 2-tailed probablility for confidence intervals the val ues nmean

promlles. *)
Str31 = ARRAY [0..31] OF CHAR

VAR
not Exi sti ngStat Array: StatArray; (* read only *)

(************************)

(* StatArray nanagenent *)
(************************)

PROCEDURE St at ArrayExi sts(statArray: StatArray): BOCLEAN

PROCEDURE Decl Stat Array(VAR statArray: StatArray; length: | NTEGER);
(* declares an array of data with n=length observation per run.
Inplicitly calls AdearStatArray! *)

PROCEDURE RenoveStat Array(VAR stat Array: StatArray);
PROCEDURE RenoveAl | St at Arrays;

PROCEDURE O ear Stat Array(statArray: StatArray);
(* fills all colums of the array of data with 0.0,
except the colum with the independent variabl es, which
isinitialized to the undefined val ue.
Resets the array to the initial state. *)

PROCEDURE d ear Al | Stat Arrays;

PROCEDURE Set Stat Array(stat Array: Stat Array;
VAR N, X, sun¥, sun¥Square: ARRAY CF REAL);
(* aninitial state of the statArray can be set (var parameters
only for speed-up reasons). Can be used e.g. to continue an
experiment, which had to be aborted.
CAUTION | f any of the values are not known, set undef Val
for the independent, and O for all N sun¥ and
sun¥Squar e! *)

(****************)

(* Data storage *)

(****************)

PROCEDURE Set Undef Val ue(undef Val : REAL);
(* has only an effect, if no array are currently del rared
for reasons of consistency*)
PROCEDURE Get Undef Val ue(VAR undef Val : REAL) ;
(* undefVal is assigned to any statistical value, which can not
be cal cul ated, because the nunber of observations is not sufficient,
e.g. means if n=0, of stDevs is n=1.
This value is al so used to display values in the graph,
that could not be calculated, e.g. nmean i f the nunber
of observations is 0. You should use an undef Val ,
that does not occur in your data
The default undefVal is -1.0E30; *)

PROCEDURE Set Tol er ance(tol: REAL);
PROCEDURE Get Tol erance(VAR tol : REAL);
(* tol is the maxi mal tol erance in which val ues of the
i ndependent varible are accepted. The val ue of the i ndependent
variable has to lie within the interval [x-tol,x+tol], where x is
the first val ue given as independent.

A 314

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

The default tol erance is 10E-4 *)

PROCEDURE Put Val ue(stat Array: Stat Array; index: INTEGER x, y: REAL);
(* adds a value y to the stat array *)

PROCEDURE Get Val ue(stat Array: StatArray; index: | NTEGER
VAR count, x, sun¥, sun¥Square: REAL);

(************************)

(* Statistics *)

(************************)

PROCEDURE Get Singl eStatistics(statArray: StatArray; index: | NTEGER
VAR count, x, sun¥, sun¥Square, neansY, stdDevsY, conflntsY: REAL;
conf Prob: Prob2Tail);

(* gives statistical values describing a single observation point.
count = nunber of observations at any observation point
X = i ndependent variabl e
stdDevsY = standard devi ati on
confIntsY = half confidence interval for confProb
of any observation point in the array. The true nean lies within the
interval [nean-conflnterval Y, mean+conflnterval Y] with
a probability confProb.

The statistics are given as follows for any observation point:
if N=0 = at any observation point, sun¥, sun¥Square = O,
all other statistical values are = undef Val
if N=1 ==> the mean, sun¥ & sun¥Square are the single value resp. its
square and all other values are = undef Val
if N3 2 == all values are cal cul ated

*)

PROCEDURE Get Statistics(statArray: Stat Array;
VAR N X, sun¥, sun¥Square, meansY, stdDevsY, conflntsY: ARRAY OF REAL;
conf Prob: Prob2Tail; VAR |ength: | NTECGER);

(* gives statistical values describing the data.
N = nunber of observations at any observation poi nt
X = independet variabl e

For further explanations see text of PROC Get SingleStatistics
*)

(************************)

(* Gaphical display *)

(************************)

PROCEDURE Decl D spM/(stat Array: Stat Array;
nDepVar: Model ; VAR nvDepVar: REAL;
m ndepVar: Mdel ; VAR nvlndepVar: REAL);
(* Each data array to be displayed in the graph w ndow nust be associ at ed
with a dependent and and i ndependent variabl e, which should both be decl ared
as M/s inthe client nmodel. If time should be the independent vari abl e,
then Sim@aphWils.tinelslndep can be given as paraneter.
See SinXaphWUils. DEF for description of the nonitoring nechanism *)

PROCEDURE Di spl ayArray(statArray: St at Array;
withErrBars: BOOLEAN,
conf Pr ob: Prob2Tai l);

(* The data are displayed in the graph if the followi ng conditions are net:
1. the associated MW nust be set as isY
2. the associated indepVar nust be set as isX respectively if the
simulation time is chosen, none of the M/s nust be set as isX

error bars with probability confProb are displayed, if withErrBars=TRUE

and all observation points have an N3 2.
If no val ues have been stored at any observation point, these val ues are

A 315

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

di spl ayed as undefVal . Make sure that undefVal |ies outside your
scaling range. *)

PROCEDURE D spl ayAl | Arrays(wi t hErrBars: BOOLEAN
conf Prob: Prob2Tai |);
(* The data of all array are displayed. You can select the variables you
want to display as isY. *)

(****************)

(* File output *)

(****************)

(* supports the file output of StatArray data together with |abels,
witten on the top of the data and the independent variabl e val ues,
witten in the | eftnost colum. The data are witten fromthe
current position of the file f, which should be open. *)

TYPE

Real Fi | eFor mat = RECCRD

rf: Real For mat ;
n, dec: CARDI NAL;
END;

Fi | eQut Format = RECCRD
means, counts, sunsY, sunsYSquare,
st dDevsY, conflntsY:
BOCOLEAN,
i ndepsFor mat , neansFor mat, sunsYFornmat, sunsYSquar eFor mat,
st dDevsYFor mat, conf | nt sYFor mat :
Real Fi | eFor mat ;

conf Prob: Prob2Tai l ;
END;
(* The labels are witten with the follow ng suffixes:
nmean -9
count -N
sumY -ay
st andard devi ation - st dev

condifence intervals -CIL resp. - Hfor lowand highlimt *)

VAR (* read only! *)

neansl vy,

(* wites only means *)
meansSDd |

(* wites neans, standard deviations and confidnce intervals *)
all vVal s: Fi | eQut For nat ;

(* wites all stored and cal cul ated val ues *)
(* default Real Format:
rf = ScientificNotation;

n 10
dec = 5
default confProb = prob950*)
PROCEDURE DunpStat Array (VAR f: Text Fi |l e;
| abel : Str31;
stat Array: Stat Array;
fof : Fi | eQut Format) ;
PROCEDURE DunpSt at Arrays(VAR f: Text Fil e;
| abel s: ARRAY CF Str31;
statArrays: ARRAY CF StatArray,
fof: Fi | eQut For mat ;
nArs: | NTEGER) ;

(* The independent values of the first StatArray are witten in the
| eftnost column. In case the arrays have not the sane length, the
length of the first array determ nes the nunber of values witten.
A character "N' is witten in the positions where data are m ssing.
Only the first nArs statArrays are dunped to the file. *)

END St ochSt at .

A 316

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.10 StructModAux

SructModAux provides support for a model definition program, which consists of severd
modules, where each represents a submodel of a structured model. Mainly the dynamic
activation and deactivation of submodels from within the simulation environment is made
accessible via menu commands, even during simulations. For a typical usage of this optional
auxiliary module see the sample model GreenHouse, which demonstrates the technique of
modular modeling in the context of the green-house effect and the carbon fluxes between
atmosphere and biosphere. The sample model CarPollution and the research sample model
LBM aso use SructModAux.

DEFI NI TI ON MCDULE St r uct MbdAux;

(***

Modul e St ruct ModAux (Version 1.0)

Copyright (c) 1993 by Andreas Fischlin and Swiss
Federal Institute of Technol ogy Zurich ETHZ

Purpose Wilities, which are of use when working with
structured Mdel Wr ks nodel s

Remarks This nmodul e inports fromthe Mdel Wrks client
interface

I mpl ementation restriction: Assumes a single
Master Mbdel Definition Program (MDP), i.e. it can not
support simultaneously nore than one MDP!

Pr ogr anm ng

o0 Design and | npl ermentation
A Fischlin 4/ 1/ 94

Syst ens Ecol ogy

Institute of Terrestrial Ecol ogy

Departnent of Environnental Sciences

Swi ss Federal Institute of Technol ogy Zurich ETHZ
@ abenstr. 3

CH 8952 Schlieren/ Zurich

Swi t zer | and

Last revision of definition: 4/1/94 AF

***)

FROM DWenus | MPCRT Menu, Commrand;
FROM Si nBase | MPCRT MAW ndowAr r angerrent ;

TYPE

Struct Model Set = Bl TSET;
Bool eanFct = PROCEDURE (): BOCLEAN

VAR
customM Menu; (* may be used to install nmore commands *)
chooseCd: Cormmand,;

PROCEDURE | nstal | QustonMenu(title, chooseOnTxt, chooseA Chr: ARRAY CF CHAR);
*

Installs a nenu with the title "title', and as the first

A 317

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

*)

command (i.e. 'chooseQm') a command with the text

' chooseOndTxt'. The latter nenu command is associated with
procedure ' ChooseMbdel ' and can al so be activated with the
alias char (keyboard equival ent) 'chooseA Chr'.

Typi cal usage: Install QustomMenu(”Mdel s","Activation.”,"L");
executed fromw thin a InitS nEnv procedure.

See al so exanple at the end of this definition!

PROCEDURE Chooselbdel ;
*

*)

' ChooseMbdel ' is the procedure associated with the nenu command
' chooseMOnd' which allows the sinulationist to activate
previously installed sub nodel s (see procedure

' Assi gnSubModel ') dynanmically. Note that this routine

calls inplicitely 'SetSi nEnv'.

PROCEDURE Assi gnSubMbdel (VAR whi ch: | NTEGER, descr: ARRAY OF CHAR

*

*)

act, deact: PROC isact: Bool eanFct);

Installs a sub nmodel with the descriptor 'descr' and uses the
routines 'act', 'deact' respectively 'isact' to activate or
deactivate respectively to investigate the current presence of
the sub model . Upon successful assign the subrmodel gets the
nunber 'which'; use it when calling procedure 'SetSinEnv', e.g.
to denote those subnodel s you want to be active by default.
NOTE: I nplenentation restriction, only up to a maxi mrumof 16
sub nodel s can be assigned. Subnodels can't be deassi gned,

unl ess they have been assigned by a subprogramlevel which is
to be termnated. In the latter case this nodul e autonatically
deassi gnes any di sappeari ng subrnodel .

PROCEDURE | nst al | M@ obPr ef er ences(nyPrefs: PROO) ;
*

*)

Installs routine 'nyPrefs' which is used to define defaults of
gl obal paraneters such as default w ndow positions (e.g. by a
call to routine 'Pl ace@aphSuperScreen') or global simlation
paraneters (e.g. by a call to the routine 'SetDefltQd obSi nPars'
fromnodul e ' SinBase').

PROCEDURE Set Si nEnv(sns: Struct Model Set) ;
*

*)

(*

A3

Sets the defaults (i.e. executes the previously installed

routine 'nyPrefs' whenever needed) and activates all the nodel s
specified in 'sns' according to the sequence in which

sub nodels were installed by calls to the routine 'Assi gnSubModel ' .

Typi cal exanpl e of a master nodul e col | ecting several sub nodel s by
neans of above routines:

VAR
atnos, bios, obs: | NTECER

PROCEDURE | ni t Si nEnv;
BEG N

18

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

I nst al | Qust onMvenu(" Model s, "Activation..!,"L");
Set Si nEnv(at nos, obs); (* default activation *)
END | ni t Si nEnv;

PROCEDURE Set Myd obPr ef er ences;

BEA N
Set Def | t @ obSi nPar s(1900. 0, 2300.0, 0.5, 0.0001, 1.0, 10.0);
Pl ace@ aphOnSuper Screen(til ed);

END Set M@ obPr ef er ences;

BEA N (* body M/Master *)
I nstal | MyA obPr ef er ences(Set MyA obPr ef er ences) ;
Assi gnSubModel (at nos, at mosMbdel Descr,
Acti vat eAt nosModel , Deacti vat eAt nosModel , At nosModel | sActi ve);
Assi gnSubMbdel (bi os, bi osMdel Descr,
Acti vat eBi osMbdel , Deacti vat eBi oshbdel , Bi oshbdel | sActi ve);
Assi gnSubModel (obs, obsModel Descr,
Acti vat eCbsMbdel , Deacti vat eCbhshModel , ChsModel | sActi ve);
RunSi nEnvi ronment (I nitSinkEnv);
END M/Mast er;

*)

END Struct ModAux.

A 319

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.11 TabFunc

TabFunc allows to compute function values by linear interpolation and extrapolation from so-
called table functions, i.e. functions only given by a series of x,y-value pairs instead of an
analytically defined function such asy = sin x. Besides algorithms for inter- and extrapolation
TabFunc has also an user interface, which allows to inspect and edit table functionsinteractively
viaatable or agraphical display. For atypical usage of this optional auxiliary module see the
sample model UseTabFunc! and SwissPop.

This section does not list the definition module of TabFunc, instead it describes the user as well
as the client interface of this module in more details.

D.3.11.a User Interface

As soon as at least one table function has been declared successfully (see aso below section
Declaration of table functions) the module TabFunc activates a user interface. It consists
mainly of the menu TabFuncs (Fig. A10) and some entry forms associated with its menu
commands, plus awindow Table Function Editor.

Edit table function...
Reset table functions...
Reset all table functions

S$how table functions editor

Fig. A10: Menu TabFuncs
EDIT one of the Table Functions marked by a '+, or
UIEW one of the unmarked Table Functions :
i *BRCMT _y *BRFMT _y *BRMMT
2 »BRPMT > =CFIFRT) eCIMT
> =CIOR 2 »DRCMT) »DRFMT

[} 2 »DRMMT 2 =DRPMT) »FCMT

2 »FPCIT) »FPMT) »NREMT
) «NRMMT > »POLATT 3 »POLCMT
3 e0LCT i #0OLFT i #OLMT
3 #0OLPT

Fig. A1l Entry form to select a table function for the editing or viewing of

the values of a particular table function. The functions are listed with their
identifiersonly. Functions marked with a's' are modifiable, i.e. they can actually be
edited, in contrast to those which can only be viewed.

10nly distributed but not listed in this Appendix

A 320

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

The menu serves the editing and resetting of the declared table functions.

Edit table function...: Letsthe user edit or inspect atable function.

First the table function has to be selected by clicking into the corresponding radio
button in an entry form similar to the one shown in Fig. A11. Every table function is
identified viaits name (formal parameter tabName of procedure Decl TabF).

Secondly the window Table Function Editor is displayed, which looks similar to the
example shownin Fig. A12. A graph of the current table function is drawn to the left;
atable of the current x,y-pairs, i.e. supporting points, is shown to the right.

Table Function Editor EEEI
Growth rate RTt: growth rate
] : . : : Mr: TemperaqtureGrowth rate
oesod R R e ST L . bo T
1 : ' : Z z |s.o .04
0.2a 1 .- P] 10.0 0.07
]) : : ' 4 [zo0.0 0.17
.20 e N A e 5 a0.0 0. 1901385
] : : : 6 [40.0 0.zh
ozd oo R S PRI ET P EE 7 [50.0 0.25
o.1s o .-
|:|.12': e . T R
0,10 _ N I R R
0.0 g
.05 4 - S R . IR P
,:,_,:,3_: R I
o.oo _| L L L L L L
Iﬁ.EIEI 10.00 20.00 20.00 40,00 S0.00
Temperaturea
[Close] [Initial] [Oraw] Const =

Fig. A12: Table Function Editor to display (Draw) and edit values of atable
function. In contrast to analytical functions, such a function is defined by
interpolation within a table of Xx,y-pairs, i.e. a series of supporting points.
Modifiable table functions can be edited, either by dragging supporting pointsin the
graph visiblein the left part of the window, or by typing new values for supporting
points in the table shown to the right. The depicted table function (the one from the
sample model UseTabFunc.MOD) returns values computed from linear
interpolation (within the range [0,50]) respectively extrapolation (outside [0,50];
since ExtrapolMode = lastSope, extrapolation slopes are given by the closest two
neighboring points, i.e. first two resp. last two points).

A 321

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

A modifiable table function can be edited in three ways. First by entering new values
inthefields of the table, second in the graph by dragging a supporting point with the
mouse, and third by transforming the function into a constant.

First editing method: The left column in the table contains the values of the indepen-
dent variable (x-values) and the right column the valuesof the corresponding depen-
dent function value (y-values). Every [X,y]-pair defines a supporting point of the func-
tion. Once editing is completed, the push button Draw alows to see the new table
function in graphical form.

Except for the following restrictions, the tabulated values may be editedfreely:
It isrequired that the x-values are dways in ascending order and that all x-values must
be different, i.e. if there are n x-vaueswith the index i, they must satisfy the condition
X1 <Xy <Xg < ... <Xj <...<Xn.q <X, Theuserisasked to correct values which do not
satisfy this condition.

In addition to typing a series of [x,y]-pairs, it isalso possible to enter asingle
value, hereby transforming the whole table function into a single constant (see below
third editing method).

Second editing method: In order to change a dependent function value (y-value), drag
the circle which denotes the corresponding point vertically. You may drag a point
outside the graph's panel, as long as the range limits defined at declaration time (see
below section Declaration of table functions) are not exceeded. To change a value of
the independent variable (x-vaue), press the option-key while dragging in a horizontal
direction. However, in the latter case you are not allowed to drag a point beyond the
adjacent x-values. The point's new numerica values, visbleinthetableto theright, are
updated accordingly.

Third editing method: In order to quickly transform a whole table function into a
single constant or model parameter, enter the constant in the top field of the x-values
and click into the push button Const. The top x-vaue is then copied to all other x-
values and the graph redrawn.

Even if atable function is not modifiable, it is possible to open the window Table
Function Editor. In this case the corresponding graph is depicted and the x,y-val uesof
the supporting points are tabulated. However, neither dragging of points nor editing of
valuesispossble.

The push buttons at the lower left corner may be used for editing or to issue
commands.

-- Push button Close (or the keyboard equivalent W) closes the window; in case
the table function has actually been modified, the user isfirst asked whether the
changes shall be really used (see above button Use) or whether the actual table
function shall remain untouched, exactly as it was before the menu command
TabFuncg/Edit/View table function. .. has been chosen.

Push button Initial discards all previous editing and reverts the values originally
specified when the table function has been declared (see below section Declara-
tion of table functions) as if the user would have retyped these values into the
tablein the upper right corner. Thus, do not confound this with areset (see menu
command TabFuncs/Reset table functions), since the equivalent to areset would
require to perform actually the following: First to push the button Initial, then
without any editing inbetween to push the button Use immediately after.

- Push button Draw to (re)draw the graph with the current supporting values, as

shown in thetable at the right of the graph. Y ou may push this button as many
times you wish, of course aso while editing the table.

A 322

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

- Push button Use accepts the edited coordinates of the supporting points as the
new current values and redraws the graph. Note that from then on all interpola-
tions or extrapolations done with this table function will use the new values.
(Sinceit isthe default button, it may also be pushed viaa keyboard equivaent, i.e.
by pressing either the key Return or Enter).

- Push button Const supports the third editing method (see above) and alows to
turn atable function quickly into asingle model parameter.

Reset table function...: Resets the values of an individual table function to the values
specified when the table function has been declared. This command displays an entry
form similar to the one shown in Fig. A13, which lists all modifiable table functions.
Select the table function to be reset by clicking into the corresponding radio button.
Again table functions are listed by their names (formal parameter tabName of
procedure Decl TabF). This command is equivalent to first selecting a table function
for editing via the menu command TabFuncs/Edit/Viewtablefunction... plus pushing
the buttonsinitial, Use, and Close from within the window Table Function Editor.

RESET one of the following Table Functions:
® BRCMT {7 BRFMT) BRMMT
7 BRPMT {7 CFIFRT 3 CIMT
3 CIOR 3 DRCMT 3 DRFMT
) DRMMT) DRPMT) FCMT
3 FPCIT 3 FPMT 7 NREMT
3 NRMMT 3 POLATT 3 POLCMT
1 OLCT 3 OLFT O OLMT
{3 OLPT
Fig. A13: Entry form to select a particular table function for its resetting.

Only modifiable functions, denoted by their identifiers, arelisted .
Reset all table functions. Resets all modifiable table functionsto their originally declared
values without asking the user for a selection of a particular table function.

Show table functions editor: Shows the table function editor window by bringing it to the
front.

The user interface, in particular the menu TabFuncs, vanishes as soon as the last table function
has been removed (see also below section Removing table functions).

D.3.11.b Declaration of table functions

It is recommended to initialize the variables of type TabFUNC with the value notExistingTabF
within the body of the corresponding scope before declaring the table functions.

TYPE TabFUNC

VAR not Exi sti ngTabF: TabFUNC (* read only! *)

A 323

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

Table functions may be declared with the procedure DeclTabF or DeclTabFM. The first
dternative requires to specify the values with two arrays of reals (formal parameters xx and yy of
procedure Decl TabF). The second allows to use the data type Matrix (formal parameter xyVecs
of procedure DeclTabF) from the auxiliary module Matrices Once declared there will be no
difference between table functions, regardiess of their declaration method.

PROCEDURE Decl TabF(VAR t . TabFUNC,
XX, YY . ARRAY COF REAL;
Nval Pai rs . | NTECER,
modi fi abl e . BOOLEAN
t abNane,
xNare, yNane,
xUnit, yUnit : ARRAY OF CHAR
XM n, xMax,
yMn, yMax : REAL);
PROCEDURE Decl TabFM VAR t . TabFUNGC
xyVecs : Matrix;
modi fi abl e . BOOLEAN
t abNane,
xNare, yNane,
xUnit, yUnit : ARRAY OF CHAR
XM n, xMax,
yMn, yMax : REAL);

The meaning of the formal parametersis asfollows:

t Thevariablet isof the opague type TabFUNC . It is used to identify
the table function. If a table function is already assiciated to t a warning will be
displayed and t isleft untouched.

XX, Yy The vector xx contains the independent and yy the dependent val ues of
the table function being defined. The elements of the xx vector must be in ascending
order otherwise the table function will not be declared.

xy\Vecs Thismatrix contains the values of the independent variable in the first
column and the values of the dependent variable of the table function in the second
column. Again the independent values must be given in ascending order, otherwise the
table function will not be declared.

NValPairs Number of elementsin the xx and yy vectors holding avaid value.

modifiable If TRUE the table function may be modified by the table function
editor, otherwise only viewed.

tabName Isused for the identification of the table function in the user interface,
such asits selection e.g. in the table function editor's entry form (Fig. A11 and A4).

xName, yName, xUnit, yUnit The names of the table function's axis variables and
their unit. These stringswill be used in the table function editor window.

xMin, xMax, yMin, yMax Define the upper and lower bounds for each axis. Attempts to
drag points or to enter values outside of these ranges are not possible or will not be
accepted by the table function editor. If during declaration any value of the
independent or dependent variablesis outside of these ranges, a warning message will
be displayed and the table function will not be declared.

Notethat if Decl TabF or Decl TabFM declares the first table function, the menu TabFuncs will

beinstalled and becomes visible, given the "Dialog Machine" is currently running (see above
section User Interface).

A 324

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

D.3.11.c Modification of table functions

PROCEDURE Get TabF(t: TabFUNC

VAR xXx, yy . ARRAY OF REAL;
VAR Nval Pai rs . | NTEGER
VAR nodi fiable : BOCLEAN
VAR t abNare,
xNane, yNane,

xUnit, yUnit : ARRAY OF CHAR
VAR xM n, xMax,

yMn, yMax : REAL);
PROCEDURE Set TabF(t . TabFUNC
XX, YY o ARRAY OF REAL;
Nval Pai rs . | NTECER,
rmodi fi abl e . BOOLEAN
t abNane,
xNare, yNane,
xUnit, yUnit : ARRAY OF CHAR
XM n, xMax,
yMn, yMax : REAL);
PROCEDURE Get TabFM t . TabFUNGC
VAR xyVecs © Matrix;
VAR nodi fi abl e ;. BOOLEAN
VAR t abNane,
xNare, yNane,

xUnit, yUnit @ ARRAY OF CHAR
VAR xM n, xMax,
yMn, yMax : REAL);

PROCEDURE Set TabFM t . TabFUNGC
xyVecs : Matrix;
rmodi fi abl e . BOOLEAN
t abNane,
xNare, yNane,
xUnit, yUnit : ARRAY OF CHAR
XM n, xMax,

yMn, yMax : REAL);

The procedures GetTabF and GetTabFM retrieve the current values of the table functiont. The
procedures SetTabF and SetTabFM redefine the table function t; you may even change its
dimensions by passing for parameter NVal Pairs another value than used during the declaration
of t. If the table function t does not exist, a warning will be displayed. The meaning of the
formal parametersis exactly the same as explained in section Declaration of table functions

PROCEDURE Edi t TabF (t: TabFUNC);

This procedure opens the window Table Function Editor and allowsto edit the table function t.

PROCEDURE Reset TabF(t: TabFUNC);

This procedure resets a table function to the original values specified when it has been declared
and discards dl interactive editing. Every successful call of DeclTabF respectively Decl TabFM,
orSetTabF respectively SetTabFM, sets new default as well as current values, thus performs also
an implicit reset. Any editing viathe table function editor affects only the current vaues.

PROCEDURE Fr eezeEdi t or @ aphBounds(VAR t : TabFUNC,
XM n, xMax,
yMn, yMax : REAL);
PROCEDURE Unf reezeEdi t or & aphBounds(VAR t: TabFUNC) ;

The call of the procedure FreezeEditor GraphBounds freezes the range of the axes between the
vaues xMin and xMax, resp. yMin and yMax. Beforeacall of this procedure or after the call of

A 325

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

UnfreezeEditor GraphBounds the scaling of the axes shown in the graph of the window Table
Function Editor is adjusted such that the curve fills always the entire graph. To suppress this
autoscaling of the axes call FreezeEditorGraphBounds albeit, note that this may lead to a
Situation where the graph might show no part of the curve at all.

D.3.11.d Inter- and extrapol ations with table functions

Table functions alow to compute function values within the defined domain [xx[1], xx[n]] by
linear interpolation or outside this range by extrapolation (Fig. A14) by using one of the
following function procedures:

PROCEDURE Yie(t: TabFUNC x: REAL): REAL;
PROCEDURE Vi (t: TabFUNC x: REAL): REAL;

»lastSlope

Coordinates from table /
define points of support \ 7

2> 4 /' \ \\ | \\ N 1 - horizontally

3235 74 from here on

é'c‘is 3 / /“\ \ \ / extrapolation

85251 1] /1/ |

2 / linear interpolation for y-va-
1.5 }/ lues missing in between —
. -1 | |
horizontally O/.%’/ - Deflined ciomaiT -

lastSlope ™ "y 1 2 3 4 5 6 7 8 9 10 11 12

from here on § Independent variable x
extrapolation |

Fig. Al4: Interpolation and extrapolations computed by the function
procedures Yie (inter- and extrapolation) and Yi (only interpolation) for a function
declared as a so-called table function. The table function is defined by supporting
points given in form of coordinates within the domain of definition. Inside the
domain Yi and Yie compute linear interpolations, outside Yie computes linear
extrapolations, depending on the mode either horizontally or aong the slope defined
by the two adjacent supporting points.

Extrapolations are allowed if the function procedure Yie is used (read Yie as follows. returns
dependent value Y by linear inter- or extrapolation). If you use Yi (returns dependent value Y
by interpolation only) any attempt to compute a function value y for an independent value x
outside the defined range [xx[1], xx[n]] will result in awarning message, but the valuereturned
isthe same asif Yiewould have been called.

TYPE Extrapol Mode = (| astSl ope, horizontally);

PROCEDURE Def i neExt rapol ati onvbde(VAR t: TabFUNC, extrapol ati on: Extrapol Mde);
PROCEDURE Ext r apol at i onMbde (t: TabFUNC): Extrapol Mode;

The above procedures allow to define the extrapolation mode of the table function.

The extrapolation modes are defined as follows (n = number of value pairs):

A 326

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

horizontally:
y =yy[1] if x <xx[1]
y =yy[n] if X >xx[n]
lastSope
y =yl + S OVZLD if x < xx[1]
y = yyln + &0 OMAlALD) it x> xr]

D.3.11.e Removing table functions

Table functions can be removed by calling the following procedure:

PROCEDURE RenoveTabF (VAR t: TabFUNO);
Upon a successful return from RemoveTabF t has the value notExistingTabF. Note that if

RemoveTabF removes the last table function, the menu TabFuncs will also be removed (see
above section User Interface).

D.3.12 WriteDatTim

WriteDatTim may be used to record data and time at the begin and end of along, e.g. severa
hours lasting structured simulation (see sample model Markov for such a use). This module is
best used in conjunction with the module DMClock, which allows to access the internal, built in
clock in ahardware independent way.

DEFI N TI ON MODULE Wi teDat Tim
(***
Modul e WiteDat Tim (Version 2.02)

Copyright ©1988 by Andreas Fischlin and CELTI A
Swi ss Federal Institute of Technol ogy Zirich ETHZ

Version for MacMETH V2. 6.2 1-Pass Mdul a-2 i npl ement ati on
Purpose Witing of date and tine
Pr ogr anm ng

e Design/Inpl enentation
A Fischlin (16/ Mai / 88)

Swi ss Federal Institute of Technol ogy Zurich
Project Centre | DA

Pilot Project CELTIA

[Comput er - ai ded Expl orative Learning and Teachi ng
with Interactive Aninated S mul ation]

ETH Zent rum

CH 8092 Zurich

Swi t zer | and

Last revision: 25 Nov 90 (AF)

***)

A 327

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

CONST
Jan = 1; Feb = 2; Mar = 3; Apr = 4; Mai = 5; Jun = 6;
Jul =7, Aug = 8; Sep =9; Gt = 10; Nov = 11; Dec = 12;
Sun = 1; Mn =2; Tue = 3; Wd = 4; Thur =5; Fri =6, Sat = 7;
TYPE
Mont hs = | NTECER,
WeekDays = | NTEGER
Dat eAndTi neRec =
RECCRD
year: | NTECER (* 1904, 1905, ... 2040 *)
nont h: Mont hs;
day, (* 1,...31 %)
hour , (* 0,...,23 %)
m nut e, *0,...,59 *)
second: | NTEGER *0,...,59 *)
daydf Week: WeekDays; * Sun =1, Sat =7 *)
END;

WiteProc = PROCEDURE (CHAR) ;

Dat eFormat = (

) .
(

Ti meFor nat

)

(* the followi ng p
PROCEDURE Wi t eDat

PROCEDURE Wit eTi ne(d: DateAndTi neRec; w WiteProc;

END WiteDat Tim

A 328

bri ef, * only nunbers: e.g. 31/05/88 *)
| et Mont h, (* nonth in letters: e.g. 31/ Mai/1988 *)
full (* full inletters: e.g. 31st Mai 1988 *)
bri ef 24h, (* 24 hour format brief: e.g. 23:15 *)
bri ef 24hSecs, (* 24 hour brief & secs: e.g. 23:15:02 *)
| et 24hSecs, (* hour in letters: e.g. 23h 15" 02" *)
ful | 24hSecs, (* full inletters: e.g. 23 hours
15 mnutes 02 seconds*)
brief 12h (* 24 hour format brief: e.g. 11:15 pm*)

rocedures wite information in English only *)
e(d: DateAndTimeRec; w. WiteProc; df: DateFornat);
tf: TimeFormat);

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

E Quick References

E.1 AUXILIARY LIBRARY

The following quick reference lists the exports of the more important modules contained in the
auxiliary library AuxLib. Its modules are all directly or indirectly based on the "Dialog
Machine" only. Some modules import aso from the client interface of ModelWorks, some also
from other auxiliary modules. For details on how to work with the auxiliary library see part 11
Theory, chapter ModelWorks Functions, section Module structure of ModelWorks, and this
appendix section Sample Models

Auxiliary Library Mdul es based on the D al og Machine Version 2.2 © 1994 Andreas Fischlin, Qivier Roth, Onitrios Galistras, and Mrkus Urich
Shi ss Federal Institute of Technol ogy Zurich ETHZ, Saitzerland.

(Buttons)

TYPE Button; ButtonActi onProc = PROCEDURE Button);
Butt onDrawProc = PROCEDURE Button, RactArea) PaletteDa\AR’oc = PROCEDURE(| NTEGR);

VAR notlnstal | edButton: Button;

PROCEDURE Instal | Button (VAR btn : Button; btnFrane : RectArea;
but t onActi on: ButtonActi onProc; drawButton : ButtonDrawProc);
PROCEDURE ButtonExi sts(btn: Button): BOOLEAN
PROCEDURE RenoveButton(VAR btn: Button); PROCEDURE RenoveA | But t onsd Wndow(w Wndow) ;
PROCEDURE Set ToDefaul tButton (w Wndow btn: Button; drawDefltButton: ButtonDrawProc);
PROCEDURE NoDef aul tButton (w Whndow) ;
PROCEDURE Get Def aul t Button(w Wndow, VAR bt n: Button);
PROCEDURE SetButtonAliasChar (btn: Button; nodif: BITSET; aliasChar: GHAR);
PROCEDURE O sabl eButton(btn : Button); PROCEDURE Enabl eBut t on (btn: Button);
PROCEDURE | sEnabl ed (btn: Button): BOO
PROCEDURE SetButtonN (btn: Button; btnN: INTEGER); PROCEDURE ButtonN (btn: Button): | NTEGER
PROCEDURE Ganer Wndow(btn: Button): Wndow
PROCEDURE SetButtonAttr(btn: Button; bt nFrane: Rect Area;
bt nActi on: ButtonActi onProc; drawBut t on: But t onDrawPr oc) ;
PROCEDURE GetButtonAttr(btn: Button; VAR btnFrane: Rect Area;
VAR btnAction: ButtonActi onProc; VAR drawButton: ButtonDraw? oc);
PROCEDURE Drawfext Button (btnFrame: Rect Area; but Text: ARRAY OF GHAR);
PROCEDURE Drawlef | tButtonFrane (frane: RectArea);
PROCEDURE AggregatePal ette(pal N: INTEGER fstBin,IstBin: Button; drawPal ette: PaletteDrawroc);
PROCEDURE DunmyBut t onDr awi ng(dunmyBtn: Button; durmyBt nFrane: RectArea);
PROCEDURE Onner Pal ette(btn: Button): | NTEGER
PROCEDURE Get Pal etteDranwProc(pal N: | NTEEER VAR pdp: Pal etteDrawProc; VAR done: BOOLEAN);
PROCEDURE D saggregat ePal ette(pal N: | NTEGER);
PROCEDURE RedrawAl [Buttons (w Wndow);
PROCEDURE O nmAl | O sabl edButtons (w Wndow) ;
PROCEDURE DoFor Al | ButtonsG Wndow (w Wndow, proc: ButtonActionProc);

(Gel | Aut oQut)
TYPE Gel | Autol D Synbol = GHAR Underl ayMbde = (under| ayWii te, dont Lhderl ay);
PROCEDURE (I NTEGER | NTEGR);

Cel | Process =
VAR not Exi stingCA Cel | Autol D

PROCEDURE Decl Gel | Qutput (VAR cal D Cel | Autol D VAR out Wndow Wndow pl ot Frane: Rect Area;
nunbX, nunbY: |NTEGER w thGidLi nes: BOOLEAN);

PROCEDURE RenoveCel | Qut put (VAR cal D Gel | Autol D); PRIEIlERaaneAIIQEIIOJtputs

PROCEDURE Gel | Qut put Exi st s(cal D Gel | Autol D): BOOLEAN

PROCEDURE Sel ect Gel | Qutput (cal D Gel | Autol D); PROCEDURE Get Qur Gel | Qut put (VAR cal D Cel | Autol D);

PROCEDURE dear Gel | (x,y: | NTEGR);

PROCEDURE F |1 Gl | (x,y: INTEGER pattern: Pattern; col: Color);

PROCEDURE Draw nCel | (x, y: INTEGER sym Synbol ; underlay LhderlayM)de);

PROCEDURE DoFor Al | Cel | s(doCel | Proc: CbllH’ocess)

PROCEDURE Cal cCel | Area(x,y: INTEGR): RectArea;

PROCEDURE Cal cCel IMddl e(x, y: |NTEGER VAR xQoord, yQoord: | NTEGR;

PROCEDURE Get Plot Frane(cal D Cel | Autol D: Rect Area;

(@onfi dence)

PROCEDURE FInvNornal Sand(al fa: REAL): REAL;, (* p=0, signa=1%)
PROCEDURE Fl nvNor nal (rm,sigma,alfa: REAL) : REAL;

PROCEDURE FI nvSt udent (nu: INTEGER alfar REAL):

PROCEDURE FInvChi Square (nu: INTEGER alfar REAL):

PROCEDURE FI nvF (nul, nu2: INTEGR alfa: FEAL) FEAL
PROCEDURE FinvBinomial (k,N INTEGER alfa: REAL):

PROCEDURE Fl nvPoi sson (lanbda: | NTEGER alfa: FEAL)

PROCEDURE FInvNegBi nonmial (mu, k: REAL; alfar REAL):

(FleNaneStrs)
VAR ext Separator, pathSeparator, vol Separator: CHAR

PROCEDURE Stri pExt (fronhane: ARRAY GF CHAR VAR toNane: ARRAY OF OHAR);
PROCEDURE Set NewiExt (fronNane, newBxt: ARRAY F GHAR VAR toNane: N:RAYO:Q—INR)

PROCEDURE Extract Ext (pat hAndFi | eNane: ARRAY OF CHAR VAR ext ensi on: AFRAYO:CHOR;

PROCEDURE Extract F | eNane(pat hAndFi | eNane: ARRAY OF GHAR VAR fNane: ARRAY OF OHAR);
PROCEDURE Extract Pat h(pat hAndFi | eNane: ARRAY OF GHAR VAR path: ARRAY OF GHAR);
PROCEDURE Extract Rel Path(ful | Path, basePath : ARRAY GF GHAR VAR rel Path: AR%L\YO:G-IBR)
PROCEDURE Extract Vol Nane(ful | Path: ARRAY OF GHAR VAR vol Nane: ARRAY OF OHAR) ;

PROCEDURE Spl i t Pat hFi | eNane(pat hAndF | eNane: ARRAY OF GHAR VAR pat h, f Nane: ARRAY OF
PROCEDURE Spl i t Vol Pat hFi | eNane(ful | Path: ARRAY GF GHAR VAR vol N pathN fileN ARR}AYCFO—%R)
PROCEDURE (onpl et ePat h(basePath, rel Path: ARRAY OF GHAR VAR ful | Path: ARRAY OF GHAR);

A 329

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

PROCEDURE Gonpl et ePat hF | eNane (vol N pathN fNane: ARRAY GF GHAR VAR ful | Pat hAndF | eNane: ARRAY OF GHAR) ;

(Fel p oxk)

PROCEDURE ShowHel pWndow;

PROCEDURE Set Hel pHi | eNane (fn: ARRAY OF OHAR); PROCEDURE Set Resour ceFi | eNang(fn: ARRAY OF GHAR) ;
PROCEDURE Setinstallati onErHandl er (errMg: PROC);

PROCEDURE Set Debughbde(debugQn: BAOLEAN) ;

PROCEDURE Reset Hel p;

(H st ogr ans *kk)
TYPE H stogram H stoAct = PROCEDURE (H stogran);

PROCEDURE Defi neH stogranfw Wndow VAR h: Hstogram r: RectArea; frondass,tod ass: | NTEGR
XLabel : ARRAY OF HAR naxFregency: CARDINAL; fregNunbs: BOOLEAN
barl: lor; barPat: Pattern);

PROCEDURE Set YTickinterval (h: Hstogram interval: | NTEGR

PROCEDURE d earH stogranth: H stogram); PRZ(EJEDraw-Istogran(h H stogran);

PROCEDURE M dTopPoi nt (h: H stogram cl ass: INI'E(ERf CARD NAL; VAR X,y: |NTEGR);

PROCEDURE P otBar(h: Hstogram class: INTEGER f: CARONAL);

PROCEDURE Set P ot Bar Mbde(h: H stogram w peQut : BOOLEAN);

PROCEDURE Get P ot Bar Mbde(h: H stogram VAR wi peQut, done :’ECG_EAN);
PROCEDURE RenoveH st ogranf{ VAR h: H stogram); PROCEDLRE DofFor Al | H stograns(p: H stoAct);
(IdentifyPars ***)

TYPE Real Fet = PROCEDURE (): REAL; MnMethod = (hal f Doubl e, anoeba, price, random brent, povell, sinplex);
PROCEDURE Mar kPar For I denti fication(VAR p: REAL); PROCEDLRE Lh rrarkFtarForldentlflcatlon(VAR p: REAL);
PROCEDURE Uhnar KA | Par sFor | dent i fi cati on;

PROCEDURE SetDefltMnin{ neth: MnMethod;, naxlter: INTEGER convC REAL);

PROCEDURE GetDefltMninf VAR neth: MnMethod; VAR naxlter: INTEGER VAR convC REAL);

PROCEDURE MnimzeAfterD al og(func: Real Fet);

PROCEDURE M ni mze(nethod: MnMethod; convG REAL;, naxlter: INTEGER func: Real Fet);

(Jacobi i |
QONST VecS ze=40;
TYPE Vector = ARRAY [1..VecS ze] OF REAL; Matrix = ARRAY [1..\ecS ze] GF Vector;

PROCEDURE Jacobi (VAR mat: Matrix; dim |INTEGER VAR eigVals: \ector; VAR eigVecs: Mitrix; VAR nunRot: |NTEGR);
PROCEDURE B gSort (VAR eigVal s: Vector; VAR eigVecs: Matrix; dim |INTEGER);

(Jul i anDays kel)
QNSTJan =1; Feb =2, Mr =3; Aor = 4, Mai = 5; Jun = 6
Jul =7, Aug=8; Sep=9; &t =10, Nov = 11; Dec = 12;
Sun =1, Mn=2, Tue =3, d = 4 Thur =5 Fi = 6 Sat = 7,
TYPE Month = [Jan..Dec]; WekDay = [Sun.. Sat];
Dat eAndTi ne = REGCRD
year: | NTEGR (* e.g. 1582,...,1994,...,2040 etc.*)
nonth: Month; day: INTEGRR (* [1..3]] (depends on m)mh) *)
hour, (* [0..23] *)
mn: INTEGR sec: INTEGR (* [0..59] *)
dayd Véek: VeekDay; (* eeg. Sun*)

secFrac: REAL; (* fraction of a second, e.g. 0.13 for 13 hundredth of a second *)

END
PROCEDURE Dat eTi neToJul Day(dt: DateAndTine): LONGREAL;
PROCEDURE Jul DayToDat eTi ne(j d: LONGREAL; VAR dt: Da1 eAndTi ne) ;
PROCEDURE Dat eToJul Day(day, nont h, year: | NTEGER): LONG NT;
PROCEDURE Jul DayToDat e(j d: LONG NT; VAR day: | NI'EGER VAR nonth: Month; VAR year: |NTEGER VAR dayd \éek: \WekDay);
PROCEDURE | sLeapYear (yr: |NTEGER): BOOLEAN
PROCEDURE Set Cal endar Range(fi rst Year, | ast Year, first Sunday: | NTEGR);

(Lists kel)

TYPE List; SelectionMde = (single, nultlpl eAdj acent, mul tipl eD sconnect ed);
DspustltenProc-PFCCEDE(ADDRESS, | NTEGRR INI'EGER);
ItenSel ection = (sel ected, notSelected, all);
ListltenProc = PROCEDURE (ADDRESS); Listltenviiil eProc = PROCEDURE (ADDRESS, VAR BOOLEAN);
| sSuccessor Proc = PROCEDURE (ADDRESS, ALDRESS): BOOLEAN
Qondi tionProc = PROCEDURE (ADDRESS): BOOLEAN

VAR noList: List; (* read only variable! *)

PROCEDURE Decl List (VARIist: List; listNane: ARRAY OF GHAR) ;

PROCEDURE Renoveli st(VAR list: List);

PROCEDURE ListExists(list: List): BOO

PROCEDURE InsertinList (list: List; alListltem beforeltem ADDRESS);

PROCEDURE Del eteFrontist(list: List; VARaListltem ACDRESS);

PROCEDURE Listltenixists(list: List; listltem ADDRESS):

PROCEDURE DoWt hi st | tens (list: List; dowth: Itengel ection; doSonething: ListltenProc);

PROCEDURE DoWt hii st | tensWii | e(|ist: List; doWth: Itengel ection; doSonething: ListltenviileProc);

PROCEDURE SortlList(list: List; isSuccessor: |sSuccessorProc);

PROCEDURE Instal | LI SBox(list : List; window: Wndow scrBrrane : RectArea; title : ARRAY OF GHAR
dispListitem: DspListitenfroc; celIW cellH: INTEGER sel Mde : Sel ectionhbde);

PROCEDURE Renovell SBox(list : List);

PROCEDURE Redrawb| SBox(list @ List);

PROCEDURE Decl LISBox (list : List; window: Wndow scrBrrane : RectArea; title : ARRAY OF GHAR
dispListitem: DspListitenfroc; celIW cellH: INTEGER sel Mde : Sel ectionhbde);

PROCEDURE Set LI SBoxAttr(list: List; title: ARRAY OF GHAR dispListitem: DO spListlteniroc;

sel Mbde : Sel ectionMbde) ;

PROCEDURE Get LI SBoxAttr(list: List; VARtitle : ARRAY OF GHAR VAR dispListlitem: DO splistlteniroc;
VAR sel Mde : Sel ecti onhbde) ;

PROCEDURE Set LI SBoxFraning(|i: List; boxFraned: BOOLEAN);

PROCEDURE Get LI SBoxFraning(|i: List; VAR boxFraned: BOOLEAN);

PROCEDURE Set Scrol | BarPlace(|i: List; dx, dy,h: INTEGR);

PROCEDURE Get Scrol | BarPlace(li: List; VARdxdy h: INTEGR);

PROCEDURE crol | LI SBox(1i: List; by | NTEGRR

PROCEDURE HipLl SBox(li: List; direction: Eﬂ]_EAN)

PROCEDURE Enabl eLl SBox (list: List);

PROCEDURE Di sabl ell SBox(list: List);

PROCEDURE Toggl eLl SBoxItenf |i: List; item ADDRESS, shifted: BOOEAN);

PROCEDURE Set Sel ectionFor Al If (li: List; ifp: GonditionProc; isSelected: BOOLEAN;

PROCEDURE Set Sel ectionForAll (li: List; i sSel ect ed: ECG_EAM,

PROCEDURE JunpToll SBoxItenf list: List; item ADDRESS);

PROCEDURE ToplLl SBoxItenf list: List): ADDRESS

PROCEDURE Bot LI SBoxlItenf list: List): ACDRESS

PROCEDURE Next LI SBoxItenf list: List; item ACDRESS): ACDRESS

PROCEDURE Prevll SBoxltenf list: List; item ADDRESS): ADDRESS

PROCEDURE |sSel ected(list: List; item ADDRESS): BOOLEAN

PROCEDURE GetlListitenSel ection(list: List; VARIIs: ARRAY OF ACDRESS VAR nSel ected: |NTEGR);

PROCEDURE SetlistitenSel ection(list: List; VARIis: ARRAY OF ADDRESS nSel ected: |NTEGR);

A 330

(**

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

Mitrices)

TYPE Matrix; Gell = REQCRDrow col: INTEGER BND(*Cell*);

Selection = RECRD topl e : G.\II

(**

PROCEDURE SetMatrixB e(m Matrix;
PROCEDURE GetMatrixB e(m Matrix;

PROCEDURE MHe(m Matrix; row

PROCEDLRE Al I Matrix (m Matrix;
PROCEDLRE SetMatrixRow(m Mitrix;
PROCEDLRE SetMatrixGol (m Mitrix;
PROCEDLRE Get Matri xRow(m Matri x;
PROCEDLRE Get MatrixQol (m Matrix;

PROCEDURE Set | ndexRangeChecki ng(
PROCEDURE Get | ndexRangeChecki ng(
PROCEDURE Set Matri xNane(m Matri
PROCEDURE Get Matri xNane(m Matri

(**

botri : Qell; active: Gell; BENX(*Sel ection*);

Mit Access)

row col: INTEGER val: REAL);

row col: INI'EGER VAR val: REAL);

col: INTEGR):

v REAL);

nrRow : INTEGER VAR rowArr @ ARRAY OF REAL);
nrGl : INTEGER VAR col Ar @ ARRAY (F REAL H
nrRow : INTEGER VAR rowArr @ ARRAY OF REAL);
nr@l : INTEGER VAR col Arr @ ARRAY OF REAL);
doCheck: BOOLEAN);

VAR doCheck: BOODLEAN);

X; VAR nane: ARRAY OF GHAR);

X; VAR nane: ARRAY OF AR);

Mat Copy)

VAR sel ne(ne : Selection; (* read only ! *)

PROCEDURE Assi gnhatri x(VAR nyMatrix: ARRAY OF BYTE mn: INTEGER VAR nat: MatriXx);
PROCEDURE RetrieveMatrix(nmat: Matrix; VAR nyMtrix: ARRAY GF BYTE mn: INTEGR);

PROCEDURE QopyMatri x(a: Matrix;

PROCEDURE Sel Whol eMat (m Matri x;

VAR b: Matrix);
VAR sel : Selection);

PROCEDURE QopySel ection (sourceMat: Matrix; area: Selection; destMat : Matrix; toplLeft: Gell);
PROCEDURE ShapSel ect i ons(mat1l: Matrix; area: Selection; mat2 : Mitrix; topLeft: CGll);
NTEGER) ;

PROCEDURE ShapRows(nmat 1 Matri x;
PROCEDURE SnapQol s(nat 1 Matri x;
PROCEDURE Fil | Down (nat: Matrix;
PROCEDURE Rl IRght (nat: Matrix;

rowl: INTEGRR nat2: Matrix; row2: | H
col1: INTEGER nat2: Matrix; col2: INTEGR);
area: Selection);
area: Selection);

(** Mt Decl are)

VAR not Bxi stingMatrix: Matrix; (* read only variable! *)

PROCEDURE Decl Matrix(VAR m Mitrix; nRows, nCols: INTEGER nane : ARRAY OF HAR);
PROCEDURE Matri xExi sts(m Matrix): BOOLEAN

PROCEDURE RenoveMatrix(VAR m Matrix);

PROCEDURE SetMatrixDnf VAR m Matrix; nRows, nQGols: INTEGR);

PROCEDLRE GetMatrixDn{ m Matrix;

(e
TYPE Mat FornQut = REGRD real F :

VAR nRows, n@l's: | NTEGR);

MitFle)
Real Format; |en, dec : CARD NAL

separator: ARRAY[O..63] OF GAR craol : INTEGER eM: AR%Y[O 63] CF AR BNX(*REQORDY);
Mit Formin = RECORD separator: ARRAY[0..63] OF GHAR nQols : | NTEGR
ronsep : ARRAY[0..63] OF R eM: ARRAY[0..63] CGF CHAR ENDX(*Mat Formin*);

VAR standardO: Mt FornQut; standardl : MatFormin; natFleCk : BOOLEAN

PROCEDURE SetMatFornin (ni: MitFornin); PROCEDURE GetMatFornin (VAR ni: MatFornin);
PROCEDLRE Set Mt For nQut (m MnFornﬂn) PROCEDURE Get Mat For nQut (VAR nf: Mat Forn@Qut) ;

PROCEDURE WiteMatrix(f : TextFHle; m Mtrix);

PROCEDURE WiteRow (f @ TextFile; m Matrix; rowN : INTEGR);
PROCEDURE Wi teQol (f: TextFle; m Matrix; colN : INTEGR);
PROCEDURE WiteHe (f @ TextFle; m Mtrix; rowcol: INTEGR);
PROCEDURE ReadMatrix (f @ TextFHle; m Mtrix);

PROCEDURE ReadRow (f: TextFle; m Matrix; rowN : INTEGR);
PROCEDURE ReadOol (f: TextFle; m Matrix; colN : INTEGR);
PROCEDURE ReadH e (f: TextFle; m Matrix; rowcol: INTEGR);

(** Mit hPr ocs)

PFO]EIJREPO\AerI(x: REAL; iexp: INTEGER): REAL; PROCEDURE Power (x, exp: REAL): REAL
'FEAL

PROCEDURE Round (x: REAL) ©
PROCEDLRE Imax (i1,i2: |Nrasaa)
PROCEDLRE Rmax (X1, x2: REAL):
PRIEDRER () REAL
PROCEDURE ArcSin(x: REAL): REAL:

(**

QON\ST english = 0; gernan = 1; french = 2;

PROCEDURE Set Messagelanguage(| :

PROCEDLRE Fac (ki CARDINAL): CARDINAL;
PROCEDLRE Int (x: REAL): |NTEGR
INI'II-ER PROCEDLRE Inin (i 1,i2: INI'EGEFQ |NraCER
PROCEDLRE Riin (x1, x2. REAL):
PROCEDLRE Tan (x: REAL): FEAL;
PROCEDLRE A cQos(x: REAL):

MsgFi | es)

PROCEDURE Set AsMessageF | e(fn: ARRAY OF (HOR VAR done: E{I]_EAM
PROCEDURE Get Message(nsgnr: | NTEGER VAR nsg: ARRAY CF
PROCEDURE Get Nunber edMessage(nsgnr: | NTEGER VAR nsg: ARRAY ez HAR);

(** Mil ti Nor ral)

TYPE Mil ti NDi str;

VAR not Decl aredMil tiNDistr: MiltiNOstr; (* read only *)

PROCEDURE Decl areMil ti ND str(VAR nuVec : \ector; VAR sigVec : \ector; VARcorMat @ Matrix;

dim: INFEGEER VARnnd : MiltiNDOstr);
EAN

PROCEDURE Mul ti ND strDeclared(nmd: Multi NDstr): BOQL
PROCEDURE Multi Nl nmd: MultiNDstr; VARvals: \ector);
PROCEDURE Uhdecl areMil tiNDistr(VAR nmd: Mil tiNDistr);

(**

Queues)

TYPE FI FOQueue; |tenfction = PROCEDURE (Transaction);

VAR not Bxi sti ngFl FOQueue: H FQQueue; (* read only *)

PROCEDURE O eat eFl FOQueue (VAR Q:
PROCEDURE Enpt yH FQQueue (g:
PROCEDURE Fi | el ntoFl FOQueue (Q:
PROCEDURE First | nFl FOQueue (q:
PROCEDURE Takelst FronH FOQueue(g:
PROCEDURE FI FOQueuelLengt h (qg:
PROCEDURE | sHI FQQueueRul | (fi f oq:
PROCEDURE | sHI FOQueueEnpt y(fi f og:
PROCEDURE DoFor Al | | nH FQQueue (Q:
PROCEDURE FI FOQueueExi st s (q:
PROCEDURE DO scar dFl FOQueue(VAR q:

H FQQueue; naxLength: | NTEGER);
H FQQueue) ;

H FQQueue; ta: Transaction);
H FQQueue): Transaction;

H FQQueue): Transaction;

FI FQQueue): | NTEEER

F FQQueue) : EAN

Fl FOQueue) : BOOLEAN

H FQQueue; ia: |temfction);
F FOQueue) : BOOLEAN

H FQQueue) ;

italian = 3; nyLanguagel = 4; nylLanguage? = 5; undef MsgN = -1;

A 331

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

(RandGen ***)

PROCEDURE Set Seeds(20, z1,z2: |NTEGER); (*defaults: z0=1, z1=10000, z2=3000*)
PROCEDURE Get Seeds(VAR 20, z1,z2: | NTEGER);

PROCEDURE Randoni ze; PROCEDLRE Reset Seeds;

PROCEDURE U(): REAL; (*U~(0,1], cycle length > 2.78 EL3 ~ 220 years for 1000 U sec*)

(RandGen0 *kk)
PROCEDURE J(): | NTEGER PROCEDURE Jp(nin, nax: |NTEGER): | NTEGR
PROCEDURE Set JPar (nmin nax: |NTEGR); PROCEDURE Get JPar (VAR nin, nax: | NTEGR);
PROCEDURE R): REAL; PROCEDURE Ro(nin, nax: REAL): REAL;
PROCEDURE Set RPar (nin, nax: REAL); PROCEDURE Get RPar (VAR nin, nax: REAL) ;
PROCEDURE NegEXp(): REAL; PROCEDURE NegExpP(| anbda: REAL): REAL;
PROCEDURE Set NegExpPar (| anbda: REAL); PROCEDURE Get NegBExpPar (VAR | anbda: REAL);
TYPE LRandGen = PROCEDURE():

PRI]EIlREInstalILO(uO u?and@n) PROCEDURE I nstal | UL(ul: URandGen);

(RandGenl *kk)

PROCEDURE Wi bul | (): PROCEDURE V¢i bul | P(al pha, beta: REAL): REAL;

PROCEDURE Set Wi bulchxrs(al pha, beta: REAL);

PROCEDURE Get Wi bul | chrs(VAR al pha, beta: REAL);

PROCEDURE Triang(): PROCEDURE Tri angP(nin, node, nax: REAL): REAL,
PROCEDLRE SetTrlangFtars(min, node, nax: REAL) ;

PROCEDURE Get Tri angPar s(VAR niin, node, nax: REAL) ;

PROCEDURE W(): REAL; PROCEDURE WR(nean, kappa: REAL) :

PROCEDURE Set VWPar s(nean, kappa: REAL);

PROCEDURE Get WPar s(VAR nean, kappa: REAL) ;

TYPE URandGen= PROCEDLRY) :
PROCEDLRE | st al | UD(u0: lRindGen) PROCEDURE I nstal | Ul(ul: URandGen);

(RandNormal ~ ***)
TYPE RandGen

= PROCEDURE() :
PRIED_FEInstaJIL{U LRsLnd(hn) (* do always call *)

PROCEDURE N): REAL; (* N+(p, stdDev) *) PROCEDURE No(mu, stdDev: REAL): REAL
PROCEDURE Set Par s(my, stdDev: REAL); (* defaults p =0, stdDev =1 *)
PROCEDURE Get Par (VAR mu, stdDev: REAL);

PROCEDURE Reset N (* call after SetSeeds for full reset of N*)

(ReadDat a kel)
VAR dataF: TextFile; readi ngAborted: BOOLEAN

PROCEDLRE (penADataFi le(VAR fn: ARRAY OF AR VAR ok: BOOLEAN); (* always wth dial og *)
PROCEDURE (penDataFile (VAR fn: ARRAY OF HAR VAR ok: BOOLEAN); (* nornal ly no dialog *)
PROCEDURE ReReadDataF | e; (* perforns a reset *)

PROCEDLRE d oselat aFi | e;

PROCEDURE Ski pHeader Li ne;
PROCEDURE ReadHeader Li ne(VAR | abel s: ARRAY GF Sring; VAR nrVars: | NTEGR)

(* asmgn NL to labels before first usel *)
PROCEDURE Readln (VAR txt: ARRAY OF GHAR);
PROCEDURE Get Chars(VAR str: ARRAY GOF AR) ;
PROCEDURE GetSr (VAR str: Sring);
PROCEDURE ki pGapQ Gomment ; (* skips <= " " and "(*)")
PROCEDURE ReadChar shl essAG)mrent(VAR strlng AGRAY(F HR);
PROCEDURE GetInt (desc : ARRAY G- HAR loc: INTEGER VAR x: | NTEGER nn, nax:
PROCEDURE Get Real (desc @ ARRAY F HAR loc: INTEGER VAR x: REAL; nin, nax: FEAL
PROCEDURE Set M ssi ngVal Gode(missingval Gode: CGHAR); (* default "N'; used in dataF *)
PROCEDURE Get M ssi ngVal Gode(VAR nii ssi ngval Gode: GHAR) ;
PROCEDURE Set M ssi ngReal (missingReal : REAL) ; (* default 0.0; value used for area *)
PROCEDURE Get M ssi ngReal (VAR missingReal : REAL);
PROCEDURE Set M ssi ngl nt (missinglnt: INI'EGER)' (* default O; value used for an integer *)
PROCEDURE Get M ssi ngl nt (VAR missinglnt: |
PROCEDURE Set ECB(ode(eosode: HAR); (* default "AQl us (unit seperator) 37C*)
PROCEDURE Get ECB(ode(VAR eosCode: GHAR) ;
PROCEDURE F ndSegnent (segN: CARDINAL; VAR found: BOOLEAN); (* first segN =1 *)
PROCEDURE ki pToNext Segnent (VAR done: BOOLEAN) ;
PROCEDLRE AEQL(): BOOLEAN PROCEDURE ALECY(): BOODLEAN PROCEDURE At ECH(): BOOLEAN
PROCEDURE Test EGF; (* use only where you don't expect ECF (shows alert) *)

TYPE Relation = (snaller, equal, greater);
PROCEDURE Qonpare2Strings(a, b: ARRAY OF GHAR): Relation;

QONST neglLogDlel ta = 0.01; (*offset to plot log scale if val ues <= 0*)

TYPE Eror Type = (Nolnt, NoReal, TooBig, TooShall, NotEqual, EnddF le, FleNotFound, DataF\ot (Qpen);

NunbType = (Real, Integer);
Eror = RECCRD

errorType : BrorType; strFound : ARRAY[O..63] GF HAR

CASE nunbType : NunbType GF

Integer : ninl, naxl: | NTEGER
| Real : minR naxR REAL
ELSE BEND
desc : ARRAY [0..255] GF AR loc I NTEGR

END,
ErMgProc = PROOEDURE Error);
PROCEDURE SetErMgR(errP. BErMgProc);

PROCEDURE Get B rMsgP(VAR currBrP. BErrMsgProc) ;
PROCEDURE WseDef aul t B r Msg;

(SateBvents xrxExx)
TYPE Satebvt;
VAR unexpectedStateBvt: SateBEvt; (* read only! *)

PROCEDURE Expect SateBEvt (VAR evt: SateBvt; x: SateVar; thetal, theta2: REAL);
PROCEDURE S at eBEvt Expected(evt: SateBEvt): BOOEAN

PROCEDURE |sStateBvt (evt: SateBvt; x: SateVar): BOLEAN
PROCEDURE Set StateBvt (evt: StateBvt; x: SateVar; thetal, theta2: REAL);
PROCEDURE Get SateBEvt (evt: SateBvt; VAR thetal, theta2: REAL);
PROCEDURE | gnoreStat eBvt (VAR evt: SateBvt);

(Qatlib rrrrxx)
TYPE FunctionXProc = PROCEDURE REAL): REAL; InRangeProc = PROCEDURE REAL, REAL, REAL): BOOLEAN
PROCEDURE MnX (VAR X ARRAY OF REAL; N CARDINAL): REAL

A 332

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

s
55
8
ot

EEEEERER

FunctionXProc): REAL;

@ﬁ@éi@é?ﬁ
;i

BX : FunctlonxProc) REAL;

e

-
$555555855555

:

a

Csiiasine
8Fage

%
Q
=83
Gk
g8

AR VARa, b, r2: REAL);

AR X Y. ARRAY OF REAL; N: CARDONAL; FX: FunctionXProc);

X ARRAY GF REAL;, N: CARDINAL, Xow XHgh: REAL; InRangeX : | nRangeProc): CARDINAL
X ;

X

X

gz
&
-

o ARRAY OF REAL; NAL; xValue @ REAL);
: N Y,

NAL; xValue : REAL);
: NAL)
PROCEDURE Nornii st (z1, 22 : REAL): REAL;
PROCEDURE Factorial (N CARDINAL): REAL;
PROCEDURE Gonbination (N R: CARDINAL):
PROCEDURE Permutation (N R: CARDINAL):

(FFFEERERARER ISR TR AR RRRAS S ochS at)

TYPE SatArray; Prob2Tail = (prob999, prob990, prob950, prob900, prob800); Sr3l = ARRAY [0..31] - GAR
VAR not Bxi stingS at Array: SatAray; (* read only *)
PROCEDURE Sat ArrayExi sts(stat Array: SatArray): BOOLEAN

PROCEDURE Decl SatArray(VAR statArray: SatArray; length: | NTEGR);
PROCEDLRE RemoveStat Aray(VAR stat Array: StatArray); PROCEDURE RenoveA | Sat Arrays;

PROEDURE dearSat Array(statArray: SatAray); PROCEDURE Q ear A | S at Arrays;

PROCEDLRE SetStatArray(statAray: StatAray, N X sun¥, sunySguare: ARRAY (F REAL);
PROCEDLRE Set Uhdef Val ue(undef Val : REAL); PROCEDURE Get Undef Val ue(VAR undef Val : REAL) ;
PROCEDURE Set Tol er ance(tol: REAL); PROCEDURE Get Tol erance(VAR tol 1 REAL);

PROCEDURE Put Val ue(stat Array: SatArray; index: INTEGER x, y: REAL);
PROCEDLRE Get Val ue(stat Array: SatArray; index: |NTEGER VAR count, X, sun¥, sun¥YSguare: REAL);
PROCEDURE GetSingleStatistics(statArray: SatArray; index: | NTEGER
VAR count, X, sunY, sun¥Square, neansY, stdDevsY, conflntsY: REAL; confProb: Prob2Tail);
PROEDLRE GetSatistics(statAray: SatAray; VARN X sun¥, sun¥YSguare, neansY, stdDevsY, conflntsY: ARRAY OF REAL;
conf Prob: Prob2Tail; VAR length: INTEGR);
PROCEDLRE Decl O spM{stat Array: SatArray; niDepVar: Mbdel ; VAR nvDepVar: REAL; nindepVar: Mdel; VAR nvindepVar: REAL);
PROCEDURE Displ ayArray(stat Array: SatArray; wtherBars: BOLEAN confProb: Prob2Tail);
PROCEDURE D spl ayAl | Arrays(w thErrBars: BOOLEAN conf Prob: Prob2Tail);
TYPE Real Fil eFormat = REQCRD rf: Real Fornat; n, dec: CARDINAL; BND
FileQut Format = RECCRD
neans, counts, sunsY, sunsYSquare, stdDevsY, conflntsY: BOOLEAN
i ndepsFor nat , neansFor nat, sunsYrFor nat, sunsYSquar eFor mat, st dDevsYFornat, conflntsYrornat: Real H | eFor nat ;
conf Prob: Prob2Tai|; BN\D
VAR (* read only! *) neansOnly, neansSDA, allVals: FH|eQutFornat;

PROCEDLRE DunpStat Array (VARf: TextFle; label: Sr3l; statArray: SatArray; fof: FleQutFornat);
PROCEDURE DunpStat Arrays(VAR f: TextFle; labels: ARRAY OF Sr31;
stat Arrays: ARRAY OF SatArray; fof: HIeOJtFormn nArs: |NTEGR);

(FEmER RS R RS R G r UCt MOAUX)
TYPE Sruct Mdel Set = B TSET; Bool eanFct = PROCEDURE (): BOOLEAN
VAR custonM Menu; chooseOwd: Gonmand; (* nay be used to install nore conmands *)

PROCEDURE I nstal | Qust onMenu(titl e, chooseQuiTxt, chooseA Chr: ARRAY OF OHAR);

PROCEDLRE Assi gnSubMbdel (VAR whi ch: | NTEGER descr: ARRAY CF CHAR act, deact: PROC isact: Bool eanfkct);
PROCEDLRE ChooseMbdel ;

PROCEDURE | nstal | M/G obPr ef erences(nyPrefs: PROD ;

PROCEDURE Set S nEnv(sns: Sruct Mbdel Set) ;

(** TabFunc *)
TYPE TabFUNG TabFProc = PROCEDURE(VAR TabFUNC) ;
VAR not Bxi sti ngTabF:. TabFUNG (* read only! *)

PROCEDURE Decl TabF(VAR t: TabFUNG xx, yy: ARRAY OF REAL; Nval Pairs: | NTEGER nodifiabl e: BODLEAN
tabNane, xNane, yNane, xLhit, ylhit: ARRAY OF HAR
XMn, xMax, yMn, yMix: FEAL)
PROCEDURE Decl TabFM VAR t: TabFUNG xyVecs: Matrix; nodifiabl e BOOLEAN
tabNane, xNane, yNane, xLhit, ythit: ARRAY GF GHAR
xMn, xMax, yMn, yMax: FEAL);
PROJEDURE Set TabR(t: TabFUNG xx, yy: ARRAY OF REAL; Nval Pairs: |NTEGER nodifiabl e: BOOLEAN
tabNane, xNane, yNane, xLhit, ylhit: ARRAY OF GHAR
XMn, xMax, yMn, yMix: REAL);
PROJEDLRE Get TabR(t: TabFUNG VAR xx, yy: ARRAY OF REAL; VAR Nval Pairs: INTEGER VAR nodifiabl e: BOOLEAN
VAR tabNane, xNane, yNane, xLhit, ylhit: ARRAY OF GHAR
VAR xMn, xMax, yMn, yMax: FEAL)
PROJEDURE Set TabFM t: TabFUNG xyVecs: Matrix; nodifiabl e BOOLEAN
tabNane, xNane, yNane, xLhit, ylhit: ARRAY GF GHAR
XMn, xMx, yMn, yMax: FEAL)
PROCEDURE Get TabFM t: TabFUNG VAR xy\ecs: Matrix; VAR nodifiabl e: BODLEAN
VAR tabNane, xNane, yNane, xLhit, ylhit: ARRAY GF GHAR
VAR xMn, xMax, yMn, yMax: FEAL);
PROCEDURE RenoveTabH(VAR t: TabRUNC);
PROCEDURE Hdi t TabF (t: TabFUNC);
PROCEDURE Reset TabF (t: TabFUNC);
PROCEDURE FreezeHdi tor GaphBounds (VAR t: TabFUNG xMn, xMax, yMn, yMix : REAL);
PROCEDURE Unhf r eezeHdi t or G aphBounds(VAR t: TabFUNC) ;

TYPE Extrapol Mde = (lastSope, horizontally); (* default |astS ope *)

PROCEDURE Defi neExt rapol at i onhbde(VAR t: TabFUNG extrapol at i on: Ext rapol Mbde) ;
PROCEDURE Extrapol ati onMbde(t: TabFUNC) : Ext rapol Mbde;

PROCEDURE Yi (t: TabFUNG x: REAL): REAL; (* interpolate only BLSE HALT *)
PROCEDURE Yie(t: TabFUNG x: REAL): REAL; (* inter- and extrapol ate *)
PROCEDURE DoFor Al | TabH(p: TabFProc) ;

(——————— PUBLI C DOMAI N MODULES)

(** Qurves3D)
QONST nRun = 5; nval =250,

A 333

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

TYPE Proj ecti onEnunerator = (xyH ane, xzM ane, yzM ane, spacial);
Projections = [xyH ane..spacial]; ProjectionSet = SET GF Proj ecti onEnunerat or ;

PROCEDURE el ect Synbol (t heProj ection: Projections; synbol : GHAR) ;
PROCEDURE d ear Lpdat eS or e;
PROCEDURE S art NewQur ve(pr oj ecti on: Proj ectionSet; firstPoint: Point3D);

PROCEDURE Pl ot To3D(P. Poi nt3D); PROCEDURE Repl ot Al ;
PROCEDURE Get Qurrent Proj ection(): Proj ectionSet;
PROCEDURE S oragedf; PROCEDURE & or ageQn;

(Sortlib *xxx)

PROCEDURE QuickSort X (VAR a0 ARRAY OF REAL; n: CARDINAL);
PROCEDURE Qui ckSort XY (VAR a, b: ARRAY OF REAL; n: CAROINAL);

PROCEDURE BinarySort X (VAR a: ARRAY OF REAL; n: CARDINAL);
PROCEDURE SrSel Sort X (| VAR a: ARRAY GF REAL; n: CARDINAL);
PROCEDURE StrSel Sort XY (VAR a, b: ARRAY CF REAL; n: NAL);
(WiteDatTim **+x)

QONST

Jan =1, Feb =2, Mar =3; Aor =4, Mi =5 Jun =6;

Jul =7, Aug =8, Sep=9; &t =10, Nov = 11; Dec = 12;

SN =1 Mn=2 Tue=3 Ved =4, Thur =5; Fi =6, Sat =7,

TYPE Mnths = | NTEGRR WekDays = | NTEGER
Dat eAndTi neRec = REGCRD
year: |NTEGER (* 1904, 1905, ...2040 *) nonth: Mbnths;
day, (* 1,...31*) hour, (* 0,...,23 *) ninute, second: INTEGR (* O,...,59 *)
dayd Wek: VeéekDays; END
WiteProc = PROCEDURE (CHAR);
DateFornat = (brief, (* only nunbers: e.g. 31/05/88 *)
| et Mont h, (* month in letters: e.g. 31/ Mai/1988 *)
full); (* full inletters: e.g. 31st Mi 1988 *)
TineFormat = (brief24h, brief24hSecs, |et24hSecs, full24hSecs, brief12h);
(* the follow ng procedures wite infornation in English only *)
PROCEDURE Wi teDate(d: DateAndTi neRec; w WiteProc; df: DateFornat);
PROCEDURE Wi teTine(d: DateAndTineRec; w WiteProc; tf: TineFornat);

(- END-

The auxiliary library nodul es nay be freely copied but not for profit!

A 334

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

E.2 DIALOG MACHINE1

For details on how to work with the "Dialog Machine" see part 11 Theory, chapter Model Works
Functions section User Interface Customization and section Module structure of ModelWorks,
and this appendix section Research Sample Models. On the "Dialog Machine" exist separate
documentations (see Literature).

D al og Machine Version 2.2 (19/Apr/96) (c) 1988-96 Andreas Fschlin, Systens Ecol ogy, and Swiss Federal Institute of Technol ogy Zurich ETHZ
(KERNEL)

(FxH DMonver si ons rk)

TYPE Real Fornat = (F xedFornmat, ScientificNotation);

PROCEDURE StringToCard(str: ARRAY OF CHAR VAR card: CARD NAL; VAR done: BODLEAN);

PROCEDURE CardToString(card: CARDINAL; VAR str: ARRAY OF GHAR length: CARDINAL);

PROCEDURE StringToLongCard(str: ARRAY GF GHAR VAR | card: LONGCARD, VAR done: BOOLEAN) ;

PROCEDURE LongCar dToString(l card: LONGCARD, VAR str: ARRAY GF GHAR length: CARDINAL);

PROCEDURE StringTolnt(str: ARRAY OF GHAR VAR int: |INTEGER VAR done: BOOLEAN);

PROCEDURE IntToSring(int: INTEGER VAR str: ARRAY OF GHAR length: CARDINAL);

PROCEDURE StringTolongl nt (str: ARRAY OF GHAR VAR |int: LONGNT; VAR done: RZO_EAM

PROCEDURE Longl nt ToSring(lint: LONGNT, VAR str: ARRAY OF GHAR length: CARDINAL);

PROCEDURE StringToReal (str: ARRAY OF GHAR VAR real : REAL; VAR done: BOOLEAN ;

PROCEDURE Real ToString(real : REAL; VAR str: ARRAY OF GHAR length, dec: CARDINAL; f: Real Format);

PROCEDURE StringToLongReal (Str: ARRAY OF GHAR VAR | ongReal : LONGREAL; VAR done: HI]_EAM

PROCEDURE LongReal ToString(l ongreal : LONGREAL; VAR str: ARRAY OF GHAR length, dec: CARDINAL; f: Real Fornat);
| PROCEDURE HexStringToBytes(hstr: ARRAY OF GHAR VAR x: ARRAY CF BYTE, VAR done: BOOLEAN);
| PROCEDURE BytesToHexString(x: ARRAY GF BYTE, VAR hstr: ARRAY OF HAR; PROCEDURE Set HexD gi t sUpper Case(upper C BOOLEAN) ;
| PROCEDURE |11 egal Synt axDet ect ed(): BOOLEAN

| PROCEDURE Undef REAL(): REAL; (* = NN\(Ol?) *) PROCEDLRE Undef LONGREAL(): LONGREAL; (* = NN\(017) *)
| PROCEDLRE | sUndef REAL(x: FEAL): PROCEDURE | sUndef LONGREAL(x: LONGREAL) :

(**** D\Language Kok ok)
TYPE Language = (English, Gernan, French, Italian, MlLanguagel, MLanguage2);

PROCEDURE Set Language(| : Language) ; PROCEDURE Qurrent Language() : Language;
| PROCEDURE Get Msgtring(nsgN: |NTEGER VAR str: ARRAY OF GHAR);
(**** U\MSI er Kok ok)
TYPE Musetandl ers = (WndowQontent, BringToFront, RenoveFronfront, Redef Wndow, Q oseWndow);
MuseHandl er = PFGECLRE (Wn dcw, Keyboar dHandl er = PROG SubProgStatus = (nornal, abnornal);
VAR Mast er Done: BOOLEAN
| PROCEDURE AddSet upProc(sup: PROC priority: |NTEGR); PROCEDURE RenoveSet upPr oc(sup: PR3O ;

| PROCEDURE AddMbuseHandl er (whi ch: Mbusetandl ers; nhp: Mousetandl er; priority: |NTEGR);
| PROCEDURE RenoveMbusetand! er (whi ch: Musetandl ers; nip: Mousekandi er);

| PROCEDURE AddKeyboar dHandl er (khP: Keyboar dHandl er; priority: |NTEGER; PROCEDURE RenoveKeyboar dHandl er (khP: - Keyboar dHandl er) ;
| PROCEDURE | nspect Key(VAR ch: GAR VAR nodi fi ers: Bl TSET); PROCEDURE KeyAccept ed;, PROCEDURE DoTi | | KeyRel eased(p: PROD);
| PROCEDURE Set Keyboar dHandl er Mode(readGet sThem BOOLEAN naxPriority: | NTEGR); PROCEDURE Read(VAR ch: GHAR);
| PROCEDURE Get Keyboar dHandl er Mode(VAR readGet sThem BODLEAN VAR naxPriority: |NTEGER); PROCEDURE BusyRead(VAR ch: CHSF@
PROCEDURE Showwi t Synbol ; PROCEDURE H deWdi t Syniool PROCEDURE Wi t (nrTi cks: LONGOARD); (* 1 tick = 1/60 second *)
| PROCEDURE SoundBel | ; PROCEDURE H ayPr edef i nedMJS| c(fileNane: ARRAY GF GHAR nusiclD INTEGR);
PROCEDURE | ni t O al oghvachi ne; PROCEDURE RunDi al ogMachi ne; PROCEDURE O al oghechi nel sRunni ng() : BAOLEAN
PROCEDURE Qui t O al oghMichi ne; PROCEDURE Abort O al oghachi ne; PROCEDURE D al oghvchi neTask;

PROCEDURE Cal | SubProg(nodul e: ARRAY GF GHAR VAR status: SubProgS at us);

(**xx DVMVeNus Hokk)

TYPE Menu; Gonmand; AccessSatus = (enabl ed, disabled); Mrking = (checked, unchecked); Separator = (line, blank);
Qi t Proc = PROCEDURE(VAR BOOLEAN); SeparatorPosition = (beforeCm1 af ter Qwl) ;

| VAR MenusDone: BOOLEAN not I nst al | edvenu: Menu; not | nst al | edConmand: Gonmand;

PROCEDURE I nstal | About (s: ARRAY GF GHAR w h: CARDINAL; p: PROD);
PROCEDURE NoDeskAccessor i es;
PROCEDURE I nstal | Menu(VAR m Menu; nenuText: ARRAY OF GHAR ast: AccessSatus);

| PROCEDURE Instal | SubMenu (i nMenu: Menu; VAR subMenu: Menu; nenuText: ARRAY OF CHAR ast: AccessStatus);
PROCEDURE | nstal | Coormand(m Menu; VAR c: Gonmand; cnuText: ARRAY GF GHAR p: PROC ast: AccessSatus; chm Mrking);
PROCEDURE Instal | Ali asChar(m Menu; c: Conmand; ch: a"R;

| PROCEDURE Instal | Separator(m Menu; s: Separator) PROCEDURE RenoveSeparator (m Menu; s: CARDINAL) ;

| PFO:EI:UERanmveSeparalorAtCDnmnd(m Menu; cnd: Cbmrand; sp: Separat or Posi tion);

PROCEDURE I nstal | Qui t Command(s: ARRAY GF GHAR pr QuitProc; aliasChar: GHAR);
| PROCEDURE H deSubQui t (onLevel : CARDINAL); PF(IH]E&O\ABJant(onLeveI CARDINAL) ;
PROCEDURE UseMenu(m Menu) ; PROCEDURE UseMenuBar ;
PROCEDURE RenoveMenu(VAR m - Menu) ; PROCEDURE RarmveManuBar;
| PROCEDURE RenoveCommand(m Menu; cnal: Gonmand) ;
PROCEDURE Enabl eDeskAccessori es; PROCEDURE O sabl eDeskAccessor i es;
PROCEDURE Enabl eMenu(m Menu) ; PROCEDURE D sabl eMenu(m Menu) ;
PROCEDURE Enabl eConmand(m Menu; ¢: Gonmand) ; PROCEDURE D sabl eConmand(m Menu; c: Gonmand) ;
PROCEDURE CheckGonmand(m Menu; c: Gonmand) ; PROCEDURE WhcheckGonmand(m Menu; c: Gonmand) ;
| PROCEDURE Set CheckSynfm Menu; ¢ Gonmand; ch: GHAR); PROCEDURE | sGonmandChecked(m Menu; c¢: Conmand) : BOOLEAN
| PROCEDURE ChangeGonmand(m Menu; c: Gonmand; p: PROD); PROCEDURE ChangeConmandText (m Menu; c: Conmand;

newhtiText: ARRAY GF GHAR);
| PROCEDURE ChangeAl i asChar (m Menu; c: CGonmand; newCh: CHAR); PROCEDURE ChangeQui t Ali asChar (onLevel : CARDI NAL; nevl | ash: R
| PROCEDURE Execut eConmand(m Menu; c: Gonmand) ; PROCEDURE Execut eAbout ;

1For availability and installation see the separate booklet "Installation Guide and Technical Reference of the
RAMSES software”

A 335

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE MenuExi sts(m Menu): BODLEAN PROCEDURE GonmandExi st s(m Menu; ¢: Gonmand) : BCCLEN\t
| PROCEDURE MenulLevel (m Menu): CARDI NAL; PROCEDURE GonmandLevel (m Menu; ¢ Conmand)
| PROCEDURE GetMenuAttributes(m Menu; VAR nenuN: CARDINAL;, VAR nenuText: ARRAY OF GHAR VAR ast: Access&atus
VAR i sSubMenu: BOOLEAN VAR par ent Menu: Menu) ;
| PROCEDURE Get GonrmandAttributes(m Menu; c: Gonmand; VAR cndN: CARDINAL; VAR cndText: ARRAY GF GHAR VAR p: PRXG
VAR ast: AccessSatus; VAR chm Mirking; VAR chnth, aliasCh: GHAR);

| PROCEDURE I nstal | Predefi nedvenu

| PROCEDURE I nstal | Predef i nedSubMenu
| PROCEDURE I nstal | Predef i nedCormand
|
|
I

(fileName: ARRAY GF GHAR nenul D INTEGER VAR m Menu);
(f
(f
PROCEDURE | nst al | Predefi nedSeparator (fi
(fi
(fi

ileNane: ARRAY GF GHAR nenul D | NTEGER inMenu: Menu; VAR subMenu: Menu);

leNane: ARRAY OF GHAR nenul D iteniN: INTEGER m Menu);
leNane: ARRAY G- GHAR nenul D INTEGEER m Menu);
leNane: ARRAY OF GHAR nenul D INTEGER m Menu; naxlteniN: | NTEGER);

PROCEDLRE SaveAsPr edef i nedMvenu
PROCEDLRE SaveAsPr edef i nedMenuSect i on

(* DWMMessages)
| GONST LNBREAK = 15C undef MigN' = -1; toScreen = 0; toJournalFle = 1;

| TYPE MsgRetrieveProc = PROCEDURE (I NTEGER, VAR ARRAY OF OHARR)5
| MsgDevi ce = [toScreen. . toJournal Hle]; MgWiteProc = PROCEDURE (GHAR); MgWitelnProc = PROG

PROCEDURE Ask(question: ARRAY OF CHAR but Texts: ARRAY OF GHAR but Wdth: CARDINAL; VAR ansver: | NTEGR);
PROCEDURE D spl ayBusyMessage(nsg: ARRAY OF GHAR); PROCEDLRE D scar dBszMzssage

PROCEDURE Inform (paragraphl, paragraph2, paragraph3: ARRAY G-

PROCEDURE Dol nform (nsgnr: | NTEGER nodl dent, |ocDescr, insertions: AFFAY - aAR;

PROCEDURE Vérn (paragr aphl par agr aph2, par agr aph3 ARRAY OF

PROCEDURE Dovérn (nsgnr: | NTEGER nodl dent, |ocDescr, insertions: ARRAY OF AR);

PROCEDURE Abor t (paragr aphl par agr aph2, par agr aph3 ARRAY OF R ;

PROCEDURE DoAbort (nsgnr: | NTEGER nodl dent, |ocDescr, insertions: ARRAY OF HAR);

PROCEDURE Set MsgRet ri eveProc(rp: MsgRetri eveProc); PROCEDURE Get MsgRet ri evePr oc(VAR rp: MsgRetri eveProc);
PROCEDURE LseForM;gJournaJlng(V\p M;ngteP(oc w np: MgWiteLnProc);
PROCEDURE Set MaxMsgs (nax:
PROCEDURE Set MsgDevi ce (forAsk forl nformforVrn, forAbort: MgDevice);
PROCEDURE Get MsgDevi ce (VAR forAsk, forlnformforVern, forAbort: MgDevice);
PROCEDURE AskPr edef i nedQuestion(fil eNane: ARRAY OF GHAR alertiD | NTEGRR
stri,str2,str3,strd: ARRAY OF GHAR VAR ansver: | NTEGR);

(* DVE or age **)

|
I
ileNane: ARRAY OF GHAR nenul D iteniN: INTEGER m Menu; VAR c: Gommand; p: PROD);
|
|
I

| PROCEDURE All ocate(VAR p: ADDRESS, size: LONGNT); PROCEDURE All ocat eQnlevel (VAR adr: ADDRESS, size: LONGNT; onLevel : |NTEGR);

| PROCEDURE Deal | ocat e(VAR p: ACDRESS); PROCEDLRE Deal | ocat enlevel (VAR p: ADDRESS, onLevel : | NTEGER);

(* IBMPC conpatibility: *)
| PROCEDURE ALLQCATE(VAR p: ADCRESS, size: CARDINAL); PROCEDURE DEALLQCATE(VAR p: ALDRESS, size: CARDINAL);

(* DVBtri ngs **)
TYPE Sring; SringRelation = (snaller, equal, greater);
| VAR notAllocatedSr: Sring; ResourceSringsDone: BOOLEAN

| PROCEDURE AllocateStr(VAR strRef: Sring; s: ARRAY OF GHR); PROCEDURE Deal | ocateStr (VAR strRef: Sring);
| PROCEDURE SetSr(VAR strRef: Sring; s: Am/-\YO:O-NZQ PROCEDURE Get Str(strRef: Sring; VARs: ARRAY OF GHAR);
| PROCEDURE Strlevel (strRef: Sring): PROCEDURE Strlength(strRef: Sring): | NTEGER

PROCEDURE Lengt h(VAR string: AR%AYCFO—PR I NTEGER
PROCEDURE Assi gnString(source: ARRAY OF GHAR VAR d: ARRAY OF H
| PROCEDURE Append(VAR dest: ARRAY OF HAR source: ARRAY OF GHAR); PROCEDURE AppendCh(VAR dest: ARRAY OF GHAR ch: GHAR);
| PROCEDURE AppendStr (VAR striRef: Sring; s: ARRAY OF GHAR); HIIEI:IEAppender(VARstrI%f Sring; ch: GHR);
| PROCEDURE oncatenat e(first, second: ARRAY OF CHAR VAR result: ARRAY OF
| PROCEDURE QopyString (VAR from ARRAY OF GHAR i1, nrChs: INTEGER VAR tO: AFWAYCFO—PR VAR|2 INTEGR) ;
| PROCEDURE Qopy(from ARRAY OF HAR startindex, nrdChars: INTEGER VARto: ARRAY GF
| PROCEDURE Extract SubString(VAR curPosl nScS | NTEGER VAR srcS destS ARRAY OF GHAR delimter: R ;
| PROOEDURE FindinSring (VAR theString: ARRAY OF GHAR searchSr: ARRAY OF GHAR VAR first(h, last Ch: | NTEGER): BOOEAN
| PROCEDURE onpareStrings(sl, s2: ARRAY - GHAR): StringRel ation;
| PROCEDURE onpVar Strings(VAR a, b: ARRAY OF HAR): SringRel ation;
| PROCEDURE QonpStr(VAR a: ARRAY OF HAR bS String): SringRel ation;
PROCEDURE LoadString(fileNane: ARRAY OF GHAR stringl D INTEGER VAR string: ARRAY OF GHAR);
PROCEDURE SoreSring(fil eNane: ARRAY OF GHAR VAR stringl D INI'EGER string: ARRAY OF OHAR);
PROCEDURE Get RYtring(stringlD INTEGER VAR str: ARRAY GF
| PROCEDURE Set RringNane (fil eNane: ARRAY O GHAR stringl D INI'EGER nane: ARRAY 0F GHAR);
| PROCEDURE Get RringNane (fil eNane: ARRAY OF CHAR stringlD |NTEGER VAR nane: ARRAY OF

GR);
PROCEDURE New&ring(VAR s: ARRAY GF GHAR): Sring; PROCEDLRE Put Sring(VAR strRef: Sring; VARs: ARRAY OF GHAR);

(D\VByst em)
QONST start UpLevel = 1; naxLevel = 5;
PROCEDURE Qurrent DMLevel () CARDI NAL; PROCEDURE Level i sDM.evel (|1: CARDINAL): BOOLEAN

| PROCEDURE TopDMLevel (): CARDI NAL; PROCEDLRE DoOnSubProglevel (11 CARDINAL; p: PRID);

| PROCEDURE ForceDMeevel (extralevel : CARDONAL); PROCEDURE ResuneDMLevel (nor nal Level : CARDI NAL) ;
| PROCEDURE InstallInitProc(ip: PROC VAR done: BOOLEAN; PROCEDURE Bxecut el ni t Procs;

| PROCEDURE Instal |l Terniroc(tp: PROC VAR done: BOOLEAN; PROCEDURE Bxecut eTer nir ocs;

| PROCEDURE Get DM/ersi on(VAR verss, | ast Modi f Date: ARRAY OF GHAR); PROCEDLRE Syst enVer sion():
| PROCEDURE Get Conput er Nane(VAR nane: ARRAY OF GHAR) ;
|
I

PROCEDURE Get CPUNane(VAR nane: ARRAY OF GHAR) ; PROCEDLRE Gt FPUNane(VAR nane: ARRAY CF GHAR) ;
PROCEDURE FPUPr esent () BODLEAN PROCEDLRE Gt ROM\ane(VAR nane: ARRAY CF GHAR) |
PROCEDURE ScreenWdth(): | NTEGER PROCEDURE Screenti ght () | NTEGER

| PROCEDURE Mai nScreen(): | NTEGER
| PROCEDURE Super Screen(VAR whi chScreen, x,y,wh, nrd@lors: INTEGER colorPriority: BOOEAN;

(* lowlevel routines *)
MenuBar Hei ght (): INTEGER PROCEDURE Titl eBarkeight (): | NTEGER PROCEDURE crol | BarWdth(): | NTEGER
| PROCEDURE Gowl cond ze(): | NTEGER
PROCEDURE Nunber 0 Gol ors(): INTEGER (* supported by DMregard ess of currently used screen *)
| PROCEDURE HowManyScreens(): |NTEGER PROCEDURE Get Screend ze(screen: |NTEGER VAR x,y,w h: |NTEGER);
| PROCEDURE Nunber 0 ol or sChScreen(screen: | NTEGER) : | NTEGER

QONST unknown = 0;
| Mc5I2KE =3, McSE0 = 9, McLC =19; McPower Book140 = 25; SN =101 IBWC
| McH us =4 MicPortabl e = 10; MicQuadr a900 = 20; Ml | =19; SUN3 = 102; | BVAT
| MicSE =5; Macl | ci =11, MicPower Book170 = 21; MicQuadr a950 = 26; SUNSpar ¢ = 103; | BWPS2
| Macl | = 6; Macl | fx =13; MicQuadr a700 =22;
| Macl | x =7 Micd assic = 17; Macd assi cl | =23;
| Macl | cx =8 Macl | si = 18; MacPower Book100 = 24;
PROCEDURE Gonput er Systenf) : | NTEGER
QONST CPUBB000 = 1; CPUB088 = 201; CPUB0186 = 203; FPLB8BSL = 1;
CPUB8010 = 2; CPUB086 = 202; CPUB0286 = 204; FPLB8B82 = 2
CPUB8020 = 3; CPUB0386 = 205; FPUBB040 = 3;
| CPUB8030 = 4; CPUB0486 = 206;
| CPUB8040 = 5;

= 201;
= 202;
= 203;

I BMR sc6000 = 300,

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE CPUType(): | NTEGRR PROCEDURE FPUType(): | NTEGRR
| QONST MacKeyboard = 1L AExtendkbd = 4 Portabl el SKbd = 7, ADBKbd | = 10; PwBKISKbd = 13;
| MacKbdAndPad = ADBKeyboard = 5; East woodl Skbd = 8; ADB SKbdl | = 11;
| McH uskbd = 3 Portabl ekbd = 6 Sarat ogal Skbd = 9; Pwr BKACBKDbd = 12;
PROCEDURE Keyboard(): | NTEGER
| GONST ROWB4K = 1; ROM28k = 2; ROVR56k = 3; RW12k = 4 RMO024k = 5; (* RMtypes *)
| PROCEDURE RMIype(): | NTEGR PROCEDURE ROMersi onN ()@ | NTEGER Qui ckDrawversi on() : REAL;
(* DMA/ndl O *rkx)

TYPE MouseMdi fiers = (ordinary, cmﬂed opted, shifted, capsLock, controlled);
PROCEDURE (I NTEGRR | NTEGR);

DragProc =

VAR Wndow (Done: BOOLEAN

PROCEDLRE Poi nt d i cked(X, y:
PROCEDURE Rect A i cked(rect:

INTEGR naxD st:
Rect Area) : BOOLEAN
y: INTEGER naxD st:

Qickkind = SET GF MuseMdi fiers;

INTEGER): BOOLEAN

PROCEDURE Poi nt Doubl ed i cked(x, INTEGER) : BOOLEAN
PROCEDURE Rect Doubl eQ i cked(rect: Rect Area): BOO
| PROCEDURE GetLastdick(VAR X,y: INTEGER VAR click: QickKind):

BOOLEAN
lick: QickK nd): BOOEAN

| PROCEDURE Get Last Doubl ed i ck(VAR X, y: | NTEGER VAR cl
PROCEDURE Get Qur MbusePos(VAR X, y: | ;
PROCEDLRE Get Last Moused i ck(VAR X, y: INrEGER VAR click: QickKi nd);
PROCEDURE DoTi | | MBut Rel eased(p:
PROCEDURE Drag(duri ngDr agP, afterDagP DragProc);
PROCEDLRE Set ont S ze(u: Wndow, content Rect: Rect Area); PROCEDURE Get ont S ze(u: Wndow VAR content Rect: Rect Area);

PROCEDLRE Set Scrol | Sep(u: Wndow xSt ep, ySt ep:
PROCEDURE Get Scrol | BoxPos(u: Wndow VAR posX, posY:
PROCEDURE Set Scrol | BoxPos(u: Wndow posX, posY: |
PROCEDURE Get Scrol | BoxChange(u: Wndow VAR changeX,
PROCEDURE AutoScrol | Proc(u: Wndow) ;

PROCEDURE Set Scrol | Proc(u: Wndow scroIIP RestoreProc)

PROCEDURE <crol | Gontent (u: Wndow dx, dy:
PROCEDURE Sel ect For Qut put (u: Wndow) ;

TYPE Pai nt M)de = (repl ace, paint, invert,
Hie = [O GeyO)ntent = (Ilght
@lor = FHIIDhue Hie; greyQontent: GeyQontent;
Pat Li ne = BYTE Pattern = ARRAY [

VAR pat: ARRAY [light..

erase);

dark] G- Pattern; bl ack, whi
PROCEDLRE Set Mvde(node: Pai nt Mode) ;
PROCEDURE Set Background(c: ol or; pat: Pattern);
PROCEDLURE Set @l or(c: @lor);

PROCEDURE SetPattern(p: Pattern);
PROCEDURE | dentifyPos(x,y: INTEGER VAR ine, col:
PF(IHJEIdenufyR:mt(lme col: CARDONAL; VARX,Y:
PROCEDLRE MaxQol CARD NAL;

PFCOEIllE(EIIWdth(), | NTEGR

PROCEDLRE StringWdth (VARs: ARRAY OF GHAR): |
PROCEDURE BackgroundWdt h(): | NTEGER

PROCEDLRE Set EOMction(u: Wndow action: PRXD);
PROCEDLRE Eraseont ent ;
PROCEDURE Set A i ppi ng(cr
PROCEDURE Renoved i ppi ng;

RectArea);

| LaserFont = (Tines, Helvetica, Qourier, Synbol);
PROCEDURE Set WndowFont (wf @ WndowFont ;
PROCEDURE Get WndowFont (VAR wf: WndowFont ;
PROCEDURE Set Laser Font (1 f: Laser Font ;
PROCEDURE Get Laser Font (VAR | f: Laser Font ;
PROCEDURE Set Pos(line, col : CAROINAL);
PROCEDURE ShowCar et (on: BOOLEAN) ;
PROCEDURE Wite(ch: GHAR);
PROCEDLRE Wi teln;
PROCEDLRE Wi teCard(c, n: CARDINAL);
PROCEDLRE Witelnt(c: INTEGER n: CARDOINAL);
PROCEDLRE WiteReal (r: REAL; n,dec: CARDINAL);
PFO]EIlREWlteLongReaJ(Ir LONGREAL; n, dec: CARDI NAL) ;
PROCEDLRE Set Pen(x, y: | NTEGER);
PFO:EIJJESetB'ushSze(wdth hei ght: INTEGR);
INI'EGER radius: CARDINAL; fil

PROCEDLRE Dot (x,y: |

PROCEDLRE drcle(x, y:

PROCEDLRE Area(r: RectArea; pat: Pattern);
PROCEDURE MapAr ea(sour ceArea, dest Area: Rect Area) ;
PROCEDLRE D spl ayPredefinedA cture (fil eName: ARRAY
PROCEDURE Get Predef i nedPi ct ureFrane(fil eNane: ARRAY
PROCEDLRE S art Pol ygon;
PROCEDLRE DrawAndFi || Pol y(nPoi nts: CARDINAL; VAR X,

VAR si ze:

VAR edge(l ors: ARRAY G- ol or;

TYPE QvHSel ect —(v h)
@roi nt = REGRD CASE'
QRect _mo&wmmo

PROCEDURE XYToQ@Poi nt (%, y: | NTEGER VAR p: (TRoint);
PROCEDLRE el ect Rest or eCopy(u: Wndow) ;

Q)/I—Eel egtR— [v..H;

PROCEDURE Tur n(angle: |NTEGR); PROCEDURE Tur nTo(angl e:
PROCEDLRE Scal eUQ(r: Rect Area; xmin, xnax, ynmin, ynax: REAL);
PROCEDURE mnvertR)l nt TolQ x,y: | NTEGER VAR xUG ylUC FEAL)

PROCEDLRE UCFr ane; PROCEDLRE B aselCFr ane;
PROCEDURE Set UCPen(xUG, yLC REAL) ;

PROCEDRE UCDot (xUG, yUG REAL) ;

PROCEDLRE D awgynfch: GHAR);

TYPE Wndow,
WndowKki nd = (G owa ShrinkQ Drag, H xedS ze, F xed
Mdal Wndowki nd = (Doubl eFrane, S ngl eFr aneShadowe:

QoseAttr = (Wthd oseBox, Wthoutd oseBox);

Ectﬁrea—FEC(R)xywh: | NTEGER B\D,
WAH xPoint = (bottonteft, topLeft);
WndowProc = (Wndow) ;

WndowHandl ers = (cli ckedl nContent,
redefined, onl yMved, di sappear e

| VAR background: Wndow

INTEGR); PROEDURE GetScrol | Sep(u: Wndow VAR xStep, yStep:

NIEGR) ;
changeY:

lightGey, grey, darkGey, dark);
0..7] CF PatLi

PROCEDURE StringArea (s: ARRAY OF HAR VAR a: Rect Area; VAR baseli ne, sepSpace:
NIEGER

TYPE WndowFont = (Chi cago, Mbnaco, Geneva, Newyork);

h:
top,left,bottomright:

br ought ToFr ont ,

WndowsDone: BOO_EAN

I NTEGR ;
I NTEGER ;
INTEGRR ;

PROCEDURE Get Scrol | Proc(u: Wndow VAR scrol | P mst oreProc);
PROCEDURE MveQri gi nTo(u: Wndow X0, yO:
PROCEDURE Qur rent Qut put Wndow() :

Wndow

Saturation = [0..100];
saturation: Saturation, END

i ne;
ite, red, green, blue, cyan, nagenta, yellow Ol or;
PROCEDURE Get Mbde(VAR node: Pai nt Mbde) ;
PROCEDURE Get Background(VAR c: @l or; VAR pat: Pattern);
PROCEDURE Get @l or (VAR ¢c: Ml or);
PROCEDURE Get Pattern(VAR p: Pattern);

CARDINAL) ;

INTEGER ;
PROCEDURE MaxLn()
PROCEDLRE Gl | Hi ght () :

o CARD NAL;
I NTEGRR
I NTEGR) ;

PROCEDURE BackgroundHei ght () : | NTEGER
PROCEDURE Get EOMction(u: Wndow, VAR action: PROD;
PROCEDURE Redr anCont ent ;

PROCEDURE Get Qi ppi ng(VAR cr: Rect Area);

FontSyles = (bold, italic, underline);
FontSyle = SET GF FontSyles;

size: CARONAL; style: FontSyle);
VAR si ze:
size: CARDINAL;

CARONAL; VAR style: FontSyle);

style: FontSyle);

CARONAL; VAR style: FontSyle);
PROCEDURE Get Pos(VAR i ne, col :
PROCEDURE | nvert (on:
PROCEDURE WiteString(s: AFRAY(FO—NR)

PROCEDURE WiteVarSring(VAR s: ARRAY OF GHAR);
PROCEDLRE Wi teLongCard(lc: LONGCARD n: CARDINAL);
PROCEDLRE Witelongint (Ii: LONGNI; n: CARONAL);
PROCEDURE WiteReal Sci (r: REAL; n,dec: CARONAL);
PROCEDLRE Wi teLongReal Sci (1r: LONGREAL; n,dec: CARDINAL);
PROCEDURE Get Pen(VAR X, y: | NTEGR);
PROCEDURE Get Brushd ze(VAR wi dt h, hei ght: | NTEGER);
PROCEDURE Li neTo(x, y: | NTEGER);
led: BOOLEAN fillpat: Pattern);
PROCEDURE

CARDINAL) ;

OprArea(sourceArea:’ Rect Area; dx,dy: |NTEGER);
G AR picturelD | NTEGR f: RectArea);
G AR picturelD INTEEER VARf: RectArea);

a oseAndF | | Pol ygon(pat: Pattern);
ARRAY CF INTEGER VAR wi thEdge: ARRAY - BOOLEAN
isFlled: BOOLEAN fillGolor: Glor; fillPattern: Pattern);

y:

NI'EGER | 1. vh: ARRAY (DHSel ect R GF INTEGER END,

BEND
INTEGER | 1: toplLeft,botRght: (QPoint; END BND

PROCEDURE Rect AreaTo(TRect (r: Rect Area; VAR qdr: QJ?sct);
PROCEDURE Set Rest or eQopy(u: Wndow rcp:

INTEGR) ; PROCEDURE MbveBy(di stance: CARD ML)

PROCEDLRE Get UQ VAR r: Rect Area; VAR xniin, xnax, ynin, ynax: REAL);
PROCEDLRE Gonver t UCToPoi nt (xUG yUC REAL; VAR X,y: | NTEGR);
PROCEDURE B aseUCHr aneCont ent ;

PROCEDURE Get UTPen(VAR UG in: REAL);

PROCEDURE UL neTo(XUG yWC ™ REAL) ;

DMV ndows

Location, F xedLocTitleBar);

loved) ;
ScroIIBars—(WthVertlcaJScrollBar Wt hHbri zont al Scrol | Bar, WthBothScrol | Bars, Wthout Scrol | Bars);

Zoomhttr = = (Wt hZoorrBox Wt hout ZoonBox) ;
WndowFr ane = Rect Area;
Rest oreProc = PROCEDURE (Wndow) ;

renovedF onfront

d, reappeared, closing);

not Bxi sti ngWndow \Wndow

A 337

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE NoBackgr ound; PROCEDURE ReshowBackgr ound;
PROCEDURE Qut er WndowFr ane(i nnerf: Wndowrr ane; wk: Wndowki nd; s: Scrol | Bars; VAR outerf: RectArea);
PROCEDURE | nner WndowFr ane(out er f: Wndowrr ane; wk: Wndowki nd; s: Scrol | Bars; VAR innerf: RectArea);
PROCEDURE O eat eWndow(VAR u: Wndow wk: Wndowki nd; s: Scrol | Bars; c: doseAtr; z: ZoonmAttr;
fixPoint: WHH xPoint; f: Wndowrrang; title: ARRAY OF GHAR Repaint: RestoreProc);
| PROCEDURE O eat eMbdal Wndow(VAR u: Wndow, wk: Mdal Wndowki nd; s: Scrol | Bars; f: Wndowrrane; Repaint: RestoreProc);
PROCEDURE UsePr edef i nedWndow(VAR u: Wndow, fil eNane: ARRAY GF CHAR wi ndow D | NTEGER
fixPoint: WH xPoint; Repaint: RestoreProc);

| PROCEDURE QeateTi t| edvbdal Wndow(VAR u: Wndow title: ARRAY GF AR f: Wndowr ane) ; QONST Doubl eFraneTitled = 3;
PROCEDURE Redef i neWndow(u: Wndow f: Wndowrr ane) ; PROCEDURE RedrawTi tle(u: Wndow title: ARRAY OF GHAR);
PROCEDURE MakeWndow nvi si bl e(u: Wndow) ; PROCEDURE MakeWndowM si bl e(u: Wndow) ;

|

| PROCEDURE | sSNowM si bl e(u: Wndow) : BOOLEAN

| PROCEDURE WndowLevel (u: Wndow) : CARD NAL;

| PROCEDURE Get WndowChar acteri stics(u: Wndow VAR wk: | NTEGER VAR nodal Kind: BOOLEAN VAR s: Scrol | Bars; VAR c: Q oseAttr;
VAR z: Zoomfttr; VAR fixPoint: WH xPoint; VAR f: Wndowrrane; VARtitle: ARRAY OF OHAR);

PROCEDURE DunmyRest or eProc(u: Wndow) ; PROCEDURE Aut oRest or eProc(u: Wndow) ;

PROCEDURE Set RestoreProc(u: Wndow r: RestoreProc); PROCEDURE Get RestoreProc(u: Wndow VAR T: RestoreProc);
PROCEDURE S art Aut oRest ori ng(u: Wndow r: RectArea); PROCEDURE S opAut oRest ori ng(u: Wndow) ;

PROCEDURE Aut oRest ori ng(u: Wndow) : BOOLEAN PROCEDURE Get H ddenBi t MapS ze(u: Wndow, VAR Tr: RectArea);
PROCEDURE Updat eWndow(u: Wndow) ; PROCEDURE | nval i dat eGont ent (u: Wndow) ;

| PROCEDURE Lpbdat eAl | Wndows;

| PROCEDURE AddWndowHandl er (u: Wndow wh: WndowHandl ers; wpp: WndowProc; prio: | NTEGR);

| PROCEDURE RenoveVWndowHandl er (u: Wndow, wh: WndowHandl ers; wpp: WndowPr oc) ;
PROCEDURE Get WndowFr ane(u: Wndow, VAR f: Wndowrr ane) ; PROCEDURE Get WAH xPoi nt (u: Wndow, VAR | oc: WAH xPoi nt) ;
PROCEDURE DoFor Al | Wndows(acti on: WndowPr oc) ;

| PROCEDURE WseWndowhbdal | y(u: Wndow VAR terninat eMbdal D al og, cancel Mbdal D al og: BOOLEAN) ;
PROCEDURE Put nTop(u: Wndow) ; PROCEDURE Front Wndow() : Wndow;

PROCEDURE RenoveW ndow(VAR u: - Wndow) ; PROCEDURE RenoveAl | Wndows;
PROCEDURE WndowExi st s(u: Wndow) : BOOLEAN PROCEDURE Redr avwBackgr ound;
| PROCEDURE AttachWndow(hj ect (u: Wndow obj: ADDRESS); PROCEDURE Wndow(j ect (u: Wndow) : ADDRESS,
(OPTI ONAL MODULES
(DVeDG aphs)
TYPE G aph; Qurve;
Label Sring = ARRAY[O..255] OF CHR GidAag = (WthGid, wthoutGid);
Scal ingType = (lin, log, negLog) Pottingtyle = (solid, slash, slashDot, dots, hidden, w peout);
Range = REQRD nin, nax: END GaphProc = @G aph;

aph);
Axi sType = REGTRD range: Fange scal e: ScalingType; dec: CARDONAL; tickD REAL; label: Label Sring; BND
| VAR DMRDG aphsDone: BOOLEAN not Exi sti ngG aph: G aph; not Exi stingQurve: Qurve;
PROCEDURE Def Gaph(VAR g: Gaph; u: Wndow r: RectArea; xAxis, yAxis: AxisType; grid: GidHag);

PROCEDURE Def Qurve(g: Gaph; VARc: Qurve; col: Qlor; style: PottingSyle; sym GHR);
PROCEDURE Redef Gaph(g: Gaph; r: RectArea; XxAXis, yAms AxisType; grid: GidHag);

PROCEDURE Redef Qurve(c: Qurve; col: olor; style: FottingSyle; sym GAR;

PROCEDURE d ear G aph(g: Gaph); PROCEDURE Draw@ aph(g: G aph);

PROCEDURE Drawtegend(c: Qurve; x,y: INTEGER comment: ARRAY OF GHAR);

PROCEDURE Renove@ aph(VAR g: G aph); PROCEDURE RenoveAl | G aphs(u: Wndow) ;

PROCEDURE RenoveQurve(VAR c: Qurve) ;

PROCEDURE G aphExi sts(g: Gaph): BOOLEAN PROCEDURE QurveBxi sts(g: Gaph; c: Qurve): BOOLEAN
PROCEDURE DoFor Al | Graphs(u: Wndow gp: G aphProc);

PROCEDURE Set NeglogM n(nl'm REAL) ; PROCEDURE. Set GapSynfch: GHAR); PROCEDURE Get GapSyn{ VAR ch: GHAR) ;
PROCEDURE Move(c: Qurve; X,y: REAL); PROCEDURE H ot (curve: Qurve; newX, newy: REAL);

PROCEDURE Aot Syn{g: Gaph; x,y: REAL; sym GHAR); PROCEDURE Pl ot Qurve(c: Qurve; nrdPoints: CARDNAL, Xx,y: ARRAY OF REAL);
PROCEDURE G aphTowWndowPoi nt (g: G aph; xReal ,yReal : REAL; VAR xInt,ylnt: INTEGR);
PROCEDURE WndowToG aphPoi nt (g: Gaph; xInt,ylnt: INTEGER VAR xFeal yReal : REAL);

(* DWW erts **)

PROCEDURE Wi teMessage(line, col : CARDINAL; nsg: ARRAY OF GHAR);
PROCEDURE ShowA ert (hei ght, widt h: CARDI NAL; Wltel\kssages PRXD);
PROCEDURE ShowPredefinedAl ert (fil eNane: ARRAY OF GHAR alertID INTEGER strl,str2,str3,strd: ARRAY OF GHAR);

(* DM i pboar d **)
TYPE Hdi t Gmmands = (undo, cut, copy, paste, clear);

| VAR Qi pboar dDone: BOOLEAN
PROCEDURE | nstal | Edi t Menu(LhdoProc, Qut Proc, QopyProc, PasteProc, dearProc: PROD;

| PROCEDURE RenoveEdi t Menu; PROCEDURE UseEdi t Menu;
PROCEDLRE Enabl eEdi t Menu; PROCEDURE D sabl eEdi t Menu;
PROCEDURE Enabl eEdi t Gonmand(whi chone: Edi t Conmands) ; PROCEDURE D sabl eEdi t Gnmand(whi chone: Edi t Cormands) ;

| PROCEDURE Put P cturel ntod i pboar d;

| PROCEDURE Get P ct ureFr ond i pboar d(si mul t aneousDi spl ay: BOOLEAN dest Rect: RectArea);

| PROCEDURE Put Text | nt oQ i pboar d;

| PROCEDURE Get Text Fron@ i pboar d(si nul t aneousD spl ay: BOOLEAN dest Rect: RectArea; fronkine: LONGNI);

(* DM ock **)
| GONST Jan =1, Feb =2, Mr =3; Aor =4; Mi =5; Jun=6; Jul =7, Aug =28, Sep =9; &t =10; Nov =11; Dec = 12;
| Un =1 Mn=2 Tue=3 Wd=4 Thu=5 Fi =6, Sat =7,

| PROCEDURE Today(VAR year, m)nth day, daydWek: |NTEGR); PROCEDURE Now(VAR hour, minute, second: |NTEGR);
| PROCEDURE Nowt nSeconds(): LONG NT;

| PF(IHlREInterpreteSeconds(secs LONG NT; VAR year, nonth, day, hour, nminute, second, dayd Véek: |NIECGER);

| PROCEDURE onvert Dat eToSeconds(year, nonth, day, hour, ninute, second: |NTEGER VAR secs: LONANI);

(DMEdi t Fi el ds #* *)

TYPE Editltem Radi oBut ; Edi t Handl er = PROCEDURE(Edit1ten);
ItenType = (charField, stringFeld, textFHeld cardFeld intFeld real Feld,
pushButton, radi oButtonSet, checkBox, scrollBar); Drection = (horizontal, vertical);

| VAR HditH el dsDone: BOOLEAN notinstalledEdititem Editltem not | nstal | edRadi oBut: Radi oBut ;

| PROCEDURE MakeCharF el d(u: Wndow, VAR ei: Editltem X,y: INTEGER ch: GHAR charset: ARRAY OF GHAR);
| PROCEDURE MakeStringH el d(u: Wndow VAR ei: Hitltem x,y: INTEER fw CARDNAL; string: ARRAY O GHAR);
| PROCEDURE MakeTextH el d(u: Wndow VAR ei: Editltem x,y: INTEGER fwlines: CARDOINAL; string: ARRAY OF GHAR);
| PROCEDURE MikeCardF el d(u: Wndow VAR ei: Editltem x,y: INTEGER fw CARDNAL; card: CARDINAL; nminCard, naxCard: CARDINAL);
| PROCEDURE MakelongCardF el d(u: Wndow VAR ei: Hlitltem x,y: INTEGER fw CARD NAL;
card: LONGCARD, ninCard, naxCar d: LONGCARD) ;
| PROCEDURE MikelntF el d(u: Wndow VARei: Eitltem x,y: INTEGER fw CARDNAL; int: INTEGER ninint,naxint: |NEGR);
| PROCEDURE Makelonglnt A el d(u: Wndow VAR ei: HEitltem x,y: INTEGER fw CARD NAL;
int: LONGNT, mnint, naxint: LONGNI);
| PROCEDURE MikeReal Fiel d(u: Wndow VAR ei: Editltem x,y: INTEGER fw CARDNAL; real: REAL; ninReal,naxReal : REAL);
| PROCEDURE MakelongReal A el d(u: Wndow VAR ei: Hlitltem x,y: INTEGEER fw CARD NAL;
real: LONGREAL; ninReal , naxReal : LONGREAL);

A 338

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE MakePushButton(u: Wndow VAR ei: HEitltem x,y: |NTEGER
buttonWdth: CARDI NAL; buttonText: ARRAY OF CHAR pushButtonAction: PROD;
| PROCEDURE UseAsDef aul t But t on(pushButton: Editlten);
PROCEDURE Begi nRadi oButtonSet (u: Wndow VAR ei: Hlitlten);
| PROCEDURE AddRadi oButton(VAR radButt: RadioBut; x,y: |NTEGER text: ARRAY OF GHAR);
PROCEDURE EndRadi oBut t onSet (checkedRadi oBut t on: Radi oBut) ;
| PROCEDURE MakeCheckBox(u: Wndow VAR ei: Hlitltem x,y: INTEGER text: ARRAY OF GHAR boxChecked: BOOLEAN);
| PROCEDURE MakeScrol | Bar (u: Wndow VAR ei: Hlitltem x, y, length: INTEGER sbd: Direction; nminval, naxVal: REAL;
smal | Step, bigSep: REAL; curVal: REAL; actionProc: PRID;

PROCEDURE Set Char (ei: Editltem newCh: GHAR) ; PROCEDLRE SetSring(ei: Eitltem newstr: ARRAY OF GHAR);
| PROCEDURE SetText(ei: Hditltem VARtext: ARRAY OF GHAR);
| PROCEDURE SetCardinal (ei: Editltem newval ue: CARDNAL); PROCEDURE SetLongCardinal (ei: Editltem newal ue: LONGCARD);
| PROCEDURE Setinteger(ei: Edititem newal ue: |NTEGR); PROCEDURE Setlonglnteger(ei: Editltem newal ue: LONGNI);
| PROCEDURE SetReal (ei: Hditltem newval ue: REAL); PROCEDURE SetLongReal (ei: Editltem newal ue: LONGREAL);

PROCEDURE Set Radi oButtonSet (ei : Editltem checkedRadi oButton: RadioBut);
PROCEDURE Set CheckBox(ei : Editltem boxChecked: BOOLEAN) ;
| PROCEDURE SetScrol | Bar(ei: Editltem newal ue: REAL);

PROCEDLRE | sChar (ei: Editltem VAR ch: GHAR: BOOLEAN PROEDLRE GetSring(ei: Elitltem VARstr: ARRAY OF HR);
| PROCEDURE GetText(ei: Edititem VARtext: ARRAY OF GHR);
| PROCEDURE I sCardinal (ei: Editltem VAR c: CARONAL): BOOLEAN PROCEDURE |slongCardinal (ei: Edititem VAR c: LONGCARD): BOOLEAN
| PROCEDURE Isinteger(ei: Editltem VARI: INTEGER): BOOEAN PROCEDURE | sLonginteger(ei: Editltem VARIi: LONGNI): BOOLEAN
| PROCEDURE IsReal (ei: Hditltem VART: REAL): BOOEAN PROCEDURE | slongReal (ei: Editltem VART: LONGEAL): BOOEAN
PROCEDURE Get Radi oButtonSet (ei : Hditltem VAR checkedRadi oButton: RadioBut);
PROCEDURE Get CheckBox(ei: Editltem VAR boxChecked: BODLEAN;
| PROCEDURE GetScrol | Bar(ei: Eitltem VART: REAL);

| PROCEDURE Instal | EditHandl er (u: Wndow eh: EditHandler); PROCEDURE Get Edi t Handl er (u: Wndow, VAR eh: HditHandl er);
| PROCEDURE SelectFeld(ei: Editlten); PROCEDURE Q ear F el dSel ection (u: Wndow) ;

| PROCEDURE Enabl el tenfei: Edititen); PROCEDLRE O sableltenfei: Editlten); PROCEDURE | sEnabl ed(ei: Editltem): BOOLEAN

PROCEDURE Hditltenkxists(ei: Editlten): BOOLEAN PROCEDLRE GetEditItenType(ei: Eitltem VARIt: |tenType);
| PROCEDURE Radi oBut t onExi sts(rb: Radi oBut): BOOEAN
| PROCEDURE Hditltenbevel (ei: Editlten): CARDNAL; PROCEDURE Radi oBut t onLevel (rb: RadioBut): CARD NAL;
PROCEDURE RenoveHditltenfVAR ei: Editlten); PROCEDURE RenoveAl | EditItens(u: Wndow) ;

| PROCEDURE At tachEdi t A el dbj ect (ei: Editltem obj: ADDRESS); PROCEDLRE Edit F el dQbject (ei: Editltem): ACDRESS

(FHx DMENt ryFor ns e)
TYPE Fornfrane = REGRD X, y: | NTEGER |ines, col unms: CARD NAL BND Def | t Use = (useAsDeflt, noDeflt); Radi oButtonl D,
| VARF eldinstalled: BOOEAN notlnstal | edRadi oButton: Radi oButtonl D

PROCEDURE Wi teLabel (1ine,col: CARDNAL; text: ARRAY OF HAR);

PROCEDURE CharFH el d(line,col: CARDNAL; VAR ch: CHAR du: Defltlse; charset: ARRAY OF GHAR);

PROCEDLRE SringF el d(line col: CARONAL; fw CARDONAL; VAR string: ARRAY OF GHAR du: Defltise);

PROCEDLRE GardFH el d(1ine, col : CARDNAL; fw CARDNAL; VAR card: CARD NAL; du: Defltlse; nminCard, naxCard: CARDI NAL);

| PROCEDURE LongGardF el d (line col: CARDNAL; fw CARDNAL; VAR |ongCard: LONGCARD du: Defltlse; minLCard, rme(}xrd LONGCARD) ;

PROCEDLRE IntHeld(line col: CARDONAL; fw CARDONAL; VARInt: INTEGER du: Defltlse; ninint,naxint: |

| PROCEDURE LongintFeld (line col: CARDNAL, fw CARDNAL; VARIonglnt: LONGNT; du: Defltu;e mnLlnt, naxL nt : LONG NT) ;

PROCEDLRE Real H el d(line,col: CARDONAL; fw CARDONAL; VARreal: REAL; du: Defltlse; ninReal , naxReal : FEAL)

| PROCEDURE LongReal Held (line col: CARDNAL; fwdig: CARDONAL, fnt: Real Fornat; VARIongRaal LONGREAL; du: Defltlke;
minLReal , naxLReal : LONGREAL) ;

PROCEDURE PushBut t on(1 i ne, col : OBFUNBL buttonText: ARRAY OF CHAR buttonWdth: CARDI NAL; pushButtonAction: PR3D);

PROCEDURE Def i neRadi oBut t onSet (VAR radi oButtonVar: RadioButtonl D);

PROCEDURE Radi oButton(VAR radButt: RadioButtonl D line col: CARONAL; text: ARRAY OF GHAR);

PROCEDURE CheckBox(line, col : CARDINAL; text: ARRAY OF GHAR VAR checkBoxVar: BOOLEAN);

PROCEDURE WseEnt ryFornfbf : For nirane; VAR ok: BOOLEAN);

(#Hxx DVF | es *kk)
QONST EQL = 36C

TYPE Response = (done, filenotfound, vol notfound, cancelled, unknownfile, toonanyfiles, diskfull, nenfull,
al readyopened, isbusy, |ocked, notdone);

H ddenF | el nf o; | Qwbde = (reading, witing);

TextF |l e = REGORD
res: Response;
filenane: ARRAY [0..255] OF GAR
pat h: ARRAY [0..63] OF R
curl Qvbde: | Qvbde;
cur Char : AR
fhint: H ddenFi | el nf o;

END
VAR
| | egal Num BOOLEAN (* read only *) PROCEDURE Last Resul t Gode(): | NTEGR

never QpenedF | e: TextFle; (* read only *)

PROCEDURE GetExistingF le(VARf: TextFle; pronpt: ARRAY OF GHAR);

PROCEDURE QreateNevH | (VAR f: TextH le; pronpt, defaul tNane: ARRAY OF GHAR);

PROCEDURE Lookup(VAR f: TextH |l e; pathAndH | eNane: ARRAY OF GHAR new BOOLEAN);
| PROCEDURE ReadQnl yLookup(VAR f: TextFile; pathAndA | eNane: ARRAY OF GHAR);

| PROCEDURE Qose(VARf: TextFle); PROCEDURE | s(pen(VAR f: TextFle): BOOLEAN
| PROCEDURE Fil eBxi sts(VARf: TextFile): BOOLEAN PROCEDURE Fi | eLevel (VAR f: TextFle): CARD NAL;
PROCEDLRE Del ete(VARf: TextFHle); PROCEDURE Renane(VAR f: TextFH le; filenane: ARRAY OF GHAR);
PROCEDLRE Reset (VAR f: TextFle); PROCEDURE Rewrite(VAR f: TextFile);
| PROCEDURE AppendAt EOR VAR f: TextFile); PROCEDURE FileSize(VAR f: TextFile): LONGNT;
PROCEDURE BEOR(VAR f: TextFile): BOOLEAN
PROJEDURE ReadByte(VAR f: TextFile; VAR b: BYTE); PROCEDURE Wi teByte(VARf: TextFile; b: BYTE);
PROCEDURE ReadChar (VAR f: TextFile; VAR ch: GHAR); PROCEDURE Wi teChar (VAR f: TextFile; ch: GAR);
PROCEDLRE ReadChars(VAR f: TextFle; VAR string: ARRAY OF (HAR); PROCEDLRE WiteChars(VARf: TextHle; string: ARRAY OF GHAR);
| PROCEDURE WiteEQ(VARf: TextFle); PROCEDLRE WiteVarChars(VARf: TextFle; VAR string: ARRAY OF GHAR);
PROJEDURE ki pGap(VAR f: TextFile); PROCEDURE Agai n(VARf: TextFile);
PROCEDURE Get Cardinal (VAR f: TextFile; VARc: CARDONAL); PROCEDURE Get LongCar d(VAR f: TextFile; VAR c: LONGCARD);
PROCEDURE Put Cardinal (VAR f: TextFil e; c: CARDINAL; n: CARDI NAL) ; PROCEDURE Put LongCar d(VAR f: TextFile; |c: LONGCARD
n: CARDINAL);
PROCEDLRE GetInteger (VAR f: TextFle; VARIi: |INTEGER); PROCEDURE GetLongl nt (VAR f: TextHle; VARI: LONGNI);
PROCEDLRE PutInteger (VAR f: TextFle; i: INTEGER n: CARDNAL); PROCEDURE PutLongl nt (VAR f: TextFHle; |i: LONGNT,
n: CARD NAL) ;
PROCEDURE Get Real (VAR f: TextFile; VAR X: REAL); PROCEDURE Get LongReal (VAR f: TextFile; VAR x: LONGREAL);

PROCEDLRE Put Real (VAR f: TextFile; x: REAL; n, dec: CAROINAL); PROCEDLRE Put Real Sci (VAR f: TextFle; x: REAL n: CARONAL);
PROCEDURE Put LongReal (VAR f: TextFile; Ir: LONGREAL; n,dec: CARD NAL);
PROCEDURE Put LongReal Sci (VAR f: TextFH le; |r: LONGREAL; n,dec: CARONAL);

| PROCEDURE Alterl Qvbde (VAR f: TextFH le; newwbde: | Qvbde);

| PROCEDURE SetFilePos(VARf: TextFile; pos: LONGNT); PROCEDURE GetFil ePos(VAR f: TextFile; VAR pos: LONGNT);
| PROCEDURE ReadByteBlock (VAR f: TextFile; VAR buf: ARRAY OF BYTE, VAR count: LONGNT);

| PROCEDURE WiteByteB ock(VARf: TextFile; VAR buf: ARRAY OF BYTE, VAR count: LONGNT);

| PROCEDLRE SetFleRlter(f1,f2,13,f4 ARRAY OF R PROCEDLRE GetFileFilter (VAR T1,2,13,f4 ARRAY OF GIR);

A 339

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDURE WseAsTypeAndQreator (fil etype, creator: ARRAY OF GHAR); PROCEDLRE WsedTypeAndQreat or (VAR fil etype, creator: ARRAY OF OHAR);
| PROCEDURE HasTypeAndQreator (VAR f: TextFle; VARfiletype creator: ARRAY OF GHAR);

(* DV oat Env *xk)

QST invalid = 0; underflow = 1; overflow = 2; divideByZero = 3; inexact = 4;
haltiflnvalid = 0; haltlflhderflow=1; haltlfQrerflow= 2; haltIfDvideByZero = 3; haltlflnexact = 4;

flaglfinvalid = 8; flaglfUnderflow=9; flaglfCQrerflow = 10; flaglfD videByZero = 11; flaglflnexact = 12;
| BEEEH oat Defaul t Env = DWH oat Defaul t Env = hal tiflnvalid, haltl1fOverflow haltlfD videByZero;
TYPE Exception = [invalid..inexact]; H oat Envi ronnent = Bl TSET;

RoundD r = (toNearest, upward, dowward, towardZero); RoundPre = (ext Preci sion, dbl Precision, sglPrecision);
PROCEDURE Hal t Enabl ed(whi ch: Exception): BOOLEAN

PROCEDURE Enabl eHal t (whi ch: Exception); PROCEDURE D sabl eHal t (whi ch: Exception);
PROCEDURE Bxcept i onPendi ng(whi ch: Excepti on): BOOLEAN
PROCEDURE Rai seExcept i on(whi ch: Bxception); PROCEDURE Q ear Except i on(whi ch: Exception);
PROCEDURE Set Preci si on(p: RoundPre) ; PROCEDURE Get Preci si on(VAR p: RoundPre);
PROCEDURE Set Pound(r: RoundDir); PROCEDURE Get Round(VAR r: RoundDir) ;
PROCEDURE Get Envi ronnent (VAR e: H oat Envi ronnent) ; PROCEDURE Set Envi ronnent (e: H oat Envi ronnent) ;
PROCEDURE P ocEnt ry(VAR savedEnv: H oat Envi ronnent) ; PROCEDURE Pr ocExi t (savedEnv: H oat Envi ronnent) ;
(* DwkeyChar s *k)
QONST nouse=0; command=1; alt=1; opti on=2; shi ft =3, capsl ock=4; control =5;

VAR cursor Up, cursorDown, cursorleft, cursorR ght, homekey, endkey, pagelb, pageDW\n hel pkey, enter, return, delete,
backspace, tab, esc, hardB ank: CHAR (* READ ONLY! *)

VAR Best CH PROCEDURE(GHAR): GHR (* READ OLY! *)
TYPE Qonput er Pl at forne(Mic, | BMPGDonpati bl e, UN XMachi ne); PROCEDURE ProgrammedOn(c: QonputerP atforn);

| PROCEDURE POCHAR rmacCh: GHAR): GHAR PROCEDLRE MicGHAR pcCh: GHER): GHAR
| PROCEDURE POASO I (peCh: GHAR): GHER PROCEDLRE MicAST | (| macCh: GHAR): GHER

(DWWt hLi b/ DWWt hLF *)
| VAR undef REAL: REAL; undef LONGREAL: LONGREAL; (* read only *)

PROCEDURE Exp (x: REAL): REAL; PROCEDURE Ln (x: REAL): REAL;
PROCEDLRE

Sn (x REA): REAL; PROCEDURE s (x: REAL): REAL; PROCEDLRE ArcTan(x: REAL): REAL;
PROCEDURE Real (x: INTEGER): REAL; PROCEDLRE Entier(x: REAL): |
| PROCEDURE Random ze; PROCEDURE Randomi nt (upper Bound: | NTEGER) : | NTEGER PROCEDURE RandoniReal () : REAL;
(* DMpSys **)
| QONST noEror = 0; notDone = -2; inexistent =-1; notQpen = 0; readOnly =1, alreadyWite = 2; (* codes returned by QurrentF | else*)

TYPE ProgStatus = (regul ar, nodul eNot Found, fileNotFound, illegal Key, readEror, badSyntax, noMenory, al readylLoaded,
ki I'l ed, tooManyPrograns, continue, noApplication);
DrectoryProc = PROCEDURE (I NTEGER ARRAY OF GHAR BOOLEAN VAR BOOLEAN);
MessageResponder = PROCEDURE (ARRAY OF HAR ARRAY OF HAR INI'B'.ER
I ni t DocuHand i ngProc = PROCEDURE (| NTEGER) ; Docutandl er = PROCEDURE (I NTEGER ARRAY OF GHAR ARRAY CF CHAR VAR BOOLEAN);

VAR profil eFNane: ARRAY [0..127] GF AR

PROCEDURE Qur Ver kDi rectory(VAR path: ARRAY OF GHAR) ; PROCEDURE Get Last Resul t Gode(): | NTEGRR
PROCEDURE GreateDir(path, dirN ARRAY G- GHAR VAR done: E{D_EAN)
PROCEDURE DeleteDir(path, dirN ARRAY G- GHAR VAR done: BOOLEAN
PROCEDURE RenaneDir(path, oldDrN newDrN ARRAY GF GHAR VAR done: BOOLEAN) ;
PROCEDURE Drinfo(path, dirN ARRAY OF GHAR VAR dirExists, containsHles : BOOEAN);
PROCEDURE DoFor Al I H I esinD rectory(path: ARRAY OF GHAR dp: DrectoryProc);
PROCEDURE Qurrent FH | else (path, fil eNane: ARRAY OF GHAR): | NTEGER
PROCEDURE Get FH | eDial og(pronpt, fil eTypes: ARRAY OF GHAR VAR pat h, fil eNane: ARRAY OF GHAR): BOOLEAN
PROCEDURE Get Appl i cati on(VAR path, appl Nane: ARRAY OF CHAR): BOOLEAN
PROCEDURE Get FH | eTypeAndQreat or (path, fn: ARRAY G- GHAR VAR type, creator: ARRAY GF O—m
PROCEDURE Set FH | eTypeAndQreat or (path, fn: ARRAY G- GHAR type, creator: ARRAY OF
PROCEDURE Get Fi | eDates(path, fn: ARRAY G- GHAR VAR creati onDat e, nodi fi cati onDat e: LG NI ;
PROCEDURE Setﬁlemtes(path fn: ARRAY OF GHAR creationDate, nodificationDate: LONGNI);
PROCEDURE NowSeconds(): LONG NT; PROCEDURE TouchFi | eDat e(pat h, fn: ARRAY OF GHAR);
PROCEDURE (bpyResourceFor k(sour cePat h, sourceFn, destPath, destFn: ARRAY OF GHAR VAR done: BOOLEAN);
PROCEDURE GopyDat aFor k (sour cePat h, sourceFn, destPath, dest Fn: ARRAY OF GHAR VAR done: BOOLEAN);
PROCEDURE I nstal | | ni t DocuQpeni ng (i dhp: | nit DocuHandl i ngPr oc) ; PROCEDURE | nst al | QpenDocutandl er (dh: DocuHandl er) ;
PROCEDURE I nstal | I nit DocuPrinting(i dhp: | nitDocuHandl i ngProc) ; PROCEDURE | nstal | Pri nt Docutandl er (dh: DocuHandl er) ;
PROCEDURE SubLaunch(path, prog: ARRAY GF GHAR); PROCEDURE Transfer(path, prog: ARRAY OF OHAR);
PROCEDURE | sFor egroundPr ogr anf) : BOOLEAN
PROCEDURE Set MessageResponder (nm: MessageResponder); PROCEDURE Get MessageResponder (VAR n1: MessageResponder) ;
PROCEDURE S gnal MessageToAppl i cation(creator G Appl, eventdass, eventlD ARRAY OF GHAR
nsgval : INI'EGER VAR resul t Gode: I NTEGR) ;
| PROCEDURE Emul at eKeyPress(ch: CGHAR nodifier: B TSETD); PROCEDURE Emul at eMenuSel ection(al i asChar: GHAR);
| PROCEDURE Emul at eMbuseDown(x,y: | NTEGER nodifier: B TSET);
| PROCEDURE Tur nMachi ned f; PROCEDLRE Rest ar t Machi ne;

PROCEDURE Set NewPat hs; PROCEDURE Emul at eMacMETHODpYPY ot ect i on;
PROCEDURE Gal | DvBubProg(prog: ARRAY OF GHAR | eaveloaded: BODLEAN VAR st: ProgStatus);
PROCEDURE Gal | MSubProg(prog: ARRAY OF GHAR | eaveloaded: BOOLEAN VAR st: ProgStatus);
PROCEDURE | ncl udeLi bvbdul es(prog: ARRAY OF GHAR VAR st: ProgStatus);

PROCEDURE LhLoadMePr ogs; PROCEDURE Abort MeProg(st: ProgStatus);
PROCEDURE Set Gonpi | er H | eTypes(creator, sbnType, obniype, rfniype: ARRAY OF GHAR);

PROCEDURE Get Qonpi | er A | eTypes(VAR creator, sbniype, obnType, rfniype: ARRAY OF GHAR);

(* DMPor t ab *xk)
| PROCEDURE SaneProc(pl, p2: ARRAY CF BYTE) BOOLEAN

| PROCEDURE LongTRUNQ(x: LONGREAL): LONGNT; PROCEDURE LongFLOAT(x: LONGNT): LONGREAL,

| PROCEDURE LONG NTQonst (- str: AR%AYG:O—M LONG NT; PROCEDURE LONGREALQonst (str: ARRAY OF GHAR): LONGREAL;

(* DV inting **)

TYPE PrinterFont = (chicago, newvork, geneva, nonaco, tines, helvetica, courier, synbol);

VAR PrintingDone: BOOLEAN

PROCEDURE PageSet up; PROCEDURE Set Header Text (h: ARRAY OF GHAR) ;
PROCEDLRE Set SubHeader Text (sh: ARRAY CF GHR); PROCEDURE Set Foot er Text (f: ARRAY OF GHAR);
PROCEDLRE PrintPRicture;

| PROCEDURE PrintText(font: PrinterFont; fontSze: INTEGER tabwidth: |NTEGR);

(* DWMPTH | es **)
| VAR PTH | eDone: BOOLEAN

| PROCEDURE DunpPicture(VAR f: TextFle);
| PROCEDURE LoadP cture (VAR f: TextF le; similDOsplay: BODLEAN destRect: RectArea);

A 340

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| PROCEDLRE DunpText (VAR f:
| PROCEDURE LoadText (VAR :

TextFle);

TextHIe;’ simul O splay: BOOLEAN destRect: RectArea; froniine: LONGNI);

(DMResour ces

dokk)

| GONST nul Ch = 21CG

| TYPE Resour cePoi nter = PQ NTER TO Resour ce; Resource = ARRAY [0..32000] GF AR Paddi ng = (noPaddi ng, padToEven, padToQid);

| VAR theResour ce: ResourcePoi nter; Resour cesDone: BOOLEAN
PROCEDURE S art Resour ceQonposi ti on;
PROCEDURE AddBool ean(b: BOOLEAN) ;
PROCEDLRE Addint (int: | NTEGER);
PROCEDURE AddHexint (int: |NTEGR);
PROCEDURE AddBinint (int: |NTEGR);
PROCEDLRE AddReal (r: REAL);
PROCEDURE AddHexReal (r: REAL);

PROCEDLRE Qur Posi tion(): | NTEGERR
PROCEDURE AddLongli nt (lint: LONGNI);

PROCEDURE AddHexLonglnt (1int: LONGNT);
PROCEDURE AddBi nLongl nt (1int: LONGNT);

PROCEDURE AddLongReal (I 1: LONGREAL) ;

PROCEDURE AddHexLongReal (1 r: LONGREAL);

PROCEDURE AddBi nReal (r: REAL); PROCEDURE AddBi nLongReal (1 r: LONGREAL);

PROCEDLRE AddChar (ch: GHAR); PROCEDLRE AddString(s: ARRAY OF GHAR);

PROCEDURE AddString255(s: ARRAY OF GHAR pad: Paddi ng) ;

PROCEDLRE Orer WiteAt Pos (VAR x: ARRAY (F BYTE VAR theResource: ARRAY OF GHAR VAR cur Pos:
PROCEDURE St oreResour ce(fil enane: ARRAY OF GHAR resID | NTEGR);

I NTEGER ;

PROCEDURE Retri eveResour ce(fil enane: ARRAY OF GHAR resID I NTEGR);
PROCEDURE Fet chBool ean(VAR b: BOOLEAN) ;
PROCEDURE Fetchint (VAR int: |NTEGR);
PROCEDURE FetchHexInt (VAR int: | NTEGER);
PROCEDURE FetchBinint (VAR int: |NTEGER);
PROCEDURE FetchReal (VAR r: REAL);
PROCEDURE Fet chHexReal (VAR r: REAL);

PROCEDLRE Fet chLongl nt (VAR int: LONGNI);
PROCEDURE Fet chHexLongl nt (VAR lint: LONGNT);
PROCEDURE Fet chBinLongl nt (VAR lint: LONGNT);
PROCEDLRE Fet chLongReal (VAR | r: LONGREAL) ;
PROCEDLRE Fet chHexLongReal (VAR | r: LONGREAL) ;
PROCEDURE Fet chB nReal (VAR FEPL)' PROCEDURE Fet chBi nLongReal (VAR |r: LONGREAL) ;
PROCEDURE Fet chChar (VAR ch: PROCEDLRE FetchString(VAR s: ARRAY OF GHAR) ;
PROCEDURE Fet chSri ng255(VAR s: ARRAY OF GHAR pad: Padding);

PROCEDURE Del et eResour ce(fi | enane: ARRAY OF GHAR resID | NTEGR);
PROCEDURE Set Resour ceNane(fi | eNane: ARRAY OF CHAR resl D INTEGER nane: ARRAY OF GHAR);
PROCEDURE Get Resour ceNang(fil eNane: ARRAY OF GHAR resl D INTEGER VAR nane: ARRAY OF GHAR) ;
PROCEDURE Set Resour ceType(type: ARRAY OF GHAR);

PROCEDURE Get Resour ceType(VAR type: ARRAY OF OHAR);

(DMIext F el ds

dokk)

| TYPE Text Poi nter = PO NTER TO Text Segnent; Text Segnent = ARRAY [0..32000] OF GHAR
PROCEDURE RedefineTextF el d(textFeld: Editltem w: Wndowrrane; wthFrane: BOOLEAN);
PROCEDURE WapText (textFHeld: Editltem wap: BOLEAN;

PROCEDURE QopyWext I ntoTextF el d(textFH el d: Editltem VAR done: BOOLEAN;

PROCEDURE QopyText FrontH el dToWext (textF el d: Editlten);

PROCEDURE Set Sel ection(textFeld: Editltem beforeCh, afterCh: | NTEGR);
PROCEDURE Get Sel ection(textFeld: Editltem VAR beforeCh, afterCh: |NTEGR);
PROCEDURE Get Sel ectedChars(textF el d: Editltem VARtext: ARRAY OF GHAR);
PROCEDURE Del eteSel ection(textFHeld: Editlten);
PROCEDLRE I nsertBeforeCh(textFH el d: Editltem VARtext: ARRAY OF GHAR beforeCh: | NTEGER);
PROCEDLRE Get Text S zes(textHel d: Editltem VAR curTextlength, nrlns, charkeight, firstLnMs,lastLnVs:
PROCEDLRE G abText (textF el d: Editltem VAR txtbeg: TextPointer; VAR curTextlLength: |NTEGR);
PROCEDURE Rel easeText (textFeld: Editlten);

PROCEDLRE Findl nText (textFH eld: Editltem stringToR nd: ARRAY OF GHAR VAR first(Ch, last Ch: | NTEGER): BOOLEAN
PROCEDURE <crol | Text (textFeld: Editltem dcols, dlines: |NTEGR);

PROCEDURE <crol | Text Wt hWndowScrol | Bars(textF el d: Editlten);

PROCEDLRE AddScrol | BarsToText (textHel d: Editltem wthVertical Scrol | Bar, wthhorizontal Scrol | Bar: BOOLEAN) ;

(*
| VAR Pictl Cone: BOOLEAN

I NTEGER ;

DM ct | O)

PROCEDLRE Start P ct ureSave;
PROCEDLRE PauseR ct ur eSave;

PROCEDURE S opPi ct ur eSave;
PROCEDURE ResuneR ct ur eSave;

| PROCEDURE D spl ayR cture(owner Wndow Wndow dest Rect: RectArea); PROCEDURE D scardA cture;
PROCEDURE SetPictureArea(r: RectArea); PROCEDLRE GetPictureArea(VAR r: RectArea);
| PROCEDURE SetHai rLineWdth(f: REAL); PROCEDURE Get Hai rLi neWdth(VAR f: REAL);
(DMWText | O e)

| VAR Text | Chone: BOOLEAN

| PROCEDURE S art Text Save;
| PROCEDURE PauseText Save;

PROCEDLRE S opText Save;
PROCEDURE ResuneText Save;

| PROCEDURE D spl ayText (owner Wndow Wndow dest Rect :

Rect Area; fronkine: LONGNI); PROCEDURE D scardText ;

| PROCEDURE G abWext (VAR txtbeg: ADDRESS VAR cur Text Length: LONG NT);

| PROCEDURE AppendWext (txtbeg: ACCRESS, length: LONG NT);

(-END-
The O al og Machine nay be freely copied but not for profit!

PROCEDURE Rel easeWext ;
PROCEDLRE Set Wext S ze(newText Lengt h: LONG NI) ;

| Dfferent fromVersion 1.

A 341

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

E.3 MODELWORKS CLIENT INTERFACE

The following listing of the client interface is identical for al ModelWorks versions (V2.2,
V2.0/Reflex, V1.1/PC, V2.2/PC, and V2.2/11). For a detailed description see part |11 Reference
the chapter Client Interface.

Model Vorks Version 2.2 (April 1996)

©1989 - 1996 Andreas Fischlin, Dnitrios Gualistras, Qivier Roth, Mrkus Urich,

Juerg Thoeny, Thonas Nenecek, Haral d Bugnann & Frank Thonmen

Shiss Federal Institute of Technol ogy Zurich ETHZ, Saitzerland.

(= CLI ENT | NTERFACE MODULES =)
(S nBase)

2* Decl aration of nodel s and nodel obj ects: *g
* *

TYPE
Model ;
| Satevar = REAL; Derivative = REAL; Newst at e = REAL
| AuxVar = REAL Paraneter = REAL;
| Invar = REAL Qut Var = REAL;

IntegrationMethod = (Eul er, Heun, RungeKuttad, RungeKuttadSVar, stiff, discreteTine, discreteBvent);
RTCIype = (rtc, noRc);

SashFling = (witehF le, notQnFile);

Tabul ation = (witelnTabl e, notlnTable);

Gaphing = (isX isY, isZ notlnGaph);

| VAR not Decl aredMbdel : Mdel ; (* read only variable *)

PROCEDURE Decl MVAR m Model ; defaul t Met hod: | ntegrati onMet hod; initialize, input, output, dynarric ternminate: PROG
decl Model Qbj ects: PROC descriptor, identifier: ARRAY OF GHAR about :

PROCEDURE Decl SUVAR's: StateVar; VAR ds: Derivative (*or Newstate*); defaultinitial, mnCurInlt maxQurinit: REAL;
descriptor, |dent|f|er unit: ARRAY GF GHAR);

PROCEDURE Decl (VAR p: Paraneter; defauItVaI mnQurVval , rTaxCurVal REAL; runTi neChange: RTCType;
descriptor, |dent|f|er unit: ARRAY OF

PROCEDURE Decl MAVAR nv: REAL; defauItScaJeMn def aul t Scal eMax: REAL; descriptor, identifier, unit: ARRAY OF GHAR
defaul t S SashFi | ing; defaul tT: Tabul ation; default G G aphi ng) ;

| PROCEDURE QurCal cM): Model ;
| PROCEDURE Qur About M) : MJdeI
PROCEDURE Sel ect M(m Mbdel ; VAR done: BOOLEAN);

PROCEDURE Nol niti al i ze; PROCEDURE Nol nput; PROCEDURE NoQuit put ; PROCEDURE NoDynaniic; PROCEDURE NoTer ninat e;
PROCEDURE NoMbdel (bj ect's; PROCEDURE NoAbout ; PROCEDURE DoNbt hi ng;

2* Modi fyi ng of nodel s and nodel obj ects: *g
* *

PROCEDURE Get Def | tM (VAR m Mbdel ; VAR def aul t Met hod: | nt egr at i onMet hod;
VAR initialize, input, output, dynanic, termnate: PR3C
VAR descriptor, identifier: ARRAY OF GHAR VAR about: PRXD;
PROCEDURE Set Def [tM (VAR m Mbdel ; def aul t Met hod: I nt egr at i onMet hod,
initialize, input, output, dynamc, termnate: PROC
descriptor, identifier: ARRAY OF GHAR about: PROD);
PROCEDLRE GetDefItSV (m Mdel; VAR's: SateVar; VARdefaultinit, mnQurinit, maxQurinit: REAL;
VAR descriptor, identifier, unit: AFRAYO:OM
PROCEDURE SetDefltSV (m Mdel; VARs: SateVar; defaultinit, ninCurInit naxQurinit: REAL;
descriptor, identifier, unit: AR%AYO?O-M
PROCEDURE Get Def | t P (m Mdel; VAR p: Paraneter VAR def aul t Val , mnVal naxVal : REAL;
VAR runTi i neChange: RTCType
VAR descriptor, identifier, unit: ARRAY OF GHAR);
PROCEDURE Set Def | t P (m Mdel; VARp: Paraneter; defaultVal, ninval, axval : REAL;
runTi neChange: RTCType
descriptor, identifier, unit: ARRAY OF GHR);
PROCEDURE GetDef I tW/ (m Model ; VAR nv: REAL; VARdefaultScaleMn def aul t Scal eMax: REAL;
VAR descrlptor identifier, unit: ARRAY CF
VAR def aul t SF: Sasthng VAR defaul t T: Tabul ati on;
VAR defaul tG G aphing);
PROCEDURE SetDefltMW/ (m Model ; VAR nv: REAL; defaul tScal eMn, defaul t Scal eMax: REAL;
descrlptor identifier, unit: ARRAY OF CHAR
def aul t SF: Sasthng defaul t T: Tabul ati on;
defaul tG G aphing);

PROCEDURE Get M (VAR m Mbdel ; VAR cur Met hod: | nt egrat i onMet hod) ;
PF{IEIJFESetM(VARm Model ; cur Met hod: | nt egrat i onMet hod) ;
PROCEDURE GetSV (m Mdel; VARs: SateVar; VARcurlnit: REAL);
PROCEDURE SetSV (m Model; VARs: SateVar; curlnit: REAL);
PROCEDURE Get P (m Mdel; VARp: Paraneter; VAR curVal: REAL);
PROCEDURE Set P (m Model; VAR p: Paraneter; curval: REAL);
PROCEDURE GetW (m MJdI' VAR nv: REAL; VARcur&:aJeMn cur Scal eMdx: REAL;
VAR curS= SashFling; VAR curT: Tabula1|on VAR curG Gaphl ng);
PROCEDURE SetW/ (m Mbdel ; VAR nv: REAL; cur Scal eM n, cur Scal eMax REAL;
cur S SashFi |ing; curT: Tabula1|on curG Gaphl ng);

| PROCEDURE Reset Al | I ntegrati onMet hods;
| PROCEDURE Reset Al | Initial Val ues;

| PROCEDURE Reset Al | Paraneters;

| PROCEDURE Reset Al | S ashFi | i ng;

| PROCEDURE Reset Al | Tabul ati on;

| PROCEDURE Reset Al | G aphi ng;
| PROCEDURE Reset Al | Scal i ng;

(* Model attributes: *)
(* *

| TYPE Attribute = | NTEGER QONST noAttr = MN Attribute);
| PROCEDURE Set Mbdel Attr(m Mdel ; val: Attribute);

A 342

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

PROCEDURE Get Mbdel Attr(m Mdel): Attribute;
PROCEDURE Set (j Attr(m Mdel ; VAR o: REAL; val: Attribute);
PROCEDURE Get (pj Attr(m Mdel ; VAR o: REAL): Atribute;

(* Access helps for all nodels and all nodel objects: *)
(* *)

PROCEDURE Mecl ared(m Mbdel) : BOOLEAN
PROCEDURE S\VDecl ared(m Model ; VAR sv: SateVar): BOOLEAN
PROCEDURE Plecl ared(m Mdel ; VAR p: Paraneter): BOOEAN
PROCEDURE M/Decl ared(m Model ; VAR nv: REAL): BOOLEAN

TYPE Mbdel Proc = PROCEDURE VAR Mbdel, VAR Attribute); Mbdel Gbj ect Proc = PROCEDURE Mbdel, VAR REAL,

PROCEDURE DoFor Al | Mbdel s(p: Mbdel Proc) ;

PROCEDURE DoFor Al I SVs (m Mbdel ; p: Model Goj ect Proc)
PROCEDURE DoFor Al | Ps (m Mdel; p: Mdel G ectProc)
PROCEDURE DoForA IM&s (m Mbdel ; p: Mdel (oject Proc);

(* Renoving of nodel s and nodel objects: *)
(* *)

PROCEDURE RenoveM (VAR m Model);

PROCEDURE RenoveSV (m Mdel; VARs : SateVar);
PROCEDURE RenoveM/ (m Mdel; VARnv: REAL);
PROCEDURE RenoveP (m Mdel; VARp : Paraneter);
PROCEDLRE RenoveAl | Model s;

(* Gobal simlation paraneters and project description: *)
* *)

PROCEDURE Set Def | t G obS nPar s(t0, tend, h, er, ¢, hm REAL);
PROCEDURE GetDefltG obS nPars(VAR tO, tend, h, er, ¢, hm REAL);

PROCEDURE Set Def | t Proj Descr s(title renark, footer: ARRAY OF GHAR

witle, wenark, aut of oot er,

recM recSV, recP, recM/, recG BOOLEAN;
PROCEDURE Get Def | t Proj Descrs(VAR titl e, renark, footer: ARRAY OF GHAR

VAR wtitle, wenark, aut of oot er,

recM recSV, recP, recM/, recG BOOLEAN;
PROCEDURE Set Def | t TabFuncRecor di ng(recTF: BOOLEAN);
PROCEDURE Get Def | t TabFuncRecor di ng(VAR recTF:. BOOLEAN) ;

PROCEDURE Set Def | t | ndepVar | dent (descr,ident,unit: ARRAY OF GHAR);
PROCEDURE Get Def | t I ndepVar | dent (VAR descr, i dent, unit: ARRAY OF GHAR);

PROCEDURE Set G 0bSi niPar s(t0, tend, h, er, c, hm REAL);
PROCEDURE Get G obS nPars(VAR t0, tend, h, er, ¢, hm REA);
PROCEDURE Set Pr oj Descr s(title renark, footer: ARRAY OF GHAR

witle, wenark, aut of ooter,

recM recSV, recP, recM, recG BODLEAN;
PROCEDURE Get Proj Descrs(VAR titl e renark, footer: ARRAY OF GHAR

VAR wtitle, wenark, aut of ooter,

recM recSV, recP, recM/, recG BODLEAN;
PROCEDURE Set TabFuncRecor di ng(recTF: BOOEAN;
PROCEDURE Get TabFuncRecor di ng(VAR recTF:. BOOLEAN) ;

PROCEDURE Set | ndepVar | dent (descr,ident,unit: ARRAY OF GHAR);
PROCEDURE Get | ndepVar | dent (VAR descr, ident, unit: ARRAY OF GHR);

PROCEDLRE Reset G obS nPar's;
PROCEDLRE Reset Proj Descrs;

PROCEDURE Set Monl nterval (hm REAL); (* only for upward conpatibility *)
PROCEDURE SetintegrationSep(h: REAL); (* only for upward conpatibility *)
PROCEDURE Set S nTine(t0, tend: REAL); (* only for upward conpatibility *)

(* Qontrol of Dsplay and Mnitoring: *)
(* *)

PROCEDLRE Ti | eWndows;
PROCEDLRE S ackW ndows;

PROCEDURE I nstal | Ti | eWndowsHandl er (doAt Ti | e: PROD) ;
PROCEDURE | nst al | St ackWndowsHandl er (doAt S ack: PROD) ;

TYPE MWVndow = (MONV SMON POV M QN Tabl eW GaphW About MY Ti neVy;

PROCEDURE Set WndowR ace(nww MAWndow X, ¥, W h: INTEGR);

PROCEDURE Get WndowR ace(nww MAWndow, VAR X,y,w h: INTEGER VAR is(pen : BOOLEAN);
PROCEDURE Set Def | t WndowH ace(nwn MAWndow X, ¥y, wh: INTEGR);

PROCEDURE Get Def | t WndowP ace(nwn MAWndow VAR x,y, w h: | NTEGER VAR enabl ed: BOOLEAN);
PROCEDURE d oseWndow(w MAVndow) ;

TYPE
| ONol sD spl ay = REGCRD
descr@l, identGol : BOOEAN
CASE i ow MAMWndow CF
MON @ m: RECRD
i ntegvet hGol : BOOLEAN
* REQRDY) ;

unitQl, sMnitCl: BOOEAN
© INTEGR

| POV : p: REGFO '
unitGl, pval ®l, pRcl: BOOLEAN

fw dec: | NTEGER
BND(* REQTRDY) ;
| MAON: nv: RECRD
uni t@l, scal eMnGl, scal eMixGol, nmNbnSet Gol : BODLEAN
fw dec: | NTEGER
* REQORDY) ;
BND(* CASE*)
EN(* REGORY') ;
PROCEDURE Set | O/l D spl ay (nwn MAWndow wd: | Ol sOi splay);
PROCEDURE Get | O/l D spl ay (nmwn MAWndow VAR wd: | ONDol sDi spl ay) ;
PROCEDURE Set Def | t1 ONol O spl ay(nww MAW ndow wd: | Ol sOi splay);
PROCEDURE Get Def | t1 ONol O spl ay(nww MAWndow, VAR wd: | O/l sDisplay);

VAR Attribute);

A 343

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

PROCEDURE D sabl eWndow(w MAVndow) ;
PROCEDURE Enabl eWndow (w MAVndow) ;

| TYPE MAMV/ndowArrangenent = (current, stacked, tiled);
| PROCEDURE Set Def | t WndowAr rangenent (a: MAWndowAr r angenent) ;
| PROCEDURE Reset Wndows;

PROCEDURE Suppr essMoni t ori ng;
PROCEDURE Resunehbni tori ng;
PROCEDURE Instal IQientMnitoring(initdientMn, dodientMn, terndientMn: PRXC);

PROCEDURE Set St ashFi | eNane (sfn: ARRAY OF OHAR);

PROCEDURE Get St ashA | eNane (VAR sfn: ARRAY OF OAR);

PROCEDURE Set Def | t S ashF | eNane(dsfn: ARRAY OF OHAR);

PROCEDURE Get Def | t S ashF | eNane(VAR dsfn: ARRAY OF GHAR);

PROCEDURE Set S ashFi | eType (filetype, creator: ARRAY - GHAR);
PROCEDURE Get S ashFi | eType (VAR filetype, creator: ARRAY OF GHAR);
PROCEDURE Set Def | t S ashA | eType(dF | etype, dOeator: ARRAY OF GHAR) ;
PROCEDURE Get Def | t S ashFi | eType(VAR dFi | etype, dOeator: ARRAY OF GHAR) ;
PROCEDURE Sii tchStashF | e (newsfn: ARRAY OF GHAR) ;

| PROCEDURE Reset SashFi | e;

PROCEDLRE Message(m ARRAY OF HAR);

TYPE
Sain = (coal, snow ruby, enerald, sapphire, turquoise, pink, gold, autoDefQl);
LineSyl e = (unbroken, broken, dashSpotted, spotted, invisible, purge, autoDefSyle);

QONST aut oDef Sym = 200G

PROCEDURE Set QurveAttrForMAm Model ; VAR nv: REAL;
st: Siain Is: LlneSer sym GHR);
PROCEDURE Get QurveAttrForMAm Mdel ; VAR nv:
VAR st: Saln VARIs LlneSer VAR sym GHAR);
PROCEDURE Set Def | t QurveAttrFor M m Mdel ; VAR nv: REAL;
st: Sajn Is: LineSyle; sym GAR;
PROCEDURE Get Def | t QurveAttrFor MAm Mdel ; VAR nv: REAL;
VAR st Sajn VAR |s: Linetyle; VAR sym GHR);

| PROCEDURE Reset Al QurveAttri butes;

| PROCEDURE d ear Tabl e;
PROCEDURE d ear G aph;
PROCEDURE Dunp@ aph;

(* Assignment of predefined val ues to global default *)
(* values and resetting of all current val ues

| PROCEDURE Set Predefini tions;
| PROCEDURE ResetAll;

(* Preferences and simul ation environnent nodes: *)
(* *)

PROCEDURE Set Docunent RunAl wayshMbde(dra: BOOLEAN) ;
PROCEDURE Get Docunent RunAl wayshMbde(VAR dra: BOOLEAN) ;
| PROCEDURE Set AskSt ashFi | eTypeMbde(asft: BOOLEAN) ;
| PROCEDURE Get AskSt ashFi | eTypehbde(VAR asft: BOODLEAN);

PROCEDURE Set Redr awTabl eAl wayshbde(rta: BOOLEAN);
PROCEDURE Get Redr awTabl eAl wayshbde(VAR rta: E{I]_EAN);
PROCEDURE Set GonmonPagelpRows(rows: CARD NAL

PROCEDURE Get GonmonPagelpRows(VAR rows: CARD NAL);

PROCEDURE Set Redr aw@ aphAl wayshMbde(rga: BOOLEAN);
PROCEDURE Get Redr aw@ aphAl wayshMbde(VAR rga: BOOLEAN) ;
PROCEDURE Set ol or eect or G aphSaveMbde(cvgs: BODLEAN) ;
PROCEDURE Get ol or Vect or G aphSaveMbde(VAR cvgs: BOOLEAN) ;

(* Qustomzation of keyboard shortcuts for nenu commands *)
(* *)

MAenuCnmand = (pageSet LbOnd, print G aphQw, pref erencesQm, cust oni zeQm,

(*core commands*) set @ obS niParsGwl, set Proj Descr O, sel ect S ashF | eQd,

reset G obS nPar sQwl, reset Proj Descr O, reset S ashF | eQ,

reset WndowsQd, reset Al I nt egr Met hodsQwl, reset Alllnitial Val uesQwl,
reset Al | Paranet ersQwl, reset A | SashF |ingOw, resetA | Tabul ati onQ,
reset A | G aphi ngQw, resetAl | Scal i ngOw, resetA | QurveAttrsa,
reset Al Qul, defineS niEnvQd,

(*core commands*) til eWndowsQw, stackWndowsQw, nodel sOvd, stateVar s,
(*core commands*) nodel Par ansQd, noni t or abl eVarsQl, tabl eQw, cl ear Tabl eQw,
()

(

core commands) graphQw, clear G aphQw,

core conmands) start RunQwl, hal t O ResuneRunQwl, stopQmwl, startExperinent Gwl);
| PROCEDURE Set MenuQmlAl i asChar (cnd: MAenuCormand; al i as:
| PROCEDURE Get MenuQmilAl i asChar (cnd: MAenuCormand; VAR al i as: CI-AR)

| PROCEDURE Reset Gor eMenuQmaisAl i asChar's;
| PROCEDURE Reset Al | MenuQisAl i asChar s;

(S nMest er #arret)

(* Running of the standard interactive sinulation environnent *)
(* *)

PROCEDURE RunS nnvi ronnent (i nit S nnv: PROC);
PROCEDURE S nEnvRunni ng(proglevel : CARD NAL) : BOOLEAN
PROCEDURE | nstal | Def S nenv(defineS nEnv: PRXC);
PROCEDLRE Execut eDef S ninv;

(* Sates of the sinulation environnent *)
(* *)

A 344

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

TYPE
W& at e = (noS mul ation, simulating, pause, nohMbdel);
M¥@ubS ate = (noRun, running, noSubSate, stopped);

PROCEDURE Gt MM ate (VARs: M@&ate);
PROCEDURE Get MMBUbS at e(VAR ss: MubS ate) ;
PROCEDURE I nstal | S at eChangeS gnal i ng(doAt S at eChange: PROC);

(* Smulation run conditions *)
(* *)

TYPE Ter ni nat eCondi ti onProcedure = PROCEDURE(): BOOLEAN
SartGnsi stencyProcedure = PROCEDURE(): BOOLEAN

PROCEDURE Instal | Sart Gonsistency (startAlowed: Sart@nsistencyProcedure);
PROCEDURE I nstal | Termi nat eCondi tion(i sAtEnd: Ter m nat eCondi ti onProcedure) ;

(* Qontrol of elenentary and structured simulation runs *)
(* *)

PROCEDURE S nRun;
PROCEDLRE PauseRun;
PROCEDLRE ResuneRun;
PROCEDURE St opRun;

PROCEDURE | nstal | Experi nent (doExperinent: PROC);
PROCEDURE S niExperi nent ;
PROCEDURE &t opExperi nent ;

PROCEDURE Experi nent Runni ng() : BOOLEAN
PROCEDURE Experi nent Aborted(): BOOLEAN
PROCEDURE Qurrent S niN () : | NTEGRR

PROCEDURE Qurrent Tine(): REAL;
PROCEDURE Qurrent Step(): | NTEGER
PROCEDURE Last Qoi nci denceTine(): REAL;

OPTI ONAL CLI ENT I NTERFACE MODULES

SnEvents ****

QONST niinEvent d ass=0; naxEvent A ass=3000; unknownEvent d ass= naxEvent d ass; always = MNREAL); never = MAX(REAL);

TYPE Bvent d ass=[ninEventd ass.. naxEventd ass]; Transaction=

ADDRESS,
SateTransi ti onFuncti on= PROCEDURE Transaction); SateTransition= REGORD ec: Eventdass; fct: SateTransitionFunction; BND

VAR
ni | Transaction: Transaction; (* read only! *)
noStateTransition: ARRAY[O..0] OF SateTransition; (* read only! *)
dunmyDEMChg: REAL; (* read only! *) schedul i ngDone: BOOLEAN

PROCEDURE Event A assExi sts(ec: Bventd ass): BOOEAN
PROCEDURE AsTransacti on(VAR d: ARRAY CF BYTE): Transacti on;

PROCEDURE Decl CEW (VAR m Model ; initialize, input, output: PROG

statetransfct: ARRAY (F StateTransition;, termnate,

descriptor, identifier: ARRAY GF CHAR about:
PROCEDURE Get Def | tDEMM VAR m Mbdel ; VAR initialize, input, output: PROG

VAR statetransfct: ARRAY (F SateTransition; terninate:
VAR descriptor, identifier: ARRAY OF CHAR about: PROD;

PROCEDURE Set Def | t DEMM VAR m Model ; initialize, input, output: PROG

statetransfct: ARRAY (F SateTransition; terninate:
descriptor, identifier: ARRAY OF GHAR about: PRXD;

PROCEDLRE | ni t Event Schedul er;
PROCEDURE Schedul eBEvent (ec: EventQ ass; tau: REAL; alfa: Transaction);
PROCEDURE Next Bvent At () : REAL;

)

decl Mbdel oj ects: PROG

PROCEDURE P obeNext Pendi ngEvent (VAR ec: Eventd ass; VAR when: REAL; VAR al fa: Transaction);
PROCEDURE Get Next Pendi ngBvent (VAR ec: Eventd ass; VAR when: REAL; VAR alfa: Transaction);

PROCEDURE Pendi ngEvent s(): | NTEGER

PROCEDURE Schedul i ngOnl yAfter (tmin: REAL);

PROCEDURE DiscardBventsAfter(ec: Eventdass; aftert: REAL; alfa: Transaction);
PROCEDURE D scar dEvent sBef ore(beforet: REAL);

(** S nthj ects)
FROM SYSTEM | MPORT ADDRESS, FROMDV&rings | MPCRT Sring; FROM S nBase
| TYPE RefAtr;

VAR alet achedRef Attr: RefAttr;

PROCEDURE AttachRef AttrTodbdel (m Mbdel ; VAR a: RefAttr; val: ACDRESS);
PROCEDURE Det achRef Attr Frondbdel (m Mbdel ; VAR a: Ref Attr);

| MPCRT Model ;

PROCEDURE AttachRef AtrTo(bject (m Mdel; VAR o: REAL; VARa: RefAttr; val: ADDRESS);

PROCEDURE DetachRef Attr Fronthj ect (m Mdel ; VAR o REAL; VAR a: RefAttr);
PROCEDURE F ndMbdel Ref Attr (m Mdel ; VAR a: Ref Attr);
PROCEDURE F nd(oj ect Ref Attr(m Mdel ; VAR 0: REAL; VAR a: RefAttr);
PROCEDURE SetRef Attr(a: RefAttr; val: ADDRESS);

PROCEDURE Get Ref Attr(a: RefAttr): ACDRESS

PROCEDURE Qur Gal cMRef Attr(): ACDRESS,
PROCEDURE Qur About MRef At tr () : ACDRESS,

PROCEDURE Model Level (m Mbdel) : CARDI NAL;
PROCEDURE oj ect Level (m Mdel ; VAR 0: REAL): CARDI NAL;

TYPE
MEbj = (M, SV, Pa, W, AV);
Export (oj ect Type = (stateVar, nodParam out Aux\Var);
Real Ptr = PO NTER TO REAL;
PtrTod i ent (bj ect = ADDRESS
Gpj Ptr = PQ NTER TO (bj ect Header ;
(pj ect Header = REGCRD

i dent : ˚

descr : ˚

uni t : ˚

var Adr : Real Ptr; nin, nax T REAL
nrAttr o | NTEGER

refAttr : PtrTodient (pj ect;

chAttr o AR

ki nd : MDD ;

parentM : Model;

A 345

ModelWorks V2.2 - Appendix (Interfaces and Libraries)

| next o jPr;
| prev) Btr;
| BD

| PROCEDURE FirstMdel (): QojPtr;

| PROOEDURE FirstS m Mdel): QojPr;
| PROOEDURE FirstP (m Mdel): Qo Pr;
| PROOEDURE FirstMA{ m Mdel): Qo Pr;
| PROCEDURE Last Model (): Qoj Ptr;

| PROCEDURE LastSV(m Model): Qbj Ptr;
| PROCEDURE LastP (m Model): QbjPtr;
| PROCEDURE LastMA m Model): Qbj Ptr;

| PROCEDURE Al | owFor RAMBESEXport (owner: Model ; VAR obj: REAL; ident: ARRAY OF HAR eot: Bxport Qoj ect Type);

(SnieltaGlc ***)
| TYPE Deltavar; Del taProc = PROCEDURE ((*yS m*)REAL, (*yData*)REAL): REAL;
| VAR defaul tDelta: DeltaProc;

| PROCEDURE Instal | Del taProc(VAR nvDepVar: REAL; conplelta: DeltaProc);

| PROOEDURE InitDeltaSat(VAR nvDepVar: REAL; xSm ySm REAL; VARdv: Deltavar);

| PROCEDURE Acculelta(dv: Deltavar; xSm ySm REAL);

| PROCEDURE GetDeltaStat(VAR nvDepVar: REAL; VAR sunY, sun¥2, sumfbsY: REAL; VAR count: |INTEGERR);
| PROCEDURE SetDeltaStat(VAR nvDepVar: REAL; sunY, sum¥2, sumfbsY: REAL; count: |NTEGER);

| PROCEDURE Wi teDel taStat Msg(VAR nvDepVar: REAL);

(Sn@aphltils ***)

FRM S nBase | MP\GRT MAWndowAr rangenent, Mdel, Stain, LineSyle, Gaphing;
FROM DMW/ndl O | MPGRT @l or ;
FROM Matrices | MPCRT Matri x;

TYPE Qurve; VAR nonexi stent : Qurve; (* read only! *)

PROCEDURE P aceG aphhSuper Screen(def | twa: MAWndowAr r angenent) ;

PROCEDLRE Sel ect For Qut put G aph;

PROCEDURE DefineQurve(VAR c: Qurve; st: Sain; style: Lineyle; sym GAR);
PROCEDURE RenoveQurve(VAR c: Qurve);

PROCEDURE Drawtegend(c: Qurve; x, y: INTEGER comment: ARRAY OF GHAR);
PROCEDURE Plot(c: Qurve; newX newy: REAL);

PROCEDURE Mve(c: Qurve; newX, newy: REAL);

PROCEDURE Plot Syn{ x, y: REAL; sym GHAR);

PROCEDURE AlotQurve(c: Qurve; nrdPoints: CARDNAL; X, y: ARRAY OF REAL);
PROCEDURE G aphToWndowroi nt (xReal , yReal : REAL; VAR xInt, ylnt: |INTEGR);
PROCEDURE WndowToG aphPoi nt (xInt, yint: INTEGER VAR xReal, yReal: REAL);

TYPE Absci ssa = RECCRD i sM: PO NTER TO REAL; xMn, xMax: REAL BEND
VAR tinel sl ndep: REAL;

PROCEDURE | nstal | G aphd i ckHandl er (gch: PR3O ;

PROCEDURE MAVal ToPoi nt (val : REAL; m Mdel ; VAR nv: REAL; VAR curG Gaphing): | NTEGER
PROCEDURE Poi nt ToMAal (xInt,ylnt: INTEGER m Mdel; VAR nv: REAL; VAR curG Gaphing): REAL;
PROCEDURE Qurrent Absci ssa(VAR a: Absci ssa) ;

PROCEDURE Ti nel sX() : BOOLEAN

PROCEDURE S ai nToGol or (stain: Sain;, VARcolor: Qlor);
PROCEDURE Ol or Totain(color: @olor; VARSstain: Sain);

TYPE DO splayTine = (showAt Init, showAt Term noAutoShow);
D spDat aProc = PROCEDURE Mbdel, VAR REAL);

PROCEDURE Decl O spDat a(nibepVar : Model; VAR nvDepVar : REAL;
n ndepVar : Mdel; VAR nvlndepVar: REAL;
X, V,
vLo, vlb o ARRAY OF REAL;
n : INTEGR

w thErBars: BOOLEAN

di spTi ne : DisplayTine);
PROCEDURE D spl ayDat aNow(nbepVar : Mdel ; VAR nvDepvVar : REAL);
PROCEDURE D spl ayAl | Dat aNow
PROCEDURE DoFor Al | D spData(p: D spDataProc);
PROCEDURE RenoveD sphat a(nbepVar : Mdel ; VAR nvDepvar : REAL);

PROCEDURE Decl O spDat aM niepVar : Mdel; VAR nvDepVar : REA;
nindepVar : Mdel; VAR nvlndepVar: REAL;
dat a o Matrix;

W thErBars: BOOLEAN

dispTine : DsplayTine);
PROCEDURE Set O spDataM niepVar: Mbdel ; VAR nvDepVar: REAL; data: Matrix);
PROCEDURE Get O spDataM niepVar: Mbdel ; VAR nvDepVar: REAL; VAR data: Matrix);

(Snintegrate ****)
PROCEDURE Integrate (m Mdel; from till: REAL);

(-END-)
Mbdel Wrks nay be freely copied but not for profit!

A 346

| ndex

Symbols
«Mini RAMSES Shdl» viii, 20, 32, 35
«RAMSES Shell» 20

A

application see stand-alone
application

Ask for stash filetype 97, 104
auxiliary library 89, 90

auxiliary variable 14, 69, 71, 131
AuxVar 131

availability of menu commands 82

B

button 84
button palette 84

C

calculation order of procedures 49, 50,
66, 126

calee71, 72
client see modeler

clientinterfacevi, 12, 53, 89, 90, 122
auxiliary library 90, 123
mandatory 273
mandatory part 89, 90, 122, 342
optiona client interface 122
optional part 89, 90

client monitoring 78
calling sequence 79
termination 79

client procedure 66, 68, 71, 72

coincidenceinterval 46, 47, 50, 101

coincidence point 46, 47

consistency check see dtart
consistency check

continuous time 13, 40, 41, 43, 44, 45,
46, 47, 135, 224

core menu commands 98

347

coupling of models 44, 47, 48, 209, 224,
243

current value 14, 22, 58, 59, 107, 133

curve attribute 24, 25, 120, 148, 149

automeatic definition 24, 62, 120,
121, 149
inlegend 150

customization 98

D

declaration of
experiment 143
model 30, 58, 125
model during asimulation 73
model object 29, 34, 71, 128
model parameter 28, 30, 130
monitorable variable 28, 30, 131
State variable 28, 29, 128
table function 323

DeclM 126

DeciMV 131

DeclP 130

DeclSV 129

default valuevi, 13, 14, 59, 105, 133
Derivative 128

derivative of state variable 13, 14, 29, 44,
68, 69, 70, 127, 129

derivative vector 41

DESS 40

DEVS41, 42,162, 273

"Didlog Machine" vi, 17,54, 90, 91, 124
difference equation 12, 13, 40, 41
difference equation system v

differential equation 12, 13, 26, 40, 127
differential equation systemv

discrete event 12, 13, 41, 42, 126, 162
external 42
internal 42

discrete event formalismv
discrete event modd viii

ModelWorks V2.2 - Index

discretetime 13, 41, 43, 45, 46, 47, 126,
224

discretetime step 41, 42, 46

E

event class41, 42
event input 41

event output 40, 41, 46
external 45

event scheduling viii, 42
by DESS 40
by DEVS41
by SQM 41

existence of model objects 71

experiment 195, see structured
simulation

external event 45, 46

F

first order difference equation 14
first order differentia equation 14
full reset 62

function vector 41

G

global parameters 53

globa smulation parameter 62, 101,
133, 134

graph 36, 76, 78, 79, 96, 108, 118, 119,
123, 132, 148, 150

graphing 119
H

hardware requirements vi
hierarchical system 43, 49

independent variable 46, 68, 78, 117,
118, 134, 136

initial events41

initial value 13, 14, 15, 40, 41, 59, 70,
105, 113, 127, 129

input 40, 41, 42, 49, 68, 69, 127

348

input variable 131
installing procedure 71

instantaneous state transition function
13,40, 41, 42, 162

integration method 26, 51, 59, 68, 112,
126

integration step 26, 50, 59, 69
interactive simulation environment 106
internal event 46

InVar 131

|O-window 21, 82, 107, 109, 144, 145

|O-window default action 110, 112, 114,
116, 119

K

keyboard shortcut 94, 98, 109, 110, 111,
112,114,116, 117, 118, 119, 121

L
M

MacMETH vi

mixed model 14, 43, 46, 47, 224
model 13, 40-43, 59, 110

modé attributes 139

model base 53, 73

model definition program 12, 15, 16, 28,
32, 87-88, 90, 94, 124

model development 12, 32-87

model object 13, 59, 70, 71, 82

model parameter 13, 14, 41, 59, 70, 114
model validation 278

modeller 12, 71

ModelWorks window 146

modifying current value

automatic curve attribute definition
121

curve attribute 24, 120

discrete time step 101

global smulation parameter 101,
135, 136

graphing 118, 119

initial value 23, 113, 114, 139

integration method 26, 112, 139
integration step 26, 101
model parameter 23, 114, 116, 139

run time change 26, 30, 81, 108, 115,

130

monitorable variable 23, 24-25, 116,

139
monitoring interval 25, 101, 136
project description 136
recording flags 103, 136
scaling 23, 119, 139
simulation start time 101, 136
simulation stop time 101, 136
stash filing 117
table function 139
tabulation 118
user defined curve attributes 121

modifying default value
global simulation parameters 135
initial value 138
integration method 34, 138
integration step 136
model 138
model parameter 138

run time change 138

monitorable variables 138
monitoring interval 136
project description 135
recording flags 135
scaling 138
simulation start time 136
simulation stop time 136
state variable 138

Modula-2 vi, 16
modular modeling 88, 209
modul e structure of ModelWorks 90

monitorable variable 13, 14, 23, 24, 59,
70, 76, 116

monitoring 23, 68, 76-79, 116-121, 146-

151
monitoring interval 59, 70, 76, 101
monitoring time 76
Monte-Carlo smulation 205
MSDOSvi, 272

N

new state 68

new value of state variable 13, 14, 29,
45, 70, 127, 129

349

ModelWorks V2.2 - Index

NewState 128

Norun see substate of simulation
environment

Nos _mulati on see date of
simulation environment

O

object see model object

object selection see selection of
object

operand 84

operator 84

output 40, 41, 42, 49, 68, 69, 127

output variable 131

output-input coupling 44, 45

OutVar 131

P

page up 78, 97, 150

pardlel mode v, 48, 243

parameter see model parameter
parameter identification 89, 278

Pause see dateof smulation
environment

performance index 278
persona computer vi
predefined defaults 62
predefinitions 62

preferences see simulation
environment mode

program control 73

program stack 80, 94
conditional reset 82
globa simulation parameters 82
quitting subprogram level 81

pseudo random number generator 195

Q

quitting of aprogram level 80
R

RAMSESvV

ModelWorks V2.2 - Index

availability 272
recommended preferences 97

removing of
model 58, 125, 141
model object 58, 141

reset 14, 59, 60, 62, 101, 105
run see simulationrun

runtimechange see modifying
current value: model parameter

run-time system 54

Running see substate of smulation
environment

RunSimEnvironment 94

S

sample model 154
scaling 13, 23, 78

Scope All 84

selection of model 83
selection of object 22, 83
selection scope 83
selectionscope 83
sensitivity analysis 89-183, 278
sequential machine 41, 42
SmDdtaCalc 278
SimEvents 273
SimGraphUtils 281
Simlntegrate 288
SimObjects 290

Simulating see dtate of simulation
environment

smulation environment 15, 16, 31, 53

simulation environment mode 96, 97,
104, 148, 150

smulation run 22, 53, 65, 66, 67, 108,
141

simulation session 53, 63

smulation time 22, 31, 40, 69, 101, 134,
135

simulationist 12
solving models s multaneously 80

350

source see modd definition
program

SQM see sequential machine

standard interactive ssimulation
environment 124

standard user interface 54, 79
states 82

start consistency check 66, 142
start time 46

stash file 26, 76, 77, 96, 103, 104, 105,
134, 148, 150
recording flags 103, 134, 136
renaming 75
switching 75

state discontinuity 42

state of simulation environment 55, 56,
81, 82, 143
EmptySimEnvironment 54
No model 55, 81, 82
No smulation 54, 55, 56, 81, 82
Pause 26, 54, 55, 56, 81, 82
Simulating 54, 55, 56, 81, 82, 108

sate variable 13, 14, 68, 69, 70, 113
state vector 41

StateVar 128

stochastic smulation 195

structured model 40, 43, 48, 51, 88, 224

structured simulation 56, 65, 67, 88, 89,
109, 141, 143, see experiment

structured ssimulation run 195
submodel 40, 43, 49, 50, 51
subprogram 94

subprogram level 80

subrun 75

subrun break 75

subsequent monitoring 146

substate of simulation environment 55,
56, 143

No run 56
Running 56

system
continuous time 40
discrete event 40
discrete time 40

ModelWorks V2.2 - Index

system specification
continuous time 40
discrete event 41, 162
discretetime 41

T

table 25, 76, 78, 107, 150

table function 176, 320, 323, 326

table function editor 320, 321

terminate condition 66, 142

time see continuousor discretetime
transaction 41

TY PE ExtrapolMode = (lastSlope,
horizontally) 326

U

user see simulationist
user interface 12, 53, 94

user interface customization 84
additional menus 85
disable functions 84
initialization (InstallDefSmEnv) 85
nonstandard user
interface(MySimEnv) 85
override predefined settings 84

V

versions of ModelWorks of
ModelWorks 272

W

work object 20

X
Y

351

352

BERICHTE DER FACHGRUPPE SYSTEMOKOLOGIE
SYSTEMS ECOLOGY REPORTS
ETH ZURICH

Nr./No.

1

[L I)

12

13

14

15

16

17

18

19

20
21

FISCHLIN, A., BLANKE, T., GYALISTRAS, D., BALTENSWEILER, M., NEMECEK, T., ROTH, O.
& ULRICH, M. (1991, erw. und korr. Aufl. 1993): Unterrichtsprogramm "Weltmodell2"

FISCHLIN, A. & ULRICH, M. (1990): Unterrichtsprogramm "Stabilitét"
FISCHLIN, A. & ULRICH, M. (1990): Unterrichtsprogramm "Drosophila"
ROTH, O. (1990): Maisreife - das Konzept der physiologischen Zeit

FISCHLIN, A., ROTH, O., BLANKE, T., BUGMANN, H., GYALISTRAS, D. & THOMMEN, F.
(1990): Fallstudie interdisziplinare Modellierung eines terrestrischen Okosystems unter
Einfluss des Treibhauseffektes

FISCHLIN, A. (1990): On Daisyworlds: The Reconstruction of a Model on the Gaia Hypothesis

GYALISTRAS, D. (1990): Implementing a One-Dimensional Energy Balance Climatic Model on a Microcomputer (out of print)

FISCHLIN, A., & ROTH, O., GYALISTRAS, D., ULRICH, M. UND NEMECEK, T. (1990): ModelWorks - An Interactive Simulation
Environment for Personal Computers and Workstations (out of print— for new edition see title 14)

FISCHLIN, A. (1990): Interactive Modeling and Simulation of Environmental Systems on
Workstations

ROTH, O., DERRON, J., FISCHLIN, A., NEMECEK, T. & ULRICH, M. (1992): Implementation
and Parameter Adaptation of a Potato Crop Simulation Model Combined with a Soil Water
Subsystem

NEMECEK, T., FISCHLIN, A., ROTH, O. & DERRON, J. (1993): Quantifying Behaviour Sequences of Winged Aphids on Potato
Plants for Virus Epidemic Models

FISCHLIN, A. (1991): Modellierung und Computersimulationen in den Umweltnaturwissen-
schaften

FISCHLIN, A. & BUGMANN, H. (1992): Think Globally, Act Locally! A Small Country Case
Study in Reducing Net CO2 Emissions by Carbon Fixation Policies

FISCHLIN, A., GYALISTRAS, D., ROTH, O., ULRICH, M., THONY, J., NEMECEK, T.,
BUGMANN, H. & THOMMEN, F. (1994): ModelWorks 2.2 — An Interactive Simulation
Environment for Personal Computers and Workstations

FISCHLIN, A., BUGMANN, H. & GYALISTRAS, D. (1992): Sensitivity of a Forest Ecosystem
Model to Climate Parametrization Schemes

FISCHLIN, A. & BUGMANN, H. (1993): Comparing the Behaviour of Mountainous Forest
Succession Models in a Changing Climate

GYALISTRAS, D., STORCH, H. v., FISCHLIN, A., BENISTON, M. (1994): Linking GCM-
Simulated Climatic Changes to Ecosystem Models: Case Studies of Statistical Down-
scaling in the Alps

NEMECEK, T., FISCHLIN, A., DERRON, J. & ROTH, O. (1993): Distance and Direction of
Trivial Flights of Aphids in a Potato Field

PERRUCHOUD, D. & FISCHLIN, A. (1994): The Response of the Carbon Cycle in Undisturbed
Forest Ecosystems to Climate Change: A Review of Plant—Soil Models

THONY, J. (1994): Practical considerations on portable Modula 2 code

THONY, J., FISCHLIN, A. & GYALISTRAS, D. (1994): Introducing RASS - The RAMSES
Simulation Server

* Out of print

22

23
24

25

26

27

28

29

30

Diese Berichte konnen in gedruckter Form auch bei folgender Adresse zum Selbstkostenpreis bezogen werden /
Order any of the listed reports against printing costs and minimal handling charge from the following address:

GYALISTRAS, D. & FISCHLIN, A. (1996): Derivation of climate change scenarios for
mountainous ecosystems: A GCM-based method and the case study of Valais, Switzerland

LOFFLER, T.J. (1996): How To Write Fast Programs

LOFFLER, T.J., FISCHLIN, A., LISCHKE, H. & ULRICH, M. (1996): Benchmark Experiments on
Workstations

FISCHLIN, A., LISCHKE, H. & BUGMANN, H. (1995): The Fate of Forests In a Changing
Climate: Model Validation and Simulation Results From the Alps

LISCHKE, H., LOFFLER, T.J., FISCHLIN, A. (1996): Calculating temperature dependence over
long time periods: Derivation of methods

LISCHKE, H., LOFFLER, T.J., FISCHLIN, A. (1996): Calculating temperature dependence over
long time periods: A comparison of methods

LISCHKE, H., LOFFLER, T.J., FISCHLIN, A. (1996): Aggregation of Individual Trees and Patches
in Forest Succession Models: Capturing Variability with Height Structured Random
Dispersions

FISCHLIN, A., BUCHTER, B., MATILE, L., AMMON, K., HEPPERLE, E., LEIFELD, J. &
FUHRER, J. (2003): Bestandesaufnahme zum Thema Senken in der Schweiz. Verfasst im Auftrag
des BUWAL

KELLER, D., 2003. Introduction to the Dialog Machine, 2" ed. Price,B (editor of 2™ ed)

Erhiltlich bei / Download from
http://www.ito.umnw.ethz.ch/SysEcol/Reports.html

SYSTEMS ECOLOGY ETHZ, INSTITUTE OF TERRESTRIAL ECOLOGY
GRABENSTRASSE 3, CH-8952 SCHLIEREN/ZURICH, SWITZERLAND

http://www.ito.umnw.ethz.ch/SysEcol/Reports.html

